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Abstract 
When a moving conductor shaped like a rod or wire interacts with a static external magnetic field, two effects 

conventionally associated with the direct action of magnetic forces arise. The first is an induced emf which in typical 

textbook accounts is initiated and maintained by a force proportional to the velocity of the conductor. The second is a 

resistive force, proportional to the induced current, presumed to act on the conduction electrons. We present an 

alternate theory to explain both effects that relies on an electric field within the conductor that has both transverse and 

axial components. The transverse field is analogous to the electric field associated with the Hall effect. The Hall field 

acts to transfer energy to the electrons, which generates the emf, and impede the motion of the ions, which is the origin 

of the resistive force. The combination of the axial field and the magnetic field is shown to act like a velocity selector. 

This clarifies the role of the magnetic field and avoids confusion about the energy transfer process (i.e. that magnetic 

forces can do mechanical work). 

 
Keywords: Electromagnetism, Physics Education. 

 

Resumen 
Cuando un conductor en movimiento forma una varilla o cable interactuando con un campo magnético estático 

externo, surgen dos efectos convencionalmente asociados con la acción directa de las fuerzas magnéticas. La primera 

es una fuerza electromotriz inducida que en los libro de texto típicos es iniciada y mantenida por una fuerza 

proporcional a la velocidad del conductor. La segunda es una fuerza de resistencia proporcional a la corriente inducida, 

se presume que actúan sobre los electrones de conducción. Se presenta una teoría alternativa para explicar los efectos 

la cual se basa en un campo eléctrico dentro del conductor que tiene componentes transversal y axial. El campo 

transversal es análogo al del campo eléctrico asociado con el efecto Hall. El campo de Hall actúa para transferir 

energía a los electrones, los cuales generan la fem, e impiden el movimiento de los iones, lo cual es el origen de la 

fuerza resistiva. La combinación del campo axial y del campo magnético se muestra que actúa como un selector de 

velocidad. Esto aclara el papel del campo magnético y evita la confusión sobre el proceso de transferencia de energía 

(es decir, que las fuerzas magnéticas pueden hacer trabajo mecánico). 

 

Palabras clave: Electromagnetismo, Educación en Física. 
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I. INTRODUCTION 

 
It is a well established fact that magnetic forces are 

incapable of doing mechanical work on charged particles 

such as electrons due to the fact that they always act 

perpendicular to the displacement of the particle. Several 

electromagnetic phenomena, both part of the undergraduate 

curriculum, involving the interaction of a conductor with an 

external magnetic field appear to challenge this notion. The 

first is the behavior of a current carrying wire interacting 

with an external magnetic field. The second, treated here, is 

the case of a moving conductor, also interacting with an 

external magnetic field, that acts as the seat for a motional 

emf. In each case, students can become confused by the 

seemingly contradictory explanations that appear in many 

texts [1, 2]. Instructors know better but may find it difficult 

to offer consistent alternative explanations. 

A force proportional to the product of the current and 

the external magnetic field acts on the conductor in each 

case. This force accelerates the current carrying conductor 

and offers resistance, consistent with Lenz's law, when the 

moving conductor acts as the seat of a motional emf. Both 

forces are usually said to act on the conduction electrons 

and are identified as being of magnetic origin. In neither 

case does the force act perpendicular to the displacement, 

which suggests that it is doing work. In the case of the 

current carrying conductor several authors [3,4] have 

offered alternative explanations that involve an internal (to 

the conductor) transverse electric field analogous to the 

field associated with the Hall effect. The electric field acts 

to accelerate the ions which comprise almost all of the mass 

of the conductor. Since electric fields can do work their 

approach seems to resolve the work-energy dilemma for 

this case. The general intent of this paper is to test the 
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validity of that approach in regard to the motional emf case. 

Part of the task will be to explain the resistive force in 

electrostatic terms. But, in addition, we also attempt to 

resolve work-energy issues associated with the presence of 

the velocity dependent emf. In particular, exploring the role 

that the electric field plays in the electron dynamics helps 

explain how energy is transferred to the electrons from the 

external agent that exerts a force on the moving conductor.  

The organization of the paper is as follows. In sections 

II and III we describe the system under consideration and 

develop the basic model which we use to describe the 

electron and ion motions. We use this model in section IV 

to show how the resistive force is electrostatic, rather than 

magnetic, in nature. In section V we expand on this model 

to include energy considerations and using a velocity 

selector analogy illustrate the mechanism underlying the 

emf that develops through the motion of the conductor. In 

section VI we develop a model of both the Hall field and 

the transverse charge drift that supports it. Section VII is 

reserved for discussion and concluding remarks. 

