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Abstract 
In this paper, angular frequency of a rotating reference frame is derived, where a given body orbiting and rotating 

around a fixed axis describes a periodical rosette path completing a periodical “circular motion”. Thus, by the 

analogy between a rotating frame of reference and the whole Solar System, angular frequency and period of a 

possible planetary circular motion are calculated. For the Earth's case, the circular period is calculated from motion 

of the orbit by the rotation effect, together with the advancing caused by the apsidal precession, which results the 

same amount than the period of precession of the equinoxes. This coincidence could provide an alternative 

explanation for this observed effect. 
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Resumen 
En este trabajo, se deriva la frecuencia angular de un marco de referencia rotante, donde un cuerpo dado orbitando y 

rotando alrededor de un eje fijo describe una trayectoria en forma de una roseta periódica completando un 

“movimiento circular” periódico. Así, por la analogía entre un marco de referencia rotacional y el Sistema Solar 

como un todo, se calculan la frecuencia angular y el periodo de un posible movimiento circular planetario. Para el 

caso de la Tierra, el periodo circular es calculado a partir del movimiento de la órbita por el efecto de la rotación, 

junto con el avance causado por la precesión absidal, resultando el mismo valor que el periodo de la precesión de los 

equinoccios. Esta coincidencia podría proveer una explicación alternativa para este efecto observado. 

 

Palabras clave: Marco de referencia rotante, Mecánica Lagraniana, Frecuencia angular, Precesión de los 

equinoccios. 
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I. INTRODUCTION 
 

As known, one of the Earth’s movements is the precession 

of the equinoxes (also called precession of the equator). 

This movement is currently considered an effect by the 

Earth’s axial movement, whereby the axis slowly moves 

tracing out an imaginary cone with respect to the “fixed” 

stars, rotating completely around 360° in a period of about 

25,771.5 years (about 0.0139689° per year) called Platonic 

year. During such a period, the visible positions of stars as 

measured in the equatorial coordinate system will slowly 

change. Over this cycle the Earth's North axial pole moves 

from where it is now in a circle about the ecliptic pole, with 

an angular radius in average of 23.45°. A consequence of 

the precession of the equinoxes is a changing pole star. For 

instance, currently Polaris star has the position of the North 

celestial pole. According to the observations [1], in the year 

2100 AC, the Earth’s North Pole will appoint at only 0.5º of 

Polaris. Later, at around the year 14000 AC, Earth’s North 

Pole will appoint to Vega star (in the constellation Lyra). 

On the other hand, we have that a given body orbiting and 

rotating around a fixed axis describes a periodical rosette 

path completing a “circular motion” in a given period. Thus, 

by the analogy between a rotating reference frame and the 

whole Solar System, angular frequency and period of a 

possible planetary circular motion are calculated. For 

instance, in the Earth's case, the circular period is calculated 

from the motion of the orbit by the rotation effect, together 

with the advancing caused by the apsidal precession, which 

results the same amount than the period of precession of the 

equinoxes. This coincidence could provide an alternative 

explanation for this observed effect. 

 

 

II. ORBITING AROUND A FIXED AXIS IN A 

STATIC FRAME OF REFERENCE 
 

In order to describe the difference between path of a body 

orbiting around a fixed axis in a static frame of reference, 

and path of a body orbiting and rotating around a fixed axis 

in a rotating reference frame, let us first briefly to describe 

each path. The orbit of a body around a fixed axis in a static 

frame of reference (it means, where only the bodies are in 

motion, but not the frame of reference), orbital path can be 
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described by the Kepler’s Laws [2], which states that the 

orbit of every planet is an ellipse with the Sun at one of the 

two foci. Third Kepler’s law states that the square of the 

orbital period of a planet is proportional to the cube of the 

semi-major axis of its orbit, giving 
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where a is the semi-mayor axis of the ellipse, T is the period 

to complete an orbit and K is a constant. Elliptical path in 

polar coordinates is given by 
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where e is the eccentricity of the elliptical path and ω is the 

angular frequency (also called angular velocity) of the 

periodic orbit, like a simple harmonic oscillator, given by  
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Although most orbits are elliptical in nature, a special case 

is the circular orbit, which can be considered as an ellipse of 

zero eccentricity, where a  r, being r the radius of the 

circular orbit. This consideration simplifies further 

calculations. Then, for a circular orbit, expression (1) is 

reduced, giving 
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In the circular orbit, velocity is defined as 
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where v is the orbital velocity. In order to find out constant 

