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Abstract 
The starting point in the study of the heat transfer and their applications is the solution of the heat diffusion equation 

with a particular boundary conditions kind congruent to the physical circumstances of the problem under consideration. 

Here, we calculate the solutions of the heat diffusion equation by means of the Green’s functions technique, constrained 

by Dirichlet, Neumann and Robin’s boundary conditions; making a comparison between the obtained solutions and 

discussing the behavior of the thermal response for every case. The calculations were done for an ideal homogonous 

solid sample, with a cylindrical symmetry, under the consideration of an arbitrary periodical heat source on one face of 

the sample. Finally, considering the particular case of a sinusoidal heat source, usually used for the standard models in 

the field of the photothermal science and techniques, is discussed the thermal response for each case of the three 

boundary conditions kind. 
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Resumen 
El punto de partida en el estudio de la transferencia de calor y sus aplicaciones es la solución de la ecuación de difusión 

de calor con un límite determinado de condiciones de tipo congruentes para las circunstancias físicas del problema en 

cuestión. En este sentido, calculamos las soluciones de la ecuación de difusión de calor por medio de las funciones 

técnicas de Green, limitadas por Dirichlet, Neumann y las condiciones límite de Robin; haciendo una comparación entre 

las soluciones obtenidas y discutir el comportamiento de la respuesta térmica para cada caso. Los cálculos fueron 

realizados por un ideal de la muestra sólida homogonous, con una simetría cilíndrica, bajo la consideración de una 

fuente de calor arbitraria periódica en una cara del ejemplo. Por último, considerando el caso particular de una fuente de 

calor sinusoidal, por lo general utilizados para los modelos estándar en el campo de la ciencia fototérmica y técnicas, se 

analiza la respuesta térmica para cada caso de las tres condiciones límite de clase. 
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I. INTRODUCTION 
 

Given a problem of heat transfer, many times the 

mathematical task of solving the heat diffusion equation 

(HDE) may be complicated or accessible, depending on the 

choice of the boundary conditions kind and the solution 

method to be used, among other no less important things 

like the symmetry, the number of degrees of freedom and 

the characteristics of the heat sources involved in the 

problem. 

The HDE is a partial differential equation of fist order in 

time and second order in the spatial coordinates, therefore, 

is necessary to specify one condition in time, the initial 

condition, and two boundary conditions for each coordinate 

necessary in the description of the system, the boundary 

conditions of the problem. There are three kinds of 

boundary conditions generally used in problems of heat 

transfer. Dirichlet condition, also called first kind boundary 

condition, corresponds when the temperature surface is 

known. Neumann condition, or second kind boundary 

condition, corresponds when the heat flux is known. And 

Robin condition, also known as third kind boundary 

condition or Newton law of cooling, corresponds to the 

existence of convection heating (or cooling) at the surface 

[1]. The choice of which boundary condition will be applied 

depends of the physical conditions existing at the 
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boundaries of the medium. Of course, these three types of 

boundary conditions don’t describe, nevertheless, all real 

conditions that occur in practice, such as body heating and 

cooling by radiation, the melting or freezing of bodies or 

complex heat transfer. 

Since its introduction in 1828, Green's functions method 

have been widely used as a fundamental mathematical 

technique for solving boundary value problems in many 

areas of physics and engineering, of course, including the 

heat transfer area. Basically, in this method, for a given 

geometry, any field satisfying given source distributions 

and arbitrary initial conditions and boundary conditions can 

be constructed in the form of space and time integrals over 

the solution to the most elementary problem associated with 

the given geometry: that in which the source is in the form 

of a Dirac delta function in space and time, and the initial 

and boundary conditions are homogeneous everywhere [2, 

3].  

In this paper, the main goal is to solve the heat diffusion 

equation for the problem of an homogeneous slab with an 

arbitrary periodical heat source on one of its faces due to 

the light absorption, restricted to the most common 

boundary conditions (meaning Dirichlet, Neumann and 

Robin) used in heat flux problems, in order to obtain the 

differences among the thermal response for every case, 

which will be very useful in many experimental setups of 

the photothermal science and techniques. 