 

 

II. THE SYSTEM BEING CONSIDERED 
 

A concrete example of the specific phenomena treated here 

is shown in Fig. 1 where we show an apparatus capable of 

generating electric current through the motion of a 

conductor in a region where a magnetic field exists. A thin 

metal rod (or wire) with uniform circular cross section is 

able to slide, without friction and rolling, along the surface 

of a track consisting of a pair of conducting rails. The rod's 

transverse motion, (center of mass) as viewed by an 

observer at rest with the remainder of the circuit (lab 

frame), is parallel to the positive x axis and so we describe 

its velocity with the vector 



vcm  vcm ˆ x  which can depend 

on time. A uniform magnetic field Bext  Bext ẑ  is directed 

out of the page produced by some external source such as a 

permanent magnet or coil. An external resistor is connected 

into what can then be viewed as a simple series circuit. 

Current I (which can depend on time) flows in the circuit as 

shown. Within the rod the electron drift is parallel to the 

positive y axis.  
The basic facts are not in dispute. If the instantaneous 

transverse velocity of the rod is 



vcm , a difference of 

potential will develop along the length of the rod driven by 

a velocity dependent emf given by 



LBextvcm . An external 

force 



Fext  is required to first accelerate the rod, but then to 

also maintain constant velocity motion as the motion is 

opposed by a force of magnitude 



ILBext . Both the induced 

difference of potential and the resistive force can be 

observed in fairly simple experiments [5]. 

The theory developed in textbooks [1,2] focuses on the 

role played by a force of magnetic origin proportional to 



vcm Bext  that acts on the conduction electrons which are 

assumed to move transversely with the ions. This force then 

initiates and maintains the emf. The resistive force (



ILBext ) 

is identified as a second magnetic force also acting on the 

electrons due to their axial drift initiated by the emf. 

 
 

FIGURE 1. (a) An apparatus to generate a motional emf. (b) Two 

forces act on the moving conductor. One is proportional to the 

current. 

 

 

III. THE BASIC MODEL 

 
Let's imagine an external agent exerting a constant contact 

force on the rod in Fig. 1 (through its center of mass). Since 

in an ideal sense the ions within are rigidly attached to one 

another, it seems reasonable to conclude that this force will 

act directly on the ions in the vicinity of the point of contact 

and then indirectly through interatomic forces on the 

remainder. Since the contact force does not act directly on 

the conduction electrons they will lag behind the now 

accelerating ions as viewed by an observer in the lab frame. 

The initially neutral charge distribution now becomes 

polarized and a transverse electric field will be established 

across the rod with an orientation similar to what is shown 

in Fig. 2a. Inertia induced electric fields in conductors have 

been studied before including the well known experiments 

of Tolman and Stewart [6, 7]. 

The field that grows from this inertial seed is analogous 

to the electric field associated with the Hall effect in metals. 

We show in section VI that while the rod accelerates the 

Hall field grows in magnitude through the interaction of the 

drifting electrons with the external magnetic field, much 

like it does in a stationary conductor. The Hall field is 

oriented in such a manner that it can transfer energy to the 

electrons and do work against, and thus resist, the motion of 

the ions. To the lab based observer both groups of particles 

are in motion. 

If we view the rod in cross-section then initially the 

uniform and equal distributions of electrons and ions 

produce electric fields that cancel at every point within the 

interior. For a sufficiently long rod we can ignore edge 

effects and take advantage of the axial symmetry. Then 

applying Gauss’s law we can write 



Ee 
en

20

r  and 



Ei 
en

20

r  where 



r  xc ˆ x  zc ˆ z  as in Fig. 2b to describe 

the electron and ion fields within the interior. The 

coordinates refer to the comoving frame. In the lab frame 



x(t)  xc  x0 t  where 



x0 t  is the x coordinate of the 

comoving origin. To the lab based observer the position of 

the center of mass of the rod is given by: x0 t ,0,0 . 

