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Abstract 
The existence of the jerk vector and the resulting curvature and torsion are investigated in the motion of a charged 

particle under the influence uniform of electric and magnetic fields. It is shown that a uniform electric field, by itself, 

does not produce jerk and hence cannot create torsion. It produces curvature if the initial velocity of the charged 

particle has a component perpendicular to the electric field. A uniform magnetic field, on the other hand, produces jerk 

motion, and curvature and torsion of constant magnitudes. The perpendicular and parallel components of the initial 

velocity of the particle are responsible for the curvature and torsion, respectively. When electric and magnetic fields 

parallel with one another are present, they both contribute to curvature and torsion. The path is a helix which is 

continuously being stretched out. As a result, both curvature and torsion approach zero as time progresses. 
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Resumen 
La existencia del vector Jerk y la curvatura y torsión resultantes son investigadas en el movimiento de una partícula 

cargada bajo la influencia de los campos eléctricos y magnéticos. Se ha demostrado que un campo eléctrico uniforme, 

por sí solo, no produce Jerk y por lo tanto no puede crear torsión. Esto produce una curvatura si la velocidad inicial de 

la partícula cargada tiene una componente perpendicular al campo eléctrico. Un campo eléctrico uniforme, por el 

contrario, produce un movimiento Jerk, y la curvatura y torsión de las magnitudes constantes. Los componentes 

perpendicular y paralela de la velocidad inicial de la partícula son responsables de la curvatura y la torsión 

respectivamente. Cuando los campos eléctricos y magnéticos paralelos entre sí están presentes, estos contribuyen a la 

curvatura y la torsión. El camino es una hélice que está siendo continuamente extendida. Como resultado de ello, tanto 

la curvatura y la torsión tienden a cero, como pasa el tiempo. 
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I. INTRODUCTION  
 

One of the relatively neglected topics in physics is the jerk 

vector. Formerly known as the second acceleration, it is the 

derivative of the acceleration vector, or the third derivative 

of the position vector, with respect to time. Nonetheless, the 

jerk vector has been studied in simple harmonic motion [1], 

uniform circular motion [2], Keplerian motion [1, 3], and 

projectile motion [4]. In this paper, we investigate the 

existence of the jerk vector in the motion of a charged 

particle under the action of uniform electric and magnetic 

fields.  

Two other concepts related to a curve and seldom 

mentioned in physics are the curvature and torsion. The 

curvature is the arc-rate of turning of the tangent vector in a 

plane, whereas the torsion, formerly called the second 

curvature, is the arc-rate of turning of the tangent out of the 

plane [5, 6]. These concepts of differential geometry are 

well-suited to dynamical problems when the curve under 

consideration is the trajectory of a particle. If the first three 

derivatives of the position vector in time, viz., the velocity, 

acceleration and the jerk vectors are v


, a


 and j


, 

respectively, then the curvature   and torsion   are given 

by [7]: 
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Using the above formulas, one can conveniently calculate 

the jerk, curvature and torsion for the charged particle 

motion under the influence of electric and magnetic fields. 

The equation of motion of a charged particle of mass m  

and electric charge q  under the electric field E


 and 



A. Tan and M. Dokhanian 

Lat. Am. J. Phys. Educ. Vol. 5, No. 4, Dec. 2011 668 http://www.lajpe.org 

 

magnetic field B


 is given by the Lorentz equation. In 

Gaussian system of units, we have: 

 

BvqEq
dt

vd
m


 .                             (3) 

 

 

II. MOTION OF CHARGED PARTICLE IN 

UNIFORM ELECTRIC FIELD 
 

We first investigate the motion of a charged particle in a 

uniform electric field. In this and the following ezamples, 

we consider a positive charge (q > 0). Choose the electric 

field in the positive x-direction: xEE ˆ


. Without loss of 

generality, choose the initial velocity of the particle as 

yvxvv ˆˆ
0  


. Further, let the initial position of the 

particle be at the origin. The equations of motion are the 

following: 

 

                                       
dt

dvx ,                                  (4) 

 

                                      0
dt

dv y
,                                    (5) 

and 

                                      0
dt

dv z .                                    (6) 

 

where mqE / . Integrating Eqs. (4-6) twice with respect 

to time, we get: 

 

                                  1Ctvx  ,                                 (7) 
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CtCtx  ,                         (8) 

  

                                      3Cv y  ,                                    (9) 

 

                                   43 CtCy  ,                              (10) 

 

                                       5Cvz  ,                                  (11) 

and 

                                   65 CtCz  .                              (12) 

 

where C1, C2, etc., are the constants of integration. The 

initial conditions give: vC 1 ; 02 C ;  vC3 ; 

04 C ; 065 CC . Thus the motion is entirely in the x - 

y plane with 

 

                                
2

2

1
ttvx   ,                            (13) 

and 

                                       tvy  .                                  (14) 

Eliminating t between Eqs. (13) and (14), we get 
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Thus the path of the charged particle is a parabola (Fig. 1). 

 

 

 
FIGURE 1. Charged particle in a uniform electric field. 

 

 

The acceleration and jerk vectors are obtained by 

successive differentiation of the velocity vector, giving: 

 

                       yvxtvv ˆˆ
 


,                          (16) 

 

                                       xa ˆ


,                                    (17) 

and 

                                        0


j .                                     (18) 

 

The curvature and torsion can readily be calculated using 

Eqs. (1) and (2), giving: 

 

                      

   2/322









vtv

v


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and 

                                       0 .                                      (20) 

 

Hence, an electric field can create curvature in the motion 

of a charged particle but not torsion. From Eq. (19), it 

follows that as t , 0 , i.e., the curvature 

diminishes in time. Also, if 0v , then 0 . Thus, it is 

the perpendicular component of the initial velocity which is 

responsible for producing the curvature. 