 

 

 

II. THE GENERAL MATHEMATICAL MODEL 
 

Consider a material sample with thickness ls, on which a 

modulated light beam impinges uniformly on its normal 

direction. If I(t,r) denotes the absorbed power density by the 

sample, and keeping in mind the Beer-Lambert Law [4]: 

 

0
ˆ( , ) (1 ) exp( ) ( ).I t R I t     r r u               (1) 

 

In Eq. (1), û is a unitary vector normal to the incidence 

surface, (t) is the modulation function (not necessarily a 

periodic function), and R,  are the reflexion coefficient and 

the optical absorption coefficient of the sample, 

respectively. It is a known fact that  is related to the 

wavelength  of the incident beam, and with the imaginary 

part of the refraction index, named here as , through the 

next expression: 
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The absorbed power density will be transformed into heat 

by means of de-excitation processes. For crystalline and 

polycrystalline materials, some part of the energy absorbed 

is released by mechanical vibrations of the crystal lattice 

(this is the phonon contribution), and depending on the 

wavelength of the optical field, an excess of charge carriers 

could be produced (holes and electrons). These 

photogenerated charge carriers diffuse along the sample, 

recombining and possibly interacting among them and with 

phonons, producing extra contributions to the thermal 

relaxation of the sample. Some of these processes can be 

radiative, and some others non-radiative; this depends on 

the intensity of the absorbed power density, its wavelength 

and the excess charge density. In any case, an internal heat 

source G(t,r), containing all the contributions of the light-

heat conversion will appear [5]; but for the reach of the 

present paper, only the phonon contribution is considered. 

According to the heat diffusion equation 
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Here: , c y k are the volumetric mass density, the specific 

heat and the thermal conductivity of the sample, 

respectively,  is the light-into-heat energy conversion 

efficiency, and (t,r) is the variation of the sample’s 

temperature from the ambient temperature. The solutions of 

Eq. (3) are constrained by boundary conditions, which in 

the more general fashion are expressible as: 
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In Eq. (4), Aj, Bj are constants, and j are functions that 

qualify the thermal contact of the sample with their 

surroundings and, if there is any, the losses through the 

sample’s surfaces Sj. When it’s necessary, the boundary 

conditions (4) can be substituted by regularity conditions 

over the temperatures variations or heat fluxes, to ensure 

stable solutions for Eq. (3). Since G becomes from the 

absorption of the power density I, it inherits the modulation 

of the light beam and so the temperature variation  are 

modulated too in the same way. 

 

 

 

III. THE HEAT DIFFUSION EQUATION 
 

This section deals with the problem of solving the heat 

diffusion equation for three of the most used boundary 

conditions, and some remarks on the behavior of the 

solution.  
 

 

A. Solutions to the heat diffusion equation 
 

Be a lineal, homogenous and isotropic medium, such that 

its geometry and the flux’s direction of the incident light 

beam sustain a cylindrical symmetry, as Fig. 1 schematizes. 
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FIGURE 1. Scheme of the geometry of the system. 

 

 

So, Eq. (3) reduces to Eq. (5), describing a mono 

dimensional heat diffusion process: 
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Where s = ks(scs)
-1

 is the thermal diffusivity of the sample 

(s) (in units of cm
2
s

-1
), describing the “speed” which the 

heat diffuses along the sample
a
. In addition, consider that 

the surroundings of the sample had an ambient temperature 

Tamb. Since the heat source (this is, the right member of Eq. 

(5)) had the same modulation than the optical power 

density, and for practical purposes the modulation function 

(t) had an expansion in the Fourier basis, and so: 
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Here: Cm are the expansion coefficients of  in the Fourier 

basis, m ≡ 2mf with f being the modulation frequency, 

and m an integer. Then, the main goal depends on the 

solution of the next boundary value problem: 
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In expressions (7),  is the Unitary Fourier Transform 

(respect to time) of the temperature variation , s ≡ 

(1+i)/s is defined by means of the thermal diffusion 

length
6
 s ≡ (2s/’)

1/2
, and the indexes {f, r} label the front 

(illuminated) and rear (non-illuminated) surfaces of the 

sample. At this work, homogenous boundary conditions 

                                                           
a This quantity is the analog to the diffusion coefficient in mass 

diffusion processes, as can be read it in: The Mathematics of 

Diffusion, J. Crank, Second edition, Oxford University Press (New 

York, 1975), pp 8-10. 

were considered, i.e. f = r = 0. Using the Green’s 

functions technique [3, 7], the solution to Eq. (7), can be 

written as: 
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Where:  is the Green function satisfying: 
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Under boundary conditions equivalent to (7), and: 
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So, the family of solutions of Eq. (9) is given by: 
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B. Solutions under Dirichlet boundary conditions 

 

In this case Af = Ar = 1 y Bf = Br = 0. The restriction implies 

the continuity of the temperature distribution across the 

interfacial surfaces, therefore, the Green function for this 

kind of boundary conditions is written as follows: 
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For demonstration purposes, in this paper will be 

considered that the only contribution to the internal heat 

source is the phonon contribution (as we mentioned at the 

beginning) and from Eq. (8), we obtain the response on the 

frequency domain to be: 
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Where: 
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By means of the Inverse Unitary Fourier Transform of Eq. 