K, both terms of expression (5) can be multiplied by vr, and 

reordering, yields 
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where a is the centripetal acceleration of the given body in 

the circular system and K keeps constant. Then, acceleration 

must be also constant. Thus, for a circular orbit, relation 

between accelerated circular motion and the Newtonian 

constant of gravitation multiplied by the mass is defined by  
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where G is the Newtonian constant of gravitation, M  is the 

mass of a large body (as that of the Sun) and r is the 

distance from the center of the mass M. Substituting 

expression (7) in (6), yields 
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which is the Newton’s solution for the planetary motion [3].  

On the other hand, as observed, other rotational effects 

are present in the dynamics of a body in elliptical orbit 

around a fixed axis, such as the apsidal precession that 

increases during the perihelion. This effect slowly changes 

the position of a body orbiting as a displacement of 

precession towards the direction of rotation. For the 

planetary apsidal precession, angle of precession d per 

cycle due to the advance of perihelion, from the General 

Relativity [4] is defined as 
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where c is the speed of light. Thus, angular frequency of 

apsidal precession is given by 
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where tP is the time of each period in seconds.  

Expression for the ellipse in polar coordinates with the 

pole at a focus, also including the rate of apsidal precession, 

is given by 
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where angle   = t and d = dt. Replacing data of the 

Sun-Earth system in expression (11), with the maximums 

distance r (during the aphelion) and the related minimum 

orbital velocity v, being tP the time in seconds of a sidereal 

year (365.256 days), angular frequency of apsidal 

precession equals 1.86123×10
−7

 radians per cycle (3.8391” 

of arc per century). Nevertheless, according to the 

observations [5], apsidal precession of the Earth is measured 

in about of 5”  1.2 of arc per century. 

 

 

III. ORBITING AND ROTATING AROUND A 

FIXED AXIS IN A ROTATING REFERENCE 

FRAME 
 

Let us now consider the general case of a rotating reference 

frame and fixed frame being related by translation and 

rotation [6]. Position of a point P according to the fixed 

frame of reference is named r’, while some position of a 
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same point according to the rotating reference frame is 

named r, and  

 

' ,r R r                                  (12) 

 

where R denotes the position of the origin of the rotating 

frame according to the fixed frame. Since the velocity of the 

point P involves the rate of change of position, we can 

define two time-derivative operators, for (d/dt)f or (d/dt)r, 

respectively. The velocities of point P as observed in the 

fixed and rotating frames are defined as 
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respectively. The relation between the fixed-frame and 

rotating-frame velocities is expressed as 
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where V = (dR/dt)f denotes the translation velocity of the 

rotating-frame origin (as observed in the fixed frame of 

reference) and Ω is the angular frequency of the rotating 

reference frame. Using expression (13), expressions for the 

acceleration of point P as observed in the fixed and rotating 

frames of reference are given by  
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respectively. Hence, using expression (14), we find 
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Solving expression (16) and reordering, yields 
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where A = (dV/dt)f denotes the translational acceleration of 

the rotating-frame origin (as observed in the fixed frame of 

reference). We can now write an expression for the 

acceleration of point P as observed in the rotating frame as 
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which represents the sum of the net inertial acceleration (af -

A), where the centrifugal acceleration is given by -Ω  (Ω  

r), and the term -2Ω  v is the Coriolis acceleration ac which 

only depends on velocity. 