 

 

III. MOTION OF CHARGED PARTICLE IN 

UNIFORM MAGNETIC FIELD 
 

We next investigate the motion of a charged particle in a 

uniform magnetic field. Choose the magnetic field in the 

positive x-direction: xBB ˆ


. Without loss of generality, 

choose the initial velocity of the particle as 

x 

z 

y 

E 
v┴ 

vװ 
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yvxvv ˆˆ
0  


. Further, let the initial position vector of 

the particle be zzr ˆ0


. The equations of motion are the 

following: 

 

                                       0
dt

dvx ,                                  (21) 

 

                                     z

y
v

dt

dv
 ,                               (22) 

and 

                                    y
z v

dt

dv
 .                              (23) 

  

where mqB / is the gyrofrequency. The solutions to Eq. 

(21) subject to the initial conditions are: 

 

                                        vvx  ,                                  (24) 

and 

                                        tvx  .                                  (25) 

 

Eqs. (23) and (24) are coupled equations. Differentiating 

each and substituting from the other, one gets: 

 

                                02

2

2

 y

y
v
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vd
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and 

                                02

2

2

 z
z v
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Let the solution to Eq. (26) be 

 

                        tCtCv y  cossin 21 ,                   (28) 

 

By differentiation and substitution from Eq. (23): 

 

                        tCtCvz  sincos 21 .                (29) 

 

The initial conditions furnish: 01 C ; and  vC2 . Thus 

 

                                tvv y   cos ,                              (30) 

and 

                                tvvz   sin .                             (31) 

 

Integrating and applying initial conditions, we get 

 

                                t
v

y 


  sin ,                                (32) 

and 

                               t
v

z 


  cos .                                (33) 

 

Combining Eqs. (24, 25, 30, 31, 33) and (34): 

                zt
v

yt
v

xtvr ˆcosˆsinˆ 




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


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and 

 

                 ztvytvxvv ˆsinˆcosˆ  


.               (35) 

 

 

 
FIGURE 2. Charged particle in a uniform magnetic field. 

 

 

Eq. (34) is the parametric equation of a helix about the x-

axis having radius  /v  and pitch tv  (Fig. 2). 

The acceleration and jerk vectors are obtained by 

successive differentiation of the velocity vector, giving: 

 

                  ztvytva ˆcosˆsin  


,                (36) 

and 

               ztvytvj ˆsinˆcos 22  


.              (37) 

 
The curvature and torsion can readily be calculated using 

Eqs. (1) and (2). Upon carrying out the calculations, one 

obtains: 
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Eqs. (41) and (42) indicate that a uniform magnetic field 

can produce both curvature and torsion in the motion of a 

charged particle. The equations further show that if 

0v , then 0 ; and if 0v , then 0 . Thus, the 

x 

y 
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perpendicular and parallel components of the initial 

velocity of the particle are responsible for the curvature and 

torsion, respectively. The curvature bears a constant ration 

to the torsion equal to vv / , which is the tangent of the 

angle the initial velocity makes with the magnetic field. 

 

 

IV. MOTION OF CHARGED PARTICLE IN 

PARALLEL ELECTRIC AND MAGNETIC 

FIELDS 

 
In our next example, we consider the motion of a charged 

particle under the combined actions of parallel electric and 

magnetic fields. Let xEE ˆ


 and xBB ˆ


. As before, let the 

initial velocity of the particle be yvxvv ˆˆ
0  


. Further, 

let the initial position vector of the particle be zzr ˆ0


. The 

equations of motion are the following: 

 

                                       
dt

dvx ,                                (43) 

 

                                     z

y
v

dt

dv
 ,                              (44) 

and 

                                    y
z v

dt

dv
 .                             (45) 

 

Eqs. (43–45) can be integrated following our earlier 

procedure to yield: 
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           ztvytvxtvv ˆsinˆcosˆ  


,            (47) 

 

              ztvytvxa ˆcosˆsinˆ  


,              (48) 

and 

               ztvytvj ˆsinˆcos 22  


.              (49) 

 

Eq. (46) describes a helix about the x-axis, whose pitch is 

continuously being stretched out in time. 

The curvature and torsion can be calculated using Eqs. 

(1) and (2) as before. Upon carrying out the calculations, 

one obtains: 
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Eqs. (53) and (54) give the curvature and torsion in the 

trajectory of a charged particle under the combined action 

of parallel electric and magnetic fields. It is apparent that 

both the electric field E (through Λ) and the magnetic field 

B (through Ω) are contributory to the curvature and 

torsion. Thus, even though the electric field alone cannot 

produce torsion, it can modify the torsion produced by a 

magnetic field. Eq. (53) shows that if 0v , then 0 . 

Thus, the perpendicular component of the initial velocity of 

the particle is responsible for producing the curvature. 

One can verify that: (1) If 0B , i.e., 0 , then Eqs. 

(53) and (54) reduce to Eqs. (19) and (20), respectively; and 

(2) If 0E , i.e., 0 , then Eqs. (53) and (54) reduce to 

Eqs. (41) and (42), respectively. In other words, the first 

two examples follow as special cases of the more general 

example. It is suggested that as a follow-up study, other 

general cases of charged particle motion (e.g., under the 

action of mutually perpendicular electric and magnetic 

fields) be carried out. 

 

 

V. CONCLUSIONS  
 

The topics of jerk, curvature and torsion are not part of the 

normal curriculum and are seldom discussed in the 

literature. This paper demonstrates that they are useful 

concepts which can be applied and illustrated in common 

examples in physics. 
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