(13), the temperature distribution (under Dirichlet boundary 

conditions) in time domain is: 
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C. Solutions under Neumann boundary conditions 

 

In this second case, Af = Ar = 0 y Bf = Br = ks, and so, the 

continuity of the heat flux across the interfacial surfaces is 

guarantee. In such case, the Green function is the following: 
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Substituting Eq. (16) into Eq. (8) we obtain the response on 

the frequency domain to be: 
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Where: 
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In similar way, applying the Inverse Unitary Fourier 

Transform to Eq. (17), the temperature distribution (under 

Neumann boundary conditions) in time domain is given 

then by: 
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D. Solutions under Robin boundary conditions 

 

This third case, also known as impedance boundary 

conditions, Ar = Af = h, and Br = Bf = ks. In this kind of 

boundary conditions, h represents the overall heat exchange 

coefficient, and depends on the surrounding medium as 

well the physical properties of the sample. So, the 

homogenous Robin boundary condition states that the total 

heat flux is conserved, taking into account the conductive, 

convective and radiative heat fluxes. 

Of course, the Green function expected for this kind of 

boundary conditions will be more complicate, and after 

some calculations is written as bellow: 
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In the past equation, es ≡ h(kss)
-1

. If we considered that the 

Biot number is ≡ hlsks
-1 

is a simple index of the ratio of the 

heat transfer resistance of and at the surface of the sample 

(and therefore qualifies the ability of the sample to 

exchange heat through their surfaces), it is possible to 

rewrite es as: 
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The coefficient es is a dimensionless quantity, being a 

function not only of the solid sample and its surroundings, 

but also a function of the modulation frequency, 

diminishing at the time that the modulation frequency gets 

larger. 

Substituting Eq. (20) into Eq. (8) we obtain the response 

on the frequency domain to be: 
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In Eq. (22), , denotes the function composition operator, 

and the following definitions were used: 
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The temperature distribution, under Robin boundary 

conditions, in time domain is written finally as: 
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IV. SPECIAL CASE: SINUSOIDAL 

MODULATION 
 

This section presents the theoretical results for the most 

common modulation function used in experimental setups: 

The sinusoidal modulation. This kind of modulation is 

historically important because was the modulation used by 

Rosencwaig and Gersho [8] in their earliest papers where 

the photoacoustic effect was explained for the first time, 

and since then, it has being used by the majority of the 

researchers in posterior models. Since the sinusoidal 

modulation is simple, offers solutions to the heat diffusion 

equation relatively easy to handle in minimum square 

fitting processes to experimental data; however, this 

modulation is an approximation to the actual experimental 

conditions. Frequently, a mechanical modulator (chopper) 

of variable speed is used to modulate the continuous light 

beam emerging from a light source, and in this manner, 

what we have in reality is a train of square pulses i.e., a 

square wave modulation [9], which will be treated in a 

subsequent work. 

So, if a sinusoidal modulation is used, by means of the 

orthogonality relationship of the Fourier basis, for Eq. (6) it 

must be considered that: 
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And therefore, in Eqs. (14, 18) and (23) the sum only 

covers the harmonics m = -1 and 1. For a better theoretical 

analysis, the calculations were done by considering the 

relative frequency , and relative position z
*
, defined as 

follows: 

s

*

c

z;
l

z

f

f
 .                             (26) 

 

In Eq. (26), the quantity fc ≡ s(ls
2
)

-1
 is known as the 

characteristic frequency, and represents the value of the 

modulation frequency at which the thermal diffusion length 

equals the thickness of the sample. The characteristic 

frequency is strongly related to the definition of the thermal 

regimes. It says that a sample is thermally thin when its 

thickness is much smaller than its thermal diffusion length, 

i.e., f ≪ fc. On the contrary, it says that a sample is 

thermally thick when its thickness is much greater than its 

thermal diffusion length, i.e., fc ≪ f. The use of 

dimensionless variables allows reproduce the behavior of 

all solids, since the thermal and geometrical characteristics 

are not explicit. 

Figs. 2 and 3 show the amplitude and phase of the 

temperature variations D, and N as functions of relative 

position z
*
 and frequency v, for the boundary conditions of 

Dirichlet and Neumann, respectively. In the calculations 

values of ls = 300 were considered (i.e., the sample is 

considered as optically opaque). In Fig. 2, D is null at z
*
 = 

0, for all values of v, as is expected from the boundary 

condition, reaching a maximum in the interior, and 

decreasing as function of v for a given z
*
. On the other 

hand, in Fig. 3, N increases quickly when v goes to zero for 

each value of z*, and N remains practically unchanged 

with z
*
 for each value of v. These results reflect accurately 

the restrictions imposed by the Dirichlet and Neumann 

boundary conditions, that is, the continuity of the 

temperature distribution and the heat flux across the 

interfaces, respectively. 