When the wire is at rest the field at position 



r  in Fig. 2b is 

zero. 
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FIGURE 2. (a) The transverse electric field initially develops 

from the inertial lag of the conduction electrons. (b) The two 

position vectors shown, within the interior of the rod, have the 

same z component. If the ion field at the point on the right were to 

overlap with the electron field at the point on the left due to a shift 

in the ion distribution, the z components of the field vectors would 

cancel. (c) When the ion distribution shifts thin surface layers of 

charge will be exposed on opposite sides of the rod. 

 

 

The position vector 



r  has the same z component as 



r  and 

thus the z component of the ion field at the two points is the 

same. If the ions accelerate and the electrons lag, the ion 

field at 



r  will superimpose with the electron field at 



r . Let 



r  r x0
ˆ x  then



Ee (r)Ei ( r ) 
en

20

x0
ˆ x . 

Thus a shift in the ion distribution to the left by an 

amount 



x0  results in a field in the interior directed to the 

right given by  

 



E0 
en

20

x0
ˆ x .                                  (1) 

 

This field is uniform as other than having the same z 

coordinates the two positions chosen are arbitrary. 

We treat the inertial field described by Eq. (1) as the 

initial condition for the electric field within the conductor. 

We show later that at some threshold value of 



x0 the 

electrons will begin to accelerate. Once in motion relative 

to the lab frame they will interact with the magnetic field. 

The axial drift of the electrons will then initiate an axial 

field directed parallel with the positive y axis. Once a 

current is established both components of the field will 

grow with time. Thus we write: 



EEH ˆ x Ea ˆ y  for the 

field within the moving conductor where both field 

components can depend on time. Ignoring edge effects we 

expect the electric field to remain uniform given the 

uniformity of the initial conditions. 

We use a classical particle model of the electron and ion 

motions as viewed in the lab frame. The x components of 

Newton's second law for each species of particle are shown 

below: 



miax
i  f eEH Rx

i
,  (2a) 

 

                   



meax
e  eEH evy

eBext Rx
e ,  (2b) 

 

where f represents the additional interatomic force that acts 

on the ion when the external force is applied and 



vy
e  is the y 

component of the electron's velocity. A force term appears 

in each equation to represent collisions. These are random 

forces, however, their mean values can be represented in a 

phenomenological manner using a force law that resembles 

velocity dependent drag [4]. For an observer at rest with the 

ions we describe the collision force that acts on an electron 

using 



Rx
e 

me

 e
vx
e  where the relaxation time, 



 e , is 

the mean free time. The brackets refer to mean 

instantaneous values averaged over all the conduction 

electrons (or ions as the case may be) in the rod. In the lab 

frame we must consider a Galilean transformation of the 

above force law: 

 

Rx
e 

me

 e
vx
e  vx

i



 .                       (3) 

 

The mean electron and ion forces are related by Newton’s 

third law: 



Rx
e  Rx

i  0  ignoring electron-electron 

collisions. 

 

 

IV. THE NATURE OF THE RESISTIVE FORCE   

 

We can use Eqs. (2a) and (2b) to account for the resistive 

force, which is the force that directly opposes the external 

force. The most straightforward measurement of the 

resistive force would occur after the rod has reached 

terminal velocity when the mean electron and ion velocities 

are equal. Once this steady state is reached we have 



ax
i  ax

e  0 and 



Rx
e  Rx

i  0 . Applying these 

conditions, we then average Eqs. (2a) and (2b) assuming a 
spatially uniform Hall field as discussed above  

 

                          



f  eEH  ,                                (4a) 

                       



Bext vy
e  EH .                            (4b) 

 

There are N nLA  ions in the rod, where n is the number 

density and A is the cross-section, so the total force that acts 

on the ion lattice by Eq. (4a) is  

 

               



Fext  nLA f  nLAeEH .                  (5) 

 

In the steady state the Hall field depends on the electron 

drift as it would in a stationary conductor according to Eq. 

(4b). 



vy
e

 is the drift velocity of the electrons. As a result 

the net force that opposes the ion motion is proportional to 

the current. To show this we substitute Eq. (4b) into Eq. (5). 

Then, since the current in the rod is given by 



I  en vy A , 

we have 



Fext  ILBext .                              (6) 

We are assuming for simplicity that the ion and electron 

number densities are equal, which is commonly the case in 

metals. 

In calculating the current we determine the flux of the 
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vector 



jy ˆ y  through the cross-section of the rod, where 



jy  en vy
e  and we define the vector 



AAˆ y  and write 



I  jy ˆ y A. This reproduces the output of an ammeter 

connected in series with the moving rod. We use the same 

definition in calculations that follow. 

