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Abstract 
Explicit formulae for the viscosity stress tensor, equations of motion and kinetic energy dissipation are provided in 

cylindrical and spherical coordinates for Newtonian fluids with non-constant viscosity. 

 
Keywords: Newtonian fluids, non-constant viscosity. 

 

Resumen 
Las formulas explícitas para el tensor, ecuaciones de movimiento y la disipación de la energía cinética son 

proporcionadas en coordenadas cilíndricas y esféricas para fluidos Newtonianos con viscosidad no-constante. 

 
Palabras clave: Fluidos Newtonianos, viscosidad no-constante. 

 

PACS: 51.20.+d, 92.60.H-                                                                                                                         ISSN 1870-9095 

 

 

I. INTRODUCTION 
 

The coefficients of viscosity   and   in a viscid fluid vary 

with temperature and pressure. In general T and p, and 

therefore   and  , are not constant throughout the fluid. 

Taking this fact into account adds new terms to the 

equations of motion and to the formula of kinetic energy 

dissipation. As far as we know, these formulae in 

cylindrical and spherical coordinates have appeared neither 

in the specialized literature nor in physics manuals. The 

reason for this omission is due to the fact that in most cases 

where fluid mechanics is applied, the hypothesis of constant 

viscosity is a reasonable assumption. But in large extended 

physical systems such as planets and stars it might be that 

this hypothesis is no longer valid. Thus, the purpose of this 

paper is the deduction and presentation of these formulae, 

in curvilinear coordinates, for fluids when viscosity is not 

constant. 

On the other hand, the main academic interest of this 

paper lies on the fact that students are usually familiarized 

with tensors in different coordinate basis but they rarely 

have dealt with the unitary vectors of these basis. In this 

paper, they have the opportunity to work with these unitary 

vectors in curvilinear coordinates regarding both their 

coordinate transformations and their derivatives. 

The motivation for this work arose from Membrado and 

Pacheco [1], hereafter MP. There we studied the rotation of 

the atmosphere under the simplifying hypothesis that 

molecular viscosity is solely responsible for the differential 

rotation of the successive air layers. In MP we used the 

formalism of classical fluids mechanics and, as we had to 

deal with a fluid where viscosity is not a constant, and in 

curvilinear coordinates, we needed the above mentioned 

equations though in a restricted form. This paper is 

organized as follows. In Section 2, after mentioning several 

generalities about fluids, we write the viscosity stress tensor 

and the equations of motion of a viscous fluid. In Section 3, 

the components of the viscosity stress tensor and those of 

the equations of motion are deduced in cylindrical and 

spherical coordinates. In Section 4, we present the general 

equation of the dissipation of kinetic energy in viscous 

fluids and its form in curvilinear coordinates. As an 

example, this equation is utilized in Section 5 to compute 

the dissipation of kinetic energy in the solution found in MP 

for the atmospheric rotation. Finally, in Section 6, we set 

out the conclusions. 

 

 

II. GENERALITIES ABOUT FLUIDS AND VIS-

COSITY STRESS TENSOR 
 

The motion of any fluid is subject to a kinematic constraint 

based upon the conservation of mass. This is expressed by 

means of the continuity equation: 

 

,  )( 





 
vvv

t
                     (1) 

 

where v


 is the velocity of the fluid and   the mass 

density. When   is constant, i.e., the fluid is 

incompressible, Eq. (1) is simplified to: 
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                                         (2) 

 

As is well known, in inviscid (ideal) fluids, the ith 

component of the amount of momentum flowing in unit 

time through the unit area perpendicular to the xk axis is 

given, in tensorial form, by:  

 

. 
kiikik

vvp                                   (3) 

 

This tensor 
ik

 is called the momentum flux density tensor 

and p is pressure. The equation of motion for an ideal fluid 

is known as the Euler equation and reads as follows 

(henceforth, summation over repeated suffixes is assumed): 
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In viscous fluids, the tensor written in (3) is generalized by 

adding a new term which is responsible for the viscous 

transfer of momentum in the fluid: 

 

; '
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vvvvp                (6) 

 

the tensor 
ik

  is called the stress tensor and 
ik
'  the 

viscosity stress tensor. Thus, they are related by 
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Using general arguments (see for example, Landau and 

Lifshitz [2]), the 
ik
'  tensor for a Newtonian fluid is 

expressed by: 
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which is symmetric. The quantities   and   are called 

coefficients of viscosity and are both positive. 

