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Abstract 
It is presented the mathematical reduction of the phase lag model of the photoacoustic signal to a linear form for 

determining the thermal diffusivity in opaque solids at low modulation frequencies using the open-cell photoacoustic 

technique. It is shown that for f ≤ (/2)2 fc, where fc  is the modulation frequency at which  the thermal diffusion length 

matches the sample thickness, the photoacoustic phase signal can be written in linear form with the modulation 

frequency f . Then, obtaining the proportionality coefficient by fitting the experimental data, the thermal diffusivity of 

the sample can be determined. The advantage of this method is that it is realized in a range of modulation frequencies 

below those normally used, hence, the photoacoustic signal should be alone attributed to the mechanism of thermal 

diffusion. Moreover, the noise-signal ratio will be less important, thus increasing the reliability of the experimental data 

obtained. 
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Resumen 
Se presenta la reducción matemática del modelo de retardo de fase de la señal fotoacústica para la determinación de la 

difusividad térmica en sólidos opacos a bajas frecuencias de modulación usando la técnica fotoacústica de celda abierta. 

Se demuestra que para f ≤ (/2)2 fc, donde fc es la frecuencia de modulación a la cual la longitud de difusión térmica 

iguala al espesor de la muestra, la fase de la señal fotoacústica puede escribirse en forma lineal respecto a la frecuencia 

de modulación f. Luego, obteniendo el coeficiente de proporcionalidad mediante el ajuste del modelo lineal a los datos 

experimentales, puede determinarse la difusividad térmica, a partir de dicho coeficiente y el espesor de la muestra. La 

ventaja de este método es que se realiza en un rango de frecuencias de modulación más bajos que los usados 

usualmente, por tanto, la señal fotoacústica es debida esencialmente al mecanismo de difusión de calor. Además, en 

este rango la razón ruido-señal decrece mejorando la confiabilidad de los datos experimentales obtenidos. 
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I. INTRODUCTION 
 

The open photoacoustic cell (OPC) developed for thermal 

characterization of solids [1], has been widely used in the 

measurement of the thermal properties of a large variety of 

materials, ranging from metals and semiconductors, to 

polymers and foodstuffs [2, 3, 4, 5, 6, 7]. In the OPC 

method the sample under study is mounted directly onto a 

commercial electret microphone [8] using the front 

chamber of the microphone as the usual gas chamber of 

conventional photoacoustic. Its advantage over 

conventional photoacoustic cells is the use of a minimal gas 

chamber with no further transducer medium needed, no cell 

machining required, and low cost. The thermal diffusivity 

s, of a sample with thickness ls, can be determined by the 

OPC method by analyzing the signal amplitude or the 

signal phase dependence on the modulation frequency f of 

the incident light beam in the thermally thick regime [1, 2, 

3], in which ls »s, where s = (s/f)
1/2

 is the thermal 

diffusion length in the sample for the frequency f. However, 

for materials with a high thermal diffusivity, such as metals 

and some semiconductors, as well as for many samples 

whose thickness is very small, the thermally thick regime 

can only be reached at modulation frequencies of hundreds 

or several thousands of Hz. This has two main 

disadvantages: i) since the PA signal decreases 

exponentially with the modulation frequency, the signal to 

noise ratio decreases quickly, resulting in lack of reliability 

in the analysis. Although this problem can be overcome by 

using a high intensity light beam this might not be 

appropriate because the light could be intense enough to 

modify the characteristics of the sample under study. ii) By 

increasing the modulation frequency, the thermoelastic 

mechanism of generation of PA signal is manifested. Since 

the mathematical expressions that takes into account both 

the heat diffusion and thermoelastic bending effect are 
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complex, it is necessary work at higher modulation 

frequencies where the thermoelastic contribution is the 

dominant effect [1, 3].
 