The right hand side of Eq. (6) represents the resistive 

force observed which directly opposes 



Fext . It is an 

electrostatic force that does work against the motion of the 

ions. The ions comprise greater than 99.9% of the mass of 

most metals and can be approximately modeled as a rigid 

body. In purely mechanical terms the external force must 

accelerate and maintain their motion. The presence of an 

inertial field, however, means that the resistive force is not 

generally proportional to the current, only a linear function 

of it. 

The magnetic force acts directly on the electrons only. 

The resultant force that resists their motion also has 

magnitude 



ILBext  as can be seen if we multiply Eq. (4b) by 

N. A net electrostatic force of the same magnitude acts in 

the direction of their mean transverse motion. The force that 

opposes the electron motion is of magnetic origin, but it is 

important to realize that 



ILBext  is only a component of the 

magnetic force. The magnetic force is not doing work. We 

expand on this point in the next section. 

 

 

 

V. THE INDUCED EMF  
 
The term electromotive force or emf generally is used to 

describe a process or agent of non-electrostatic origin 

through which charge carriers acquire enough energy to 

overcome the effects of an electrostatic field that opposes 

their motion. Most commonly the term is used in 

connection with a battery. In that context one is generally 

talking about an exothermic chemical reaction, involving 

the battery terminals, that transfers charge to the terminals 

from an electrolyte. Energy is required because one 

outcome of the accumulation of charge on the terminals is 

an electrostatic field that opposes the charge drift. 

Especially from a pedagogical point of view the process 

would seem more concrete if some field were present to 

oppose the electrostatic field. Unfortunately this is not the 

case. The charge carriers simply gain enough kinetic energy 

via the chemical reaction to climb the potential hill 

surrounding each electrode.  
The conventional explanation of motional emf’s relies 

on the existence of a field (so to speak) described by 



vcm Bext  which forces charged particles to drift against 

the electrostatic repulsion that results from the 

accumulation of charge at either end of the conductor. In 

contrast, the model we develop here is more like a battery. 

The non-electrostatic influence is the force exerted on the 

conductor by the external agent. As discussed above this 

force acts principally on the ions. Energy is transferred to 

the system through the work done by this force, and then to 

the electrons through work done by another transverse 

force; the electrostatic force exerted by the Hall field. No 

work doing force directly opposes the axial electric field, 

but rather the electrons acquire enough kinetic energy 

through their interaction with the Hall field to overcome the 

potential gradient. In order for the Hall field to do work 

transverse displacement is required, hence the requirement 

of motion relative to the lab frame. The magnetic force that 

acts on the electrons also relies, in part, on transverse 

electron motion. However, in our model its role is to steer 

the electron motion along the axis of the rod without doing 

any work. It therefore changes the momentum of the 

electrons without affecting their energy. 

By analogy the system behaves like a velocity selector 

in that we have a pair of crossed fields, the axial E field and 

the external B field, that form the selector and an 

accelerating electric field, the Hall field, that injects 

particles into the selector. This can be seen if we develop a 

model for the axial drift of the electrons, namely 

 

                vy
e 

e e
me

v
x
e Bext  Ea







   


e e
me
Bext vx

e Vsx



   (7) 

 

where 



Vsx 
Ea

Bext
 is the x component of the selector 

velocity. Thus according to Eq. (7) there is axial drift of 

electrons (and therefore current) as long as the mean 

transverse velocity exceeds the selector velocity. This 
means that during the initial transient when the rod is 

accelerating, and the axial field is small, the current rises. In 

a closed circuit once the rod reaches terminal speed it is the 

discharge at the rod’s ends that lowers the axial field and 

allows for current flow within the rod. 

To model the energy transfer (see Fig. 3) we calculate 

the mean instantateous rate at which a conduction 

electron’s kinetic energy changes from the equation below 

 

                             



dK e

dt
 F ve .  (8) 

 



ve  vx
e ˆ x  vy

e ˆ y  and 



F eEFB Rx
e ˆ x Ry

e ˆ y  which 

includes the electrostatic force, the magnetic force defined 

by 



FB evy
eBext ˆ x evx

eBext ˆ y  and the effects of collisions 

where we have used Eq. (3) and in a similar manner write 



Ry
e 

me

 e
vy
e

. It is clear that the product 



FB  ve  0  and so no work is done by the magnetic force. 

