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Abstract 
In this paper, we develop an extension to a four-dimensional frame of reference for the classical Maxwell–Faraday 

equation by applying the method of directional derivatives. 
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En este trabajo, desarrollamos una extensión a un marco de referencia de cuatro-dimensiones de la ecuación clásica de 

Maxwell–Faraday aplicando el método de derivadas direccionales. 
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I. INTRODUCTION 
 

As background, Faraday’s law of the induction [1] (or 

simply Faraday’s law) is based on the Michael Faraday’s 

experiments of 1831 which states that the induced voltage 

in a closed circuit (for instance, a loop of wire or circuit 

with electrical current passing through it) is directly 

proportional to the changing of magnetic flux crossing the 

surface with the circuit as an edge, which expressed in SI 

units is given by 

 

, 
SSC

d
dt

d
dd ABAElE           (1) 

 

where  is the curl (also called rotor or rotationa l, and also 

denoted as rot), E is the electric field, dl is the infinitesimal 

element of contour C, B is the magnetic field density, S is 

the arbitrary surface defined by z = f(x, y), whose edge is C 

(with C and S not necessary stationary) and dA is the 

infinitesimal element of area. Direction of electric flux and 

magnetic flux are given by the right-hand rule. This surface 

integral can be written in the differential form by applying 

the Stockes theorem [2, 3], then obtaining the curl in terms 

of the partial time derivative. Direction of the curl is the 

axis of rotation and the magnitude of the curl is given by 

the magnitude of rotation. For the z-axis, its differential 

form is given by 

 

.
t

rot z



 zB

E                               (2) 

Thus, magnetic flux changing in time is proportional to the 

electromotive force. Maxwell included the Faraday's law in 

his Maxwell's equations [4], known as the Maxwell–

Faraday equation. As known, Maxwell's equations are a set 

of partial differential equations that describes the 

electromagnetic behavior on a surface or region around an 

electrical current, unifying the electromagnetism. 

On the other hand, four-dimensional space (some times 

denoted as "4-D") is a dimensional concept derived by 

generalizing the rules of three-dimensional space [5, 6]. 

Algebraically it is generated by applying the rules of 

vectors and coordinate geometry to a space with four 

dimensions. In particular a vector with four elements (a 4-

tuple) can be used to represent a position in four-

dimensional space. 

In this paper, we develop an extension to four-

dimensions for the Maxwell–Faraday equation. Classical 

mathematical method of directional derivatives is applied to 

derive the Maxwell–Faraday equation in its differential 

form, but extended to four-dimensions. 

 

 

II. MAXWELL-FARADAY EQUATION 

EXTENSION TO FOUR-DIMENSIONS 
 

Extending the Maxwell’s basic model [1, 7] by adding a 

new dimensional parameter named w, we suppose a surface 

in a four-dimensional frame of reference given by w = f(x, 
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y, z), where the electric field E in four-dimensions is given 

by the parameters of tetra-vector 

 

).,,,( zEEEEE yxw                          (3) 

 

In order to determinate the direction of the electrical current 

through a four-dimensional frame of reference, we suppose 

an electrical current which follows a 3-dimensional closed 

trajectory around a central point O as the origin of the 

coordinate system (for instance, a rectangular circuit in the 

3-dimensional space for simplicity, described by the points 

A, B, C and D). In this way, at the same time such an 

electrical current also advances positively passing through 

the points A’, B’, C’ and D’ located along the w-axis which 

is orthogonal to the other three coordinates of the familiar 

three-dimensional space, where point A and point A’ 