Then the equations of motion of a viscous fluid, in the 

most general form, are obtained by adding 
kik

x /'  to the 

right hand side of the Euler equation, given in (5). The 

result is: 
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which is equivalent to 

, ')( 
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where '


 is the notation for the intrinsic form of the 

viscosity stress tensor. In the added term,  represents an 

external field acting on the fluid, typically a gravitational 

field. 

This equation without  , for an incompressible fluid 

and for   and   constants, becomes 
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which is the Navier-Stokes equation. 

 

 

III. VISCOSITY STRESS TENSOR AND FLUID 

EQUATIONS IN CYLINDRICAL AND SPHER-

ICAL COORDINATES 
 

The components of 
ik
'  in Eq. (8) correspond to Cartesian 

coordinates. To deduce these components in cylindrical or 

spherical coordinates, we start by writing this tensor in its 

intrinsic form (see for example, McQuarrie [3]), namely: 
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          (12) 

 

where I


 is the unity tensor, the symbol ba


  represent 

the dyadic product of the two vectors and the superscript T  

means transposition of the operator; i.e., 

abba
T 

 )( . 

 

A. Cylindrical coordinates (r, , z) 
 

In these coordinates, the gradient operator and the velocity 

vector have the form: 
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Then, to compute (12) one has to bear in mind that the three 

unitary vectors are orthogonal, and that the derivative 

operators act not only on the components of the velocity but 

also on the unitary vectors: 
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After performing the derivation of the vectors and 

comparing the result with 
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the nine components of the tensor are identified. They are: 
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The form of the continuity equation in these coordinates is 
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Now, as is expressed in (10), the equation of motion 

requires the computation of the divergence of the tensor '


. 

As said above, the derivatives act also on the unitary 

vectors. Performing this derivation first and then grouping 

terms, one finds: 
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To obtain (19), (14) has been used together with the identity 
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Finally, performing the derivation of the tensor components 

given in (16), the three components of the equation of 

motion are: 
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  component: 

 

                       




























r

vv

z

v
v

v

r

v

r

v
v

t

v
r

zr






                          
11



































r

vv

rr

v

rr

p

r

r 




























 v

r

vv

rr

r
221



                                       (22) 

                       
3

11












































 v

rz

vv

rz

z





 

       ; 
211

222

2

2

2

22

2




































r

vv

rr

v

rz

vv

rr

v
r 


  

 

z component: 
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Note the presence of terms involving derivatives of the 

viscosity. These terms are absent in fluid mechanics books 

and physics vade mecums. 

 

B. Spherical coordinates (R, , ) 
 

The calculus in spherical coordinates ( R , , ), where   

and   are the zenith and the azimuth angle respectively, is 

similar to that explained above for cylindrical coordinates. 

Here, the gradient operator and the velocity are 
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The derivatives of the unitary vectors are 
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And the list of components of the viscosity stress tensor is:  
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The form of the continuity equation in these coordinates is 
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After performing the derivation of the unitary vectors, the 

divergence of the tensor reads as follows: 
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And using the tensor components collected in (26), the 

three components of the equations of motion are: 
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  component: 
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  component: 
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IV. EQUATION FOR THE RATE OF ENERGY 

DISSIPATION IN A FLUID 
 

The kinetic energy in a unit volume and the total kinetic 

energy in a fluid are equal to 
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respectively. Assuming that the borders of the volume are 

fixed, the time variation of the kinetic energy in that 

volume is 
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Using the equation of motion (10) and the continuity Eq. 