The mean value of the y component of this force is the 



vcm Bext  force and the x component (multiplied by N) the 



ILBext  force. The work done by each component exactly 

cancels the other. 
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FIGURE 3. A typical electron interacts with the transverse and 

axial electric fields as well as the magnetic field. 
 

 

To fully understand the phenomena we have not made any 

assumptions in regard to the relative electron-ion motions. 

Thus the collision terms associated with the transverse 

motion have been included. Transverse electron drift can be 

described by the quantity 



vx
d  vx

e  vx
i  which is the x 

component of the drift velocity. We then calculate the x and 

y components of the current density as follows:  

 

          jx  nevx
d  ne vx

e  vx
i



                      (9a) 

                    jy  nevy
d  ne vy

e .   (9b) 

 

Then from Eqs. (8), (9a) and (9b) we find  

 



dK e

dt



n
j 2  eEH vx

e eEa vy
e  Rx

e vx
i

  (10) 

 

where 



j 2  jx
2  jy

2 and 



 
me

ne2 e
 is the resistivity. 

The Joule heating term on the left includes both axial 

and transverse contributions. The last term on the right 

would appear to represent an inertial effect which is present 

to the lab based observer for whom both the ions and 

electrons are in motion, though not necessarily together. If 

the electrons lag the ions, for example, this term would lead 

to an energy gain by the electrons.  

There is no observed gain in kinetic energy associated 

with the electron motion in the y direction. All the energy 

gain appears as Joule heating. Thus we find that  

 



dK e

dt

d

dt

1

2
mevx

e2
 vx

eme
d

dt
vx
e , 

 

then using Eq. (2b)  

 



dK e

dt
 eEH vx

e  e vy
e Bext vx

e
 

                              






n
jx

2  Rx
e vx

i
.  (11) 

 

Substituting Eq. (11) into Eq. (10) and cancelling terms we 

find 

                     jy
2  Bext vx

e Ea



 jy  0 .  (12) 

 

If we multiply Eq. (12) by N we can cast it into a more 

familiar form after noting that 



Vrod  EaL  is the 

difference of potential across the rod, 



I   jyA  is the 

current, and 



r  
L

A
 the internal resistance of the rod: 

 



IVrod  IBextL vx
e  I 2r .                    (13) 

 

Using the loop rule we can write 



Vrod  IRext , where 

Rext is the equivalent resistance of the rails and external 

resistor. Then  

 



I 2Req  IBextL vx
e ,  (14) 

 

where 



Req  Rext  r . In both Eq. (13) and Eq. (14) the term 

  
E  B

ext
L v

x

e
 can be identified as the emf. This is the 

standard result found in textbooks. It depends on the mean 

electron velocity (x component) which is usually assumed 

to be equivalent to the center of mass velocity of the 

conductor. Our theory then reproduces the accepted results 

that are usually arrived at without reference to a transverse 

electric field.. The standard explanation, however, is vague 

in regard to energy transfer. We believe the process is much 

clearer using the model developed here. For example, if we 

multiply Eq. (11) by N and for the moment ignore the terms 

dependent on transverse drift we can understand how the 

power input via the Hall field, 



PH  NeEH vx
e  both 

increases the kinetic energy of the electron center of mass, 



Kcm
e  N K e , and powers the emf: 

 

    
dKcm

e

dt
 IBextL vx

e  PH ,                    (15) 

 

or using Eq. (14) generates internal energy through Joule 

heating. A statement of conservation of energy for the 

whole system can be obtained in a similar manner by using 

Eq. (2a) to bring the ions into the system described by Eq. 

(10). We find from (2a) that  

 



d

dt
K i  f vx

i eEH vx
i  Rx

e vx
i  

 

where we have used the condition 



Rx
e  Rx

i  0 . 

Then adding this result to Eq. (10) and multiplying by N 

we find 

 

d

dt
Ksystem  I

2Req  LA EH jx   jx
2   Fext vx

i
,      (16) 
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where 
d

dt
Ksystem  N

d

dt
K e 

d

dt
K i







  and we have used 

the loop rule. This expression includes two terms that 

depend on the transverse current. One describes the energy 

input needed for electrons to drift against the Hall field 

while the field grows, and the second the Joule heating that 

will also occur during this drift. We show in the next 

section that the transverse current is very small and as a 

result these terms will be negligible. However, they 

describe processes that must be present. Once a steady state 

is reached the transverse current vanishes and all of the 

work done by the external agent appears as Joule heating 

associated with the axial current density. 