coincide as the same point in a four-dimensions frame of 

reference, then having components A(w, x, y, z). In the same 

way, points B and B’ coincide as the same point in four-

dimensions, and so, C and C’, and D and D’, respectively, 

coincide as the same points in four-dimensions. It means 

that each one of those points is described in a four-

dimensional frame of reference. In this way, extending the 

directional derivatives of a multivariate differentiable scalar 

function [8, 9] to four-dimensions for a function defined by 

w = f(x, y, z) along a given unit vector Vw = (Vx, Vy, Vz) at a 

given point A, represents the instantaneous rate of change 

of the function, moving through A, in the direction of V, 

yields the function defined by the limit given by 
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Thus, since we are considering an electrical current which 

enters and leaves respectively in each one of the points of 

that circuit, respectively, the vector V can be considered 

like the vector of electrical current, where components of 

vector electric field E for each point according to the 

circulation yield 
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In order to determinate the value of these components, it is 

considered the equation of a straight line in four-

dimensions, given by one of the expressions 
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where m is the slope of the straight line.  

In the case of w = my + x + z, slope is given by m = 

Δx/Δy. Then, we can apply slope to derivate the 

components of electric field E [10], where for y-component 

yields 
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where δy is the length of segment of circuit along the y-

axis, so that from the origin we have the half of such a 

length as δy/2. Thus, deriving components for the other 

points of the circuit, coordinates of electric field E for each 

point when w is a constant, according to the expression (5) 

are given by 
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Thus, circulation can be defined by 
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Solving and simplifying, yields 
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and reordering, we can write expression (10) as 
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This expression is geometrically analogue to the equation 

of total area for a rectangular parallelepiped defined in z = 

f(x, y) by AT = 2ab +2ac + 2bc. Thus, from expression (11), 

its geometrical shape is a rectangular hipper-parallelepiped 

defined in a four-dimensional frame of reference according 

to the function w = f(x, y, x).  

It is possible to derive tetra-vector E from the previous 

expressions. From the vector analysis we have that 

expression (10) can be changed to another expression 

purely differential by multiplying the expression (10) by 

S/S
2
, which is the rotational of the electric field E. Then, 

module of rotE in the central point O is expressed through 

the four coordinates Ex, Ey, Ez, Ew. In the most general case, 

just representing the w-coordinate of vector rotE, which we 

call as rotwE, its module in the point O is given by 
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where 0 is the constant of magnetic permeability of the 

free space and Hw is the magnetic field intensity in the 

fourth-dimension. Then, we can write an extension of 

Maxwell–Faraday equation in the differential form to a 

fourth dimension as 
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where Bw is the magnetic field in the fourth dimension. 

Thus, electric and magnetic fields are related in an invariant 

form also in a four-dimensional frame of reference, adding 

to the three-dimensional expression those terms described 

in function of the z-coordinate, which are 
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Then, without such additional terms, expression (14) is 

reduced to the three-dimensional form as defined in the 

classical Maxwell-Faraday expression (2), given by 
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III. CONCLUSIONS  
 

Maxwell-Faraday equation is one of the fundamental 

expressions of the classical electrodynamics theory, 

developed in a three-dimensional frame of reference. 

Nevertheless, considering other possible higher dimensions 

(for instance, the fourth dimension) allows one to consider 

the possibility to explore the theoretical extension of 

electrodynamics to such higher dimensions, not only from a 
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tensor calculation or another complex mathematical 

method, but also applying the classical method as the 

directional derivatives. Thus, extending the Maxwell-

Faraday equation to a four-dimensional frame of reference 

by the method of directional derivatives, allows to suppose 

(at less theoretically) that electromagnetic field can be 

unified also in a four-dimensional frame of reference.  

Regarding to education, it is revisited the classical 

Faraday’s law showing the method of directional 

derivatives to derive Maxwell-Faraday equation in its 

differential form, but now adding an extra dimensional 

parameter in order to extend such deduction to a four-

dimensional frame of reference, which shows the 

applicability of the classical methods also in the additional 

dimensions. In the same way, it could be possible to apply a 

similar method in order to extend to four-dimensions some 

of the remaining Maxwell’s equations (for instance, 

Ampère’s law with Maxwell’s extension). 
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