 

 

 

IV. LAGRANGIAN FORMULATION OF NON-

INERTIAL MOTION 
 

The Lagrangian [7] for a particle of mass m moving in a 

non-inertial rotating frame (with its origin coinciding with 

the fixed-frame origin) in the presence of the potential U(r) 

is expressed as 
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where Ω is the angular velocity vector. It can be expressed 

as 
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Applying the Lagrangian (19), we can derive the general 

Euler-Lagrange equation for the r term. Thus, expression for 

the momentum is defined as 
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Partial derivative is given by 
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so that the Euler-Lagrange equation is defined as 
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Here, the potential energy term generates the fixed-frame 

acceleration, -RotU = maf, and thus the Euler-Lagrange 

equation (24) yields expression (18). 

Coriolis acceleration in a rotating reference frame 

implies a displacement of a given body by the drag effect 

[8]. Equivalence between Coriolis acceleration in a rotating 

reference frame and the velocity in a circular frame is given 

by 
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where ac is the Coriolis acceleration.  

Having the equivalence where v = at, expression (25) 

with respect to the time gives 

 

C
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Integrating two times with respect to the time, yields 
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C
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3
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where xc is the displacement towards the opposite direction 

of rotation.  

In order to get an idea of the magnitude of the 

displacement xc, let us consider a free-falling object which 

dropped down a 100-meter shaft at the equator. The time to 

reach the ground is given by 
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where h is the height and g is the gravitational acceleration 

in the Earth (9.8 m/s
2
). Then, replacing expression (28) in 

(27), final displacement is defined as 
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Thus, replacing values in expression (29) total displacement 

is about 2.2 cm. This is small in comparison to the 100 

meter drop, but it is certainly measurable. 

In addition, we can derive the angular frequency of the 

rotating reference frame related by the velocity from the 

expression (27) for a radius r from a fixed axis, where xc = 

r, and reducing terms, yields 
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reordering expression (30) and replacing with velocity given 

in (25), yields 
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Solving for the square of angular frequency, hence 
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which represents the angular frequency of a rotating 

reference frame related by the velocity. 

 

 

 

V. THE ANGULAR FREQUENCY IN TERMS OF 

SPEED OF LIGHT 
 

It is possible to derive equivalent expression for (32) related 

with the speed of light by considering the relation between 

the escape velocity exerted by a central body and the orbital 

velocity of a second body orbiting such a central body [9]. 

Thus, considering a body in elliptical orbit around of a 

central body, distance of maximum approach from the 

center of mass is r1 and the one of maximum distance is r2, 

where r1 < r2, so that the velocity for each position are v1 

and v2, respectively, where v1 > v2. The constant of angular 

momentum and of the energy allows one to relate these four 

magnitudes, giving 
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where m is the mass of the body orbiting, r is the radius 

from the fixed axis and v is the velocity.  

We can express the velocity v2 in terms of the escape 

velocity ve of the central body [9], giving  
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Substituting equivalence (34) in expression (33), we get 
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and finding out for square of escape velocity multiplied by 

the radius r2, yields 
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Considering the special case of the circular orbit (which can 

be considered as an ellipse of zero eccentricity), where the 

radius of the circumference is ro = r1 = r2, then equivalence 

(36) takes the form 
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where ro is the radius of the circular orbit, vo is the orbital 

velocity and Do is the diameter of the circular orbit. Then, 

rate between escape velocity and orbital velocity, yields 
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Then, including rate between orbital velocity and escape 

velocity, multiplying expressions (32) by (38), yields 
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where Ωv is the angular frequency with the proportion 

between orbital velocity and escape velocity. When the 

escape velocity is tending to the speed of light [9], the 

equivalence (38) can be written as  
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where rs is the Schwarzschild radius [10]. Replacing 

expression (40) in (39), hence 
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Furthermore, having the contribution in the circular motion 

of the apsidal precession given by the slight motion of the 

planet in the direction of rotation, total angular frequency 

ΩS for a period of circular motion (for a given body orbiting 

and rotating) is approximately the addition of both angular 

frequencies, (10) and (41), hence 
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Then, for one revolution (2 radians), total period is given 

by 
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VI. THE ROSETTE PATH OF A BODY 