 

 

VI. THE TRANSVERSE FIELD  

 
In section III we discussed how the Hall field could arise 

through the inertia of the conduction electrons. In this 

section we develop this idea in more detail and also develop 

a model to understand the dependence of the field on the 

current.  

As the rod accelerates the Hall field grows with time. 

The direct dependence is actually on current much like in a 

stationary conductor. If we examine particular cases we can 

see this dependence explicitly. For example, using Eqs. (2a) 

and (2b) and assuming that the mean electron and ion 

accelerations are equal we find that the Hall field must 

satisfy 

 

                  eEH  N
1 

mi
Fext 



me
ILBext









 .                (17) 

 

where  
mime

mi me
 is the reduced mass of an electron-ion  

pair.  

The current dependence for this case is clear. The first 

term on the right in Eq. (17) represents, if divided by e, the 

magnitude of the Hall field for zero current. This then must 

be the field created by the inertial lag of the electrons. Note 

that since the initial acceleration of the ions is 



a0 
f

mi
, 

the zero current term is just 



a0 
mi

mi me
mea0. Thus it is 

slightly less than the initial "ma" force that would appear to 

act on an electron in the non-inertial frame of the 

accelerating rod. The mass factor 





me


mi

mi me
 is 

approximately equal to unity as the typical ion mass is so 

much larger than the electron mass.  

We can then equate this inertial term with Eq. (1) to 

determine the displacement 



x0 . A little algebra yields 

 



Fext

M




2 e0

x0 , 

where



M is the mass of the rod and 



 
ne2 e
me

 is the 

conductivity. For a copper rod (



n  8.51028m3 , 

  5.95107 m 
1

density



 8.9103 kg m3 ) 50cm in 

length and 1 mm in diameter with Fext  0.1N  we find that 

the inertial piece of the field requires a very small 

displacement: x0  2.11031m . If the initial charge 

distribution is the seed from which the field grows and a 

field of greater magnitude requires an expansion of the 

initial distribution then Eq. (1) should still apply. According 

to Eq. (2a) when the rod reaches terminal velocity the Hall 

field has magnitude 
Fext

Ne
. If we again use Eq. (1) for the 

same rod subject to the same force we find (dropping the 

subscript) x  4.91025mwhich is still very small but is 

comparable to a similar result obtained by other authors [3] 

in their analysis of the force on a current carrying 

conductor. Regardless, it would appear that a Hall field of 

sufficient magnitude requires only a modification to the 

surface charge distribution on the conductor. To be more 

specific, given the small thickness of each of the slivers in 

Fig. 2 at their widest points we represent the volume of 

each by 



V 


2
dxL . The fraction of the total volume 

occupied by each sliver is then 
V

V
 2

x

d
 9.81022

 

using the steady state field. Given that there are 1.671022  

electrons within the copper rod being discussed we must 

conclude that this is a surface charge. It would appear then, 

that like the axial field [8], the appearance of a transverse 

field requires, for the most part, a modification of the 

surface charge density. 

The Hall field is both initiated and expanded in 

magnitude through the lag of the electrons relative to the 

ions. This lag (or drift) is either inertial or directed through 

interaction with the external magnetic field. At best we are 

talking about a small deviation in the otherwise axially 

directed current density. However, since the growth of the 

Hall field is an important component of the feedback 

mechanism that causes the rod to reach terminal velocity 

(see Eq. (2a)), transverse electron drift must also play a 

role. This is an especially important issue for teaching 

purposes as many students need some sense of mechanism 

in order to understand a process. 

To understand how the x component of the drift velocity 

depends on the Hall field and other variables we determine 

the quantity 



d dt  where 



  vx
e  vx

i
by using Eqs. 

(2a) and (2b):  

 



d

dt
 

e


EH 

f

mi

e

me
vy
e Bext  e

1 . 

