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Abstract 
We give an elementary exposition of the Lanczos technique to solve the matrix eigenvalue problem. This Lanczos 

procedure is one of the most frequently used numerical methods in matrix computations, and it is one of the 10 

algorithms that exerted the greatest influence in the development and practice of science and engineering in the 20th 

century. 
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Resumen 
Damos una exposición elemental de la técnica de Lanczos para resolver el problema de valores propios de una matriz. 

Este procedimiento de Lanczos es uno de los métodos numéricos más empleados en cálculos matriciales, y fue 

seleccionado como uno de los 10 algoritmos que ejercieron la mayor influencia en el desarrollo y práctica de la ciencia 

e ingeniería en el Siglo XX. 
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I. INTRODUCTION 
 

At the time of Lanczos work on the eigenvalue problem 

during the Second World war, most methods focused on 

finding the characteristic polynomial [1, 2] of matrices in 

order to find their eigenvalues. In fact, Lanczos original 

paper [3] was also mostly concerned with this problem, 

however, he was trying to reduce the round-off errors in such 

calculations. He called his procedure the ‘method of 

minimized iterations’ [4]. With the first implementations of 

the Lanczos algorithm on the computers of the 1950’s, an 

undesirable numerical phenomenon was encountered. Due to 

the finite precision arithmetic, after some number of steps 

the orthogonality among the Lanczos vectors was lost. This 

situation may be avoided by additional labor to maintain the 

orthogonality. In exact arithmetic, the Lanczos technique can 

find only one eigenvector of a multiple eigenvalue. The 

block methodology introduced by Golub-Underwood [5] 

working with multiple Lanczos vectors at a time, results in 

accurate calculation of multiple eigenvalues. 

Calculating the inverse of a matrix [6, 7] proved to be a 

somewhat difficult task. To avoid matrix inversion, 

determined the matrix characteristic polynomial [8, 9, 10, 11, 

12] was a preferred method. The roots of this polynomial 

provided the eigenvalues. Lanczos [3, 4] developed a 

progressive algorithm for the gradual construction of the 

characteristic polynomial. Starting from a trial vector and 

applying matrix transformations, Lanczos generated an 

iterated sequence of linearly independent vectors, each of 

them being a linear combination of the previous vectors. The 

procedure automatically comes to a halt when the proper 

degree of the polynomial has been reached. The coefficients 

of the final linear combination of the iterated vectors provide 

the coefficients of the characteristic polynomial. 

While Lanczos was working on his paper [3], A. M. 

Ostrowski [13] pointed out to Lanczos that his eigenvalue 

method paralleled the earlier research of Krylov [14]. 

Lanczos checked the relevant reviews in the reference 

journal Zentralblatt and informed Ostrowski that the 

literature available to him showed no evidence that the 

eigenvalue algorithm and the results he obtained have been 

found earlier. Using matrix transformation, Krylov created a 

sequence of consecutive vectors that had the smallest set of 

consecutive iterates that are linearly dependent. The 

coefficients of a vanishing combination are the coefficients 

of a divisor of the characteristic polynomial of the matrix. 

The space these vectors determine is called the Krylov 

subspace. Krylov’s iterative solver generated a huge class of 

approximate methods, among which the Lanczos algorithm 

[15] today is one of the most frequently used numerical 

methods in matrix computations [16]. 
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Lanczos received credit for its discovery [17] because in 

2000, the Editors of ‘Computing in Science and 

Engineering’, composed a list of 10 algorithms that exerted 

the greatest influence on the development and practice of 

science and engineering in the 20
th

 century [18]; the Lanczos 

method was selected. Lanczos [3, 4] and Hestenes-Stiefel 

[19] initiate the implementation of Krylov subspace iteration 

techniques [6]. 

 

 

II. LANCZOS METHOD: MINIMUM POLYNO-

MIAL, EIGENVALUES AND EIGENVECTORS 
 

The Lanczos algorithm generates a set of orthogonal vectors 

which satisfy a recurrence relation. It connects three 

consecutive vectors with the result that each newly generated 

vector is orthogonal to all of the previous ones. The 

numerical constants of the relation are determined during the 

process from the condition that the length of each newly 

produced vector should be minimal. After a minimum 

number of iterations (minimized iterations) in view of the 

Cayley-Hamilton-Frobenius identity [1, 2, 20], the last 

vector must become a linear combination of the previous 

vectors. The method, though indisputably an elegant one, 

had a serious limitation. In case of eigenvalues with 

considerable dispersion, the successive iterations will 

increase the gap, the large proper values will monopolize the 

scene, and because of rounding errors the small eigenvalues 

begin to lose value. After a few iterations they will be 

practically drowned out. A certain kind of eigenvalue 

identity had to be established. Lanczos developed a 

modification of the method that protected the small proper 

values by balancing the distribution of amplitudes in the 

most equitable fashion. To achieve this, the coefficients of 

the linear combination of the iterated vectors are determined 

in such a way that the amplitude of the new vector should be 

minimal. The generated vectors were orthogonal to each 

other (successive orthogonalization). 