 

 

 
 

FIGURE 2. Calculation of: (a) Amplitude of the temperature variations, and (b) Phase of the temperature variations, as function of relative 

position and frequency. Dirichlet boundary conditions were considered. 
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FIGURE 3. Calculation of: (a) Amplitude of the temperature variations, and (b) Phase of the temperature variations, as function of relative 

position and frequency. Neumann boundary conditions were considered. 

 

 

Figure 4 shows the amplitude and phase of the temperature 

variation R as a function of relative position z
*
 and 

frequency v, for Robin boundary condition. Here, values of 

ls = 300, and Bis = 0.5 were considered. Again, sinusoidal 

modulation was used for the theoretical calculation. In this 

case, the consideration of the convective heat flux leads to a 

greater change in R, in comparison with the results 

obtained with the Neumann boundary condition. R 

increases more quickly when v goes to zero for each value 

of z
*
, and R increases when z

*
 goes to zero for each value 

of v. 

The value for the Biot number used here for theoretical 

calculations could be considered as a huge one. This value 

was chosen only to show the influence of large Biot number 

on the solutions of the heat diffusion equation. This 

influence rapidly diminishes for relative small values for 

the Biot number (meaning Bis  10
-2

), however, 

manipulating the geometric parameters and the surrounding 

medium it is always achievable large values for Bis. 
 

 

 
FIGURE 4. Calculation of: (a) Amplitude of the temperature variations, and (b) Phase of the temperature variations, as function of relative 

position and frequency. Robin boundary conditions were considered. 
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In fact, large values of Bis are related to the thermally thick 

regime in studies of the transient behavior for continuous 

illumination [10, 11], i.e., constant modulation, and so is an 

important factor in the transient behavior in the case of 

modulated illumination [12]. Here, because the general 

modulation is used in the mathematical model, the 

thermally regimens are (in the case of Robin boundary 

conditions) defined by both, the characteristic frequency 

and the Biot number, because they affect the Green’s 

function (see Eq. (19)) through the coefficients es and s. 

Now, how much influence does the Bis number in the 

thermal response? The answer is not obvious from the Eqs. 

(19) to (24), because the influence of Bis appear through the 

coefficient es, where the size of Bis is in somehow 

modulated by the thermal diffusion length, which is a 

function of the modulation frequency. In Fig. 5, different 

values of Bis number are used for the calculation of the 

temperature distribution (at z
*
 = 0.5), and the results are 

compared to the solutions under Neumann boundary 

condition, in the relative frequency domain. 

 

 

 
 

FIGURE 5. Comparison of the behavior of: (a) Amplitude and (b) Phase of the temperature variations as function of relative frequency, for 

sinusoidal wave modulation. The black line represents the solutions under Neumann boundary conditions. The calculations under Robin 

boundary conditions were performed for different values of Bis: 0.05(red dotted line), 0.5 (blue line) and 5 (pink line).  

 

 

It can be viewed, from Fig. 5, that the solutions are quite 

much alike for small values of the Biot number, and as the 

values of Bis increases, the differences increases too 

(especially in the phase). This is the expected behavior 

since large values of Bis are related to a greater contribution 

of the convection and radiation terms to the heat flux. 

However, for sufficient larges values of the relative 

frequency, the calculations tend to equalize, supporting the 

earlier comments on the modulation of the influence of the 

Bis number by the relative frequency. 

 

 

V. CONCLUSIONS 
 

The comparison among the results obtained for the thermal 

response determined by the application of Dirichlet, 

Neumann and Robin boundary conditions show that the 

selection of a particular kind of boundary condition is 

definitive in the predicted behavior of the thermal response, 

being the calculated phase difference the clearest 

visualization of this influence. Each boundary condition 

should be consistent to a particular problem to be solved, 

since each of them demands physical conditions that can be 

fulfilled by one type of boundary conditions. Of course, 

there are other kinds of boundary conditions (like mixed 

boundary conditions, usually used in radial heat flux) 

consistent to different geometrical, environmental and 

physical conditions. However, the general expression for 

the Green function given in Eq.(11) are suitable to be used, 

as long the parabolic form of the heat diffusion equation is 

maintained, and from Eq. (8) other contributions, in 

addition to the phonon contribution can be included in the 

heat diffusion process. Also, is remarkable the relationship 

between the values of the Biot number and the 

characteristic frequency (through the relative modulation 

frequency) in the thermal response of a studied sample, 

when modulated excitation is used in problems where are 

considered convection and/or radiation contributions to the 

total heat flux, changing the definitions of the thermal 

regimes for a solid sample. 
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