 

To arrive at this result we have dropped a term multiplied 

by the factor 



me mi  in the ion equation.  
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Both the Hall field and the axial drift velocity change 

over a time scale much larger than the mean free time. Over 

a time interval comparable to the mean free time they can 

be treated as constants. Under these conditions 



d dt  

decays like 



exp(t  e ). We then equate the terminal value 

of 



 , obtained by holding 



EH  and 



vy
e  constant and 

letting 



d dt 0, with the transverse drift velocity. Then 

we use Eq. (9a) and some algebra to find 

 

         jx  
me


 EH 



mi

f

e









 

Bext
ne

jy .       (18) 

 

According to Eq. (14) since 



I   jyA  we can re-write Eq. 

(18) in terms of the mean transverse electron velocity. 

However, the directly observable velocity is the center of 

mass velocity of the moving rod: Vcm 


mi
vx
e 



me
vx
i

. 

We can then use Eq. (9a) to find that: vx
e Vcm 



me

jx

ne
. 

Which means  

 

jx  0 EH 


mi

f

e









 



me

ne









0Vcm ,        (19) 

 

where 



 
Bext
ne











2
r

Req
and 



 
me





0

1


me












1

. The 

dimensionless constant 



 is very small for the copper rod 

discussed previously. Namely, if Rext 1.0 Ohm, 

 4109 . 

The transverse current density is uniform according to 

(19) within the interior of the rod. The actual transport of 

charge into the surface region will not be uniform as the 

current (the flux of the current density) will decrease for 

points away from the x axis. Thus the accumulation of 

charge will be regulated by the geometry. For this reason 

we expect the charge accumulation to preserve the initial 

geometry. Since the source charges for the Hall field appear 

to be confined to the surface, and both components of the 

field are uniform within the interior, E  will vanish 

everywhere except at the surface.  

The x axis in Fig. 2 passes through the surface charge 

region at its widest point. The boundary between the 

interior and surface regions along the negative x axis is 

located at x  d x , in the commoving frame, where 

x  is the thickness. The Hall field is normal to the 

boundary at this point. Since the axial field component is 

tangential to the surface, we can write 

E  x̂


x
 EH x̂  

EH

x
. Then, if   is the charge 

density on the other side of the boundary, by Gauss’s law 

we write 

 

                          
EH

x



0

.            (20) 

 

But since charge is conserved we can also write 



t

 jx

x
 0 . Then from Eq. (20) we have 

 

0

2EH

t x

 jx

x
 0 , 

 

which we integrate to find 

 

                                 



EH
t


jx

0

 0  .                           (21) 

 

Then substituting Eq. (19) into Eq. (21) and dropping the 

partial derivative notation we find 

 

          
d

dt
EH  EH 



mi

f

e









 



me

ne


Vcm ,          (22) 

 

which describes Hall field within the interior region. 

Eq. (22) can be solved using a Green’s function 

approach 



EH t 


mi

f

e
 




me

ne


 d t exp  t  t  

0

t

 Vcm t .            (23) 

 
To analyze the effect of an applied constant force we add 

Eqs. (2a) and (2b) to determine the equation of motion for 

the center of mass of the system: 

 

d

dt
Vcm  M

1 Fext  ILBext , 

 

where M is the mass of the rod. This equation has solution: 

 

         Vcm t 
Fext

M
1 exp t    ,               (24) 

 

where 



 
MReq

LBext 
2

 if we use Eq. (14) and let 



Vcm  vx
e

 

thus assuming that the transverse drift has very little effect 

on the center of mass motion. We have also neglected a 

very small initial velocity whose effects would decay like 



exp(t  ) . The ions are not at rest at the point that the field 

starts to increase through current flow, but their velocity is 

extremely small. A simple model where we assume a 

constant acceleration 



a0 
f

mi
 yielding a displacement 



x0  as in Eq. (1) results in an initial velocity 
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v0  2a0x0  (  3.51015m s  for the copper rod 

discussed).  

After substituting Eq. (24) into Eq. (23), performing the 

integration in Eq. (23) and some algebra we find 

 



EH t 


mi
E 



me
E 1



  1
exp t  









  

                        






me

E


exp t ,       (25) 

 

where 



E 
Fext

Ne

f

e
, and we have used the 

approximation  

 


  1
1 1  

1 
1

11  
1
1  

1
, 

 

to arrive at the term proportional to 



exp(t). The initial 

condition in Eq. (25) is the inertial field that appears in Eq. 

(17). Note that the transverse current described by Eq. (18) 

does not flow until the axial current is non-zero. It does not 

describe the short interval during which the inertial field 

arises.  