ORBITING AND ROTATING AROUND A 

FIXED AXIS 
 

The elliptical path of a body periodically orbiting around a 

fixed axis in a static circular frame of reference as describe 

by the Kepler’s Laws shows a simple harmonic oscillator 

with angular frequency ω. Elliptical path in parametric 

equations, is given as 
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where a is the semi-major axis, b the semi-minor axis and t 

the parameter. 

In addition, elliptical path in a rotating reference frame 

shall be also rotating with angular frequency  of the whole 

system. Thus, a body orbiting and rotating should traces out 

a simple harmonic motion within the rotating reference 

frame, which we can be separated in two components with 

the same frequency but perpendicular directions out phased 

by 90° between them.  

Position of a point in a non-inertial frame in parametric 

equations is given by 

 
' cos( ) sin( )

' sin( ) cos( ).

x x t y t

y x t y t

     

     
                    (45) 

Thus, replacing x and y terms of expression (45) in (44), the 

parametric components of a simple harmonic motion for a 

non-inertial frame are given by 
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The given body should follow one of both motions, 

elliptical or circular orbit; it depends of the relation between 

the a and b semi-axes.  

 
FIGURE 1. Rosette path of a planet orbiting and rotating in a 

rotating reference frame. 

 

 

We can write expression (46) in function of eccentricity to 

the ellipse with a focus at the origin by replacing a and b 

terms by r term from expression (11). Reducing expression 

(46) by trigonometric identities, path of the body along of 

the circular motion including the rate of apsidal precession 

traces out an elliptical rosette shape (Fig. 1), given by 

 

 

 

2

2

1
' cos( )

1 cos( d )

1
' sin( ),

1 cos( d )

a e
x t t

e t t

a e
y t t

e t t






 


 


 

  


  

  

           (47) 

 

and in polar coordinates, yields 
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where rMax is the maximum distance from the body to the 

centre of rotation (during the aphelion). 

 

 

VII. THE ROTATING REFERENCE FRAME 

AND THE PRECESSION OF THE EQUINOXES 
 

According to the expression (48), a body in a rotating 

reference frame must be orbiting and rotating with angular 

frequency  around a fixed axis describing a rosette path 
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and changing its position with respect to the other bodies; 

but apparently this effect is not perceived from the Earth. 

Nevertheless, having the expression (41), we can 

determinate the angular frequency value for the Sun-Earth 

system. Thus, replacing the Earth’s data [5] in expression 

(41), with the maximums distance r (during the aphelion) 

and the related minimum orbital velocity v, and tP the time 

in seconds of a sidereal year, angular frequency of the 

rotating reference frame equals 7.71965×10
−12

 radians per 

second. Furthermore, replacing data of the Sun-Earth 

system in expression (42) that includes apsidal precession, 

total angular frequency equals 7.72554×10
−12

 radians per 

second (50.2881” of arc per year, or 0.0139689° per year).  

For one revolution (2 radians), total period TS in 

seconds for the Earth's case equals 8.133×10
11

 seconds 

(25,771.5 years), which coincide with the observed period 

of the precession of the equinoxes [1].  

We can explain this result by proposing an analogy 

between a rotating reference frame and the whole Solar 

System (as a rotating system). According to this analogy, 

the same effect of precession of the equinoxes must be 

observed from the Earth orbiting in a rotating reference 

frame, where path of a body orbiting and rotating defines an 

elliptical orbit that also rotates with the rotating reference 

frame around a fixed axis at the Sun, as shown in Fig. 2, 

giving 25,771.5 turns around of the Sun in one circular 

period.  