(1), we find: 
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This is the most general form to express the kinetic energy 

dissipation for unit volume in a fluid. 

Now, we will express the two terms '
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 )'(  in cylindrical and spherical coordinates. 

Cylindrical coordinates: 
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Spherical coordinates: 
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V. AN EXAMPLE OF KINETIC ENERGY 

DISSIPATION 
 

As an explicit example of the use of the equation of kinetic 

energy dissipation, we will apply (36), (37) and (38) to the 

solution found in MP for the atmospheric rotation. In MP it 

was assumed that the vector velocity of the air was as 

follows: 
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mathematically equivalent to the continuity Eq. (2) of an 

incompressible fluid, though the atmosphere is definitely 

not such a fluid. 

The explicit solution for the velocity of rotation of the 

air in MP was 
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where   and R0 are the angular velocity and radius of 

Earth respectively. R is the distance to the center and r  the 

distance to the axis of rotation. As said above, a solution of 

this type implies that 

 

, 0 v


                                     (43) 

 

is fulfilled, and also 

 

. 0)(  v


                                   (44) 

 

Equation (44) is a consequence of assuming a steady state. 

Therefore, in this problem, Eq. (36) is simplified: 
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The first term in this formula has been obtained using 

Gauss' theorem. 

The volume in these equations can be fixed at will. We 

will choose a thick spherical shell contained between Rmin 

and Rmax. Both Rmin and Rmax are bigger than R0. 

Then, the unitary vector perpendicular to the top 

surface, in cylindrical coordinates, is 
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and using (41), we find 
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so that 
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Now, we change the derivatives from (r, z) to (r, R) 

coordinates and make use of (42). The net result for the 

surface term in (45) is: 
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In the upper line of (49) the second term is positive and 

represents the energy transferred to the air contained in the 

volume through the bottom surface of the shell. The source 

of this energy is the rotation of the lower atmospheric 

layers. The first term is negative and represents the loss of 

energy of the air in this volume through the top surface. 

The balance between these terms written in the lower line, 

TS, provides the net kinetic energy given to that volume of 

atmosphere. Let us consider now the volume term in (45). 

In cylindrical coordinates, the velocity and gradient was 

given in (13). Using (38) and exploiting the fact that 

0 v


, we find 
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Now, passing from the coordinates (r, z) to (r, R), (50) 

adopts the form 
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and using the explicit form of the fluid velocity (42), the 

result is 
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This is the kinetic energy rate of dissipation in the volume 

considered. This term, TV, exactly balances TS as is required 

by the principle of energy conservation. 

 

 

VI. CONCLUSIONS 
 

In this paper we have presented, in the most general form, 

the viscosity stress tensor and the equations of motion of 

viscid fluids, for cylindrical and spherical coordinates, with 
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the hypothesis that viscosity is not constant. The complete 

set of these equations is written in Section 3. The general 

formula for the rate of dissipation of kinetic energy in these 

fluids has been also deduced and is written in Section 4. We 

believe that the set of formulae contained in this paper are 

original and useful for dealing with Newtonian fluids in 

extended systems where the symmetry of the problem 

imposes the use of curvilinear coordinates and where 

viscosity cannot be considered as a constant. 

Some of the formulae collected here are obtained 

through lengthy but instructive calculations. The details of 

any of them are available on request. 

As an illustrative example, we have computed the 

kinetic energy dissipation in the solution studied in MP for 

atmospheric rotation. There, the viscosity coefficients were 

assumed to vary with T but not with p. Besides, with the 

ansatz assumed for the rotation velocity (41), the formulae 

are considerably simplified and for example it is possible to 

recognize that the energy dissipated in a fixed volume of 

atmosphere is the difference between the energy transferred 

by the atmosphere through the bottom surface and the 

energy lost through the top surface. 
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