Lanczos first considered symmetric matrices, A = A
T
, and 

set out to find the characteristic polynomial P(λ) = det ( λ I - 

A) for the eigenvalue problem A     = λ    , and he generates a 

sequence of trial vectors, resulting in a successive set of 

polynomials. The process starts with      randomly selected, it 

may be unitary (    
                  ) to simplify some 

expressions, then we construct the next vector in according 

with the rule 

 

                                     ,                           (1) 

 

where the value of    must imply that     
  is a minimum, thus 

 

                       ,                ,        
    ,              (2) 

 

being      orthogonal to     . Similarly, 

 

                                         ,                     (3) 

 

with the parameters    and     such that     
  has a minimum 

value, therefore: 

 

    
                 ,                  ,                         ,    (4) 

 

and 

 

                           ,           
                 , 

 

      
                 ,                             (5) 

 

for a minimum value of     
  with            , r = 0, 1, 2, etc. 

The algorithm established by Lanczos is now: 

 

 

                                              randomly selected vector,                
   ,                                          A = A 

T
,  

 

                                                          ,                                                     ,                                  , 

                                          .                                                      .                                                 . 

                                          .                                                      .                                                 . 

                                          .                                                      .                                                 . 

                                                                                                                           (end of the process),                 (6) 

 

 

this is the famous three-member recurrence [15], where: 

 

                 
                 , r = 0, 1,…, m-1, 

 

                 
                   , q = 0, 1,…, m-2, 

 

               ,   a = 1, 2,…, m-1;  c = 0, 1,…, a-1.      (7) 

 

In general, at every step of the Lanczos method a new        

vector is found by projecting the       vector into the 

subspace spanned by the previous Lanczos vectors and 

choosing        to be the component of       orthogonal to the 

projection. In Lanczos view we reached the order of the 

minimal polynomial [21, 22, 23]: 

 

                             m ≤ n   for         
 . 

 

Unfortunately, in finite precision arithmetic, the process may 

reach a state where    is very small for k < m before the full 

order of the minimum polynomial is obtained. This 
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phenomenon, at the time not fully understood, contributed to 

the method’s bad numerical reputation in the 1960’s. 

This algorithm generates a sequence of polynomials to 

construct the minimum polynomial of a symmetric matrix: 

 

 

                                          ,                                    ,                                                  , 
                                         .                                       .                                             . 

                                         .                                       .                                             . 
                                           .                                       .                                             .                                                                (8) 

                                                                      ,                         r = 2, 3, … , 

 

 

then the minimal polynomial of A is given by: 

 

                                         ,     (9) 

 

where m was determined in the process (6) (           ). For 

example, if 

 

      
     
     
     

  ,                          (10) 

 

we may select 

 

                 
 
 
 
            

    ,           
 
 
 
  ,       , 

 

and from (6, 7): 

 

       
 
 
 
  ,      

    ,               ,           
  
  
  
  , 

 

       ,        ,          
  
  
  
  ,        

    , 

 

                       ,          
 
 
 
  ,       , 

 

     ,           , 
 

then m = 3 and (8, 9) imply the polynomials     ,    
    ,      

   , therefore (10) has the minimal 

polynomial: 

 

                               ,       (11) 

 

in this case it coincides with the characteristic polynomial. 

For the symmetric matrix: 

 

    
   
   
   

 ,                               (12) 

 

we select     
         , then 

 

                     
 
 
 
              

               
 

therefore              , with the minimal 

polynomial         
   , in harmony with the identity 

     verified by (12). In this example the characteristic 

polynomial is given by:  

 

                                            
   .         (13) 

 

Remark 1: The trial vector      is unitary, then it is easy to 

prove that     
          

            
          ,…, thus, in 

general     
    , r = 1, 2,…  

 

Remark 2: From (8), the Lanczos polynomials may be 

expressed as determinants of matrices generated by the 

parameters (7), in fact 

 

                                      , r = 1, 2, 3,…        (14) 

 

with the tridiagonal matrix [24]: 

 

     

 

 
 

       
 
 
 

  
 
 

  
  
 

 
 
 

 

         

 
 

 ,                (15)  

 

that is  

          ,              
    
   

  , 

 

        

     
     
    

  ,         

      

 
 

    
   

 
  

     

  . 