Then, for the Earth’s case, about the year 2100 AC 

(point A in Fig. 2), the Earth’s North Pole should be 

appointing near of Polaris (point C); and later, when planet 

travels out by half period of the Platonic year to the opposite 

side (point B), Earth’s North Pole should be appointing near 

to Vega star (point D) about the year 14000 AC, thus 

changing the Earth its position within the Solar System and 

also maintaining in average the same angular radius (α in 

Fig. 2) with respect to the ecliptic, then changing its linear 

reference with respect to the “fixed” stars, resulting in the 

precession of the equinoxes effect as observed. 

Considering respective maximum distance from the Sun 

to each planet and their respective minimum orbital velocity 

at such a position, we can find out from expression (43) a 

general expression to determinate the respective period of 

the possible heliocentric circular motion for each planet, 

hence 
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                             (49) 

 

where n is the angular frequency at the distance r in 

radians per second of any respective planetary ring, n is the 

angular frequency in radians per second of respective 

apsidal precession of any planet and TPn is the period in 

seconds of any respective planet orbit. Thus, substituting 

respective planetary data [11] in expression (49), period of 

the possible heliocentric circular motion (as their apparently 

precession of the equinoxes) are derived for each planet, 

building the Table I, which results could be verified by the 

observation of the planetary motion with respect to the 

“fixed” stars. 

 
FIGURE 2. Rosette path of the Earth orbiting and rotating in a 

rotating reference frame with respect to the fixed stars. 

 

 

VIII. CONCLUSIONS  
 

This paper aims to offer a hypothetical alternative physical 

explanation for a celebrated effect, the precession of the 

equinoxes (no merely a reformulation of the previous 

knowledge). Nevertheless, this proposing is based on the 

knowledge about the dynamics behavior in a rotating 

reference frame, where Coriolis acceleration plays an 

important role in the precession of the equinoxes. 

 
TABLE I. Data of planets with the predicted heliocentric circular period. 

 

Planet 

Maximum Sun-

planet distance 

(106 km) 

Minimum 

orbital velocity 

(km/sec) 

Calculated 

precession 

of perihelion (arc 

sec per century) 

Sidereal 

orbit period 

(days) 

Sidereal orbit 

period Ratio 

(Planet / 

Earth) 

Predicted 

heliocentric circular 

period (years) 

Mercury 69.82 38.86 43.0133 87.969 0.241 6,022.09 

Venus 108.94 34.79 8.6262 224.701 0.615 13,109.40 

Earth 152.10 29.29 3.8391 365.256 1 25,771.50 

Mars 249.23 21.97 1.3513 686.98 1.881 71,770.84 

Jupiter 816.62 12.44 0.0623 4,332.589 11.862 749,613.52 

Saturn 1,514.50 0.09 0.0137 10,759.22 29.457 2,581,214.51 

Uranus 3,003.62 6.29 0.0024 30,685.40 84.011 10,334,913.87 

Neptune 4,545.67 5.37 0.0008 60,189 164.79 22,398,514.91 
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Then, planets periodically could be changing their position 

with respect to the whole Solar System, completing a 

circular period (in terms of thousands of years, being almost 

imperceptible) that from the Earth could be perceived as the 

periodical change its linear reference with respect to the 

considered “fixed” stars, as is observed in the precession of 

the equinoxes. 

Dynamics of the rotating reference frame can be also 

extended to the exoplanets of other stellar systems. Under 

this scenario, considered angular frequency shows the 

possibility that space in a uniform gravitational system 

given by a fixed axis is rotating, which allows a better 

understanding of galactic formations, spiral arms and 

planetary systems formation. 

Regarding to the education, classical dynamics, 

planetary motion, Newtonian theory of gravity and relativity 

are revisited describing the main concepts of those theories, 

where it is showed the possibility to apply some of the 

known equivalences to consider another possible results and 

properties from the classical theories. 
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