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Abstract 
In standard courses of Quantum Mechanics the harmonic oscillator is frequently resolved through of different 

techniques. In this paper, we introduce another didactic method to obtain its energy spectrum and wave functions by 

using directly the Hermite polynomials. To do this we only use arguments of general soundness.  
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Resumen 
En cursos normales de Mecánica Cuántica, el oscilador armónico es frecuentemente resuelto a través de diferentes 

técnicas. En este artículo, introducimos otro método didáctico para determinar su espectro de energía y sus funciones 

de onda, usando directamente polinomios de Hermite. Para hacer esto solamente consideramos argumentos de validez 

general.  
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I. INTRODUCTION 
 

The harmonic oscillator potential has been extensively 

applied in the study of several systems of Theoretical 

Physics [1]. Besides this potential admits a variety of 

methods of solution, which is extremely attractive in the 

courses of Quantum Mechanics. In particular, the 1-D 

harmonic oscillator can be typically resolved by power 

series or algebraically through an operator method [2] which 

can be generalized with the help of supersymmetry and the 

concept of shape-invariant potentials [3]. Recently, a 

Fourier transform approach to the system was proposed in 

order to obtain its solution [4]. In this paper, we show how 

the 1-D harmonic oscillator can be solved from a different 

approach improving some general consequences of the 

Schrödinger equation and properties of the Hermite 

polynomials, which has not been considered in standard 

techniques [2, 3, 4, 5]. For this reason we think this method 

may be opportune in the teaching of Quantum Mechanics. 

 

 

II. METHOD 
 

We are interested in those potentials of the Schrödinger 

equation 
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that admit ansatz solution of the form 
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where )(x  is a real function and 
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with )(xf j
 a polynomial of degree j, which can be 

identified with any element of a basis of polynomials. In 

fact, the n nodes of the wave function )(xn  are 

determined by the polynomial )(xn . Here, we note that for 

these solutions, the function )(' x  is the logarithm 

derivative of the ground state )(0 x . Making use of Eq. (2) 

in Eq. (1) we get the differential equation 
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or, using the definition for 
2

np  in Eq. (1), 
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Since 0)(0  x , it is easy to see that Eq. (3) and Eq. (5), 

for 0n , imply 
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Then the function )(x  is linked to the potential )(xV by 

means of the Riccati equation (7) which is familiar in the 

development of Supersymmetric Quantum Mechanics 

(SUSYQM), where )(' x  is generally called the 

superpotential of the problem [6]. Other few special cases 

of Eq. (5) are obtained when ,...3,2,1n   
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In particular, if we consider that the function )(x  is a 

polynomial of degree p+1, then )(xV  is a polynomial of 

degree 2p, and Eq. (7) can be arranged as a linear 

combination of elements of the basis  
0

)(
jj xf , whose sum 

is equal to zero. Consequently each coefficient of such 

combination must be zero [7]. So, Eq. (7) represents an 

equation system, from which, 0E  can be obtained. By an 

analogous argument, the coefficients 1110   , aa  

( 222120   ,  , aaa ) and the eigenvalue 1E  ( 2E ) are given 

via Eq. (8) (Eq. (9))…, here some consequences of 

Schrödinger equation have to be used. This last point will be 

explicitly explained below. In general, we can note that the 

eigenvalue nE  and the coefficients nja  ( nj ,...2,1,0 ; 

,...3,2,1n ) are obtained from Eq. (5) and are independent 

of the coefficients kna ' ,  ( ',...2,1,0 nk  ) for 'nn  . The 

particular case when p=1 and )(xf j
 is the canonical basis 

jx  reproduces the standard solution for the quantum one-

dimensional harmonic oscillator [8]. Now, in this paper we 

elect )()( xHxf jj  , with )(xH j
the j-degree Hermite 

polynomial.  

We propose in Eq. (7) the potential 
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If we solve the equation 
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by using )(2)( 1

' xnHxH nn   [9] we get 
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Then, substituting Eq. (13) in Eq. (11) we obtain the 

minimum value of the potential 
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Furthermore, since mínV  is the minimum value of the 

potential and AxV 8)(''  , then 0A . Eqs. (7) and (11) 

suggest us to write. 
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which implies that 
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where the identities  
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were used. Also, by Eqs. (14) and (16), Eq. (17) can be 

written as 
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The minus sign in this equation needs to be discarded 

consistently with the well-known proposition E must exceed 

the minimum value of )(xV  [10], then the sign for the 

coefficients 
1  and 

2  in Eq. (16) must be positive, and Eq. 

(6) gives 
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Therefore, the ground state and its energy eigenvalue are 

simultaneously obtained. In words, the parameters
i , 

2,1i  are attained from the equation system generated by 

Eq. (7), and the sign of 
i  is determined from the properties 

of the Schrödinger equation. Next, the coefficients 
00a  and 

0  are fixed by normalization of )(0 x . 

Now, from Eq. (15) and Eq. (17) we substitute )(' x  

and 0E  in Eq. (8) and obtain. 
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Since 011 a , this equation implies 
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Then, the first excited state can be written as 

 
















2

0
)(

1111 )(
2

)( k
kk xHeaxH

A

B
x


,     (24) 

 

here the coefficient 
11a  and the parameter 

0  

normalize )(1 x . We note, that Eq. (21) generates two 

conditions which allow us to know the parameters 
10a  and 

1E . 

Now, when Eq. (9) is considered we have 
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then 
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Therefore 
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We can continue this process to obtain another quantum 

states and its eigenvalues in terms of the coefficients of the 

potential given in (11).  

 

 

III. PARTICULAR CASE 

 

These results are consistent with those obtained when we 

take the particular values 2

8

1
mA   and 0B , for the 

shifted zero-point quantum harmonic oscillator. 
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The above expressions (19), (20), (22), (24), (26) and 

(30) reduce to 
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where 4/2mV AB

mín  , / m , 4/0    and 

redefined  nnnnn aa 2/1/  . In general, making 

2/1xx   in (32), (34) and (36), the functions )(xn  are 

identified with the standard result [2]. 

The following possibility, is the called anharmonic 

oscillator given by BxAxFxDxxV  234)( , in this 

case, the method produces trivial solutions and the 

corresponding )(0 x  is a non-normalizable function. In 

fact, this potential does not admit solutions of the form (2). 

 

 

IV. CONCLUSION 
 

We have presented an alternative didactic method that 

allows us to resolve the quantum 1-D harmonic oscillator. 

This method can be used in standard courses of Quantum 

Mechanics, since it systematically requires some 

mathematical properties of the Schrödinger equation and of 

the Hermite polynomials, and can be used to introduce some 

basic aspects of SUSY QM. 
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