 

For nonsymmetric matrices, the transpose of A participates 

in the implementation of the Lanczos technique, thus      and 

    are randomly selected vectors with            to construct: 

 

                   ,                         , 
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                       ,                        (16) 

 

Then 

 

               
                .                 (17) 

 

Similarly, 

 

                          ,                         ,   (18) 

 

such that                     , q = 1, 2, therefore: 

 

                   
                , 

 

           
                ,                    (19) 

 

in general, for r = 0, 1, 2,… : 

 

                                                ,  

 

                     
                         , 

 

                                
                ,                            (20) 

 

                         =         
                  , 

 

                                  , a = 1, 2,…, m-1 ;  

 

            c = 0, 1,…, a-1 (biorthogonality), 

 

this process stops when               , m ≤ n, and the 

minimal polynomial of A is given by (8, 9) with the 

parameters    and    determined in (20). If      , then 

the expressions (16,…, 20) imply (1,…, 7) because      =    . 

 For example, if 

 

    
   
   
   

  ,                               (21) 

 

we may select the trial vectors: 

 

          
 
 
 
 ,       

 
 
 
           

  
  
  
        

  
  
  
   

 

                                                  
 

and from (8, 9) 

 

                                                       
 

        
    : Minimal polynomial,             (22) 

 

compatible with the relation      satisfied by (21). 

Now let 

 

    
    
    
    

 ,                             (23) 

 

with the initial vectors: 

 

        
  
  
  
        

  
  
 

 

             
 
 
 
        

 
 
 
    

 

                                              (24) 

 

          
  
  
  
 ,        

 
 

    
                         

 

and the sequence of polynomials 

 

                               
       

 

              
           : Characteristic polynomial. 

(25) 

 

Remark 3: Due to the finite precision arithmetic, after some 

number of steps the biorthogonality of the Lanczos vectors is 

lost, it is necessary additional work to maintain the 

orthogonality during the process. 

 

Remark 4: The characteristic polynomial permits to obtain 

the eigenvalues    of a matrix. The quantities        and 

         are important to determine the corresponding 

eigenvectors. 

 

Lanczos used the characteristic polynomial developed above 

and the biorthogonality of the          sequence to find an 

explicit solution for the eigenvectors in terms of these trial 

vectors. We consider an arbitrary matrix      with rank A = 

n; its eigenvalue problem is complete if its transpose 

participates in the process: 

 

                 ,                   ,     r = 1, 2,…, n      (26) 

 

because both matrices have the same characteristic 

polynomial [1]. If we accept that: 

 

                   ,   j = 0, 1,…, n-1,               (27) 

 

then the Lanczos algorithm gives expressions to construct 

their n linearly independent eigenvectors: 

 

      
 

  
       

      

  
       

      

  
           

        

    
        , 

 

  k = 1, …, n,                                  (28) 

 

     
 

  
      

      

  
      

      

  
          

        

    
       , 
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with the known property [1]                , that is: 

 

   
 

  

   
                                               (29) 

 

For example, the matrix (23) has the characteristic 

polynomial (25) whose roots are: 

 

              
 

 
              

 

     
 

 
                                     (30) 

 

Therefore 

 

                                                          
 

                                                        (31) 

 

                                                                
 

in according with (29), and from (24, 28, 31) the 

eigenvectors are: 

 

       
 
 
 
             

   
  
 

             
   
  
 

   

 

      
 
 
   

           
    
    
 

            
    
   
  

        (32) 

 

Remark 5: This Lanczos-Hestenes-Stiefel method was 

originally developed as a direct algorithm to solve an n x n 

linear system, and it is useful when employed [25] as an 

iterative approximation technique for solving large sparse 

systems with nonzero entries occurring in predictable 

patterns. These problems frequently arise in the solution of 

boundary-value problems; good results are obtained in only 

about    iterations. Employed in this way, the method is 

preferred over Gaussian elimination. 

 

Remark 6: The Lanczos procedure solves the standard 

eigenvalue problem (26) for square matrices, then it must be 

interesting to realize its implementation for the rectangular 

case known as ‘shifted eigenvalue problem’ [26, 27, 28, 29].  

 

Remark 7: The iterative Faddeev’s method [6, 30, 31] 

permits to determine the inverse matrix    , however, 

Lanczos algorithm gives us an alternative way for the 

inversion of a matrix. In fact, we construct the n x n 

matrices: 

 

            
    

  
 
    

  
   

      

    
                               

 

                                               (33) 

then 

         

          

 

 
 
 
 
 

  
    

  
   

    
    

  
   

 
 
 
 

  
 
 
 

  
  
 
 

    

  
 

 
 

 
 

        

    
     

 
 
 
 
 

.  

 

(34) 

 

In general, it is more easy to obtain [32] the inverse of the 

tridiagonal matrix R than    , thus (34) implies the Lanczos 

expression: 

 

                                            (35) 
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