For realistic applications such as the copper rod 

discussed above 





  1
1 as 



   1. As a result, for 



t   1
 the Hall field increases over a time scale described 

by 



  and Eq. (25) can be approximated very well by 

 

           EH t  E 1


me
exp t  









 .              (26) 

 

This is the same result that could be obtained by letting 



Vcm  vx
e

 substituting Eq. (24) into Eq. (14) and then 

substituting this result into Eq. (17). The factor 





me
1 in 

Eq. (26) is a result of the Hall field having a non-zero initial 

value. 

If we substitute Eqs. (24) and (25) into Eq. (19) we can 

solve for the transverse current density as a function of 

time: 

 

        jx 
E


exp t  

E


exp  t  . (27) 

 

We have used the approximation 0 
me


 . Two very 

distinct time scales are represented in Eq. (27). For this 

reason we have expressed the maximum values in the form 



E


 instead of the equivalent 



0E


. 



 


0

 is 

approximately



7x1018s1
 for copper and 1.4s  for the 

copper rod discussed previously. Thus for 



t   we can 

approximate Eq. (27) by jx 
E


1 exp( t) which 

describes a rise in the transverse current density against 

what presumably is the resistance of the inertial field. The 

term in Eq. (25) proportional to 



exp(t) describes a piece 

of the field that fades over the same time scale as current 

flow is initiated and the longer term growth (of the field) 

takes hold. It appears to be related to the rise in the 

transverse current.  

In a stationary conductor the transverse field is initially 

zero, so the transverse current starts at a maximum value 

and decays over a time scale described by



 1. The decay in 

this case occurs over the longer time scale described by 



  

as can be seen by letting 



t   1in Eq. (27): 

 

                     jx 
E


exp t  .                     (28) 

 

This is the result of the response of the conductor to the 

continual rise in the current during the accelerated phase of 

the motion. In the stationary conductor the same analysis as 

above yields 

 

                        



jx 
Bext jy

ne
exp(t) ,  (29) 

 

which describes the response to a steady axial current (that 

appears at t=0). Since in the moving conductor we can write 



E 
Bext j

ne
 where 



j  is the steady state axial current 

density, the transformation from Eq. (29) to Eq. (28) 

involves only a time scale shift 



t  t .  
 

 

VII. DISCUSSION  
 

The analysis of the induced emf and resistive force that 

appear when a moving conductor interacts with an external 

magnetic field, can leave the mistaken impression that 

magnetic forces are doing mechanical work. We have 

shown that including the effects of the transverse 

component of the electric field within the conductor in this 

analysis leads to a self consistent theory where the roles of 

the electric and magnetic forces can be clearly delineated. 

The magnetic field only affects the momentum of the 

electrons. Energy transfers involving the ions and the 

electrons are mediated by the electric field resulting in a 

current dependent resistive force that acts on the ions and a 

velocity dependent emf. The first result is consistent with 

results obtained by others [3]. It would appear that forces 

commonly referred to as magnetic in origin are actually 

electrostatic. We note that it may be possible to test this 

conclusion experimentally, as according to (17) the Hall 

field slightly leads the current due to the presence of the 

inertially induced field. In contrast, a resistive force of 

magnetic origin will be proportional to the current.  
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We have included in our analysis more mathematical 

detail then would be needed to present this topic to 

undergraduates. In particular, the effects of transverse drift 

are small and could be neglected quantitatively. They 

should be addressed qualitatively however, in our view, so 

that students can visualize the processes taking place. 

Through this analysis we have shown that when the Hall 

effect occurs in a moving conductor it differs from the same 

effect in a stationary conductor in two respects. First, the 

time scale is much longer as the conductor is continually 

responding to the changing velocity of the conductor. 

Second, the field is initiated through inertia. From a 

pedagogical point of view this second feature is an 

excellent application of Newton’s first law. Inertial effects 

such as this are often overlooked by students [9]. 

Finally we note that force is generally regarded as a 

more intuitive concept than energy, and at first glance the 

phenomena at hand tends to be biased towards forces. For 

example, by Eq, (7) the axial field reaches an equilibrium 

value of 



vx
e Bext VcmBext  while the Hall field according 

to Eq. (2b) is much weaker: 



vy
e Bext . But according to Eq. 

(10) the work done on an electron by each field component 

in the steady state will be nearly equal. If not for energy 

considerations it would be easy to ignore the Hall field in 

favor of the much larger axial forces (i.e. the Vcm Bext  

force). 
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