This work report the mathematical reduction of the 

phase lag model of the photoacoustic signal for determining 

the thermal diffusivity in opaque solids at low modulation 

frequencies by analyzing the PA signal phase at low 

modulation frequencies. The predominant PA signal 

generating mechanism is then thermal diffusion. 

 

 

II. THERMAL DIFFUSION MODEL 
 

From the one-dimensional thermal diffusion model of 

Rosencwaig and Gersho [10] it is seen that the amplitude 

and phase difference of the OPC signal for optically opaque 

samples are given, respectively, by [6] 
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In these expressions i, li, ki and ai are the thermal 

diffusivity, thickness, thermal conductivity and thermal 

diffusion coefficient, ai = (f /i), of material i, 

respectively. Here the subscript i denotes the sample (s) and 

gas (g) regions. T0 is the ambient temperature, I0 is the 

incident beam intensity and V0 is a quantity dependent on 

the microphone characteristics. 

 

 

III. MATHEMATICAL DEVELOPMENT 
 

Before further it is necessary to consider the following 

proposition:  

For x in the interval (0, (/2)
2
) it holds that, 
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with a relative error e%  1.2%, such that e%o when x0 

or when x(/2)
2
. 

In fact, taking in account the power series representation 

and interval of convergence of the following basic 

functions: 
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and considering y  0, it is obtained:  
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from the theory of infinite series it holds that, the product of 

two convergent series also is a convergent series and its 

interval of convergence is the intersection of the intervals of 

convergence of both series. Also, the series formed by the 

linear combination of two converging series is converged 

and its interval of convergence is the intersection of the 

intervals of convergence of both series [11]. 

Therefore, the power series representation of the 

function Tan(y)Tan(/4+y
2
/) is convergent in the interval 

[0, /2) and is given by, 
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which can be rewritten as, 
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but, by (4) it follows that the first part of this expression is 

the Maclaurin series of the function Tan(y), and hence, 
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is a convergent series for all y in [0, /2). 

From (11) it follows that, 
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is the error in the approximation, 
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In (13) it was considered all interval [0, /2) because for y = 

0 this equation is well defined too. In fact, from (4), (6) and 

(12), it follows that: 
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therefore, no division by zero occurs in (15) and both sides 

of this equality are equal to unity when y  0. 

From result (16) it follows that for small values of y the 

error in the approximation (15) is negligible. By means of 

the application of the arctangent function by both sides of 

(15) and after realizing the change of variable: 

 

y x ,                                      (17) 

 

it is obtained the approximation (3), in the indicated range. 

To determine an upper bound for the error in this 

approximation can use the graphical method since the 

functions involved are transcendent and continuous on this 

interval. The percentage relative error is given by:  
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In Fig. 1 is shown the graph of %vs x. It can be observed 

that the error in the approximation is less than 1.2 % in all 

interval [0, (/2)
2
) and that this error approaches zero when 

x0 or when x(/2)
2
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 1. Percentage relative error of the approximation (3) 

given by (18). 

IV. LINEAR FORM OF THE PASE LAG 
 

Taking into account the dimensionless parameter x = f / fc = 

(asls)
2
 and the approximation (3), the phase lag of the 

photoacoustic signal, given by (2), can be reduced to next 

linear dependence with f, 
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which is valid in the interval f ≤ (/2)
2
 fc. Here, the 

characteristic frequency fc = s/ls
2
, represents the 

modulation frequency at which the thermal diffusion length 

s = as
-1

 matches the sample thickness. Figure 2 show the 

graph of  vs x for Eq. (2), black line, and for Eq. (19), 

red line. 

 

 
FIGURE 2. Phase lag vs x = f / fc. Eq. (2) is represented by the 

black line and Eq. (19) by the red line. 

 

 

From Fig. 2 it follows that Eq. (19) agree very well with 

Eq. (2) in the interval 0  x ≤ (/2)
2
, hence, the linear form 

given for the phase lag in Eq. (19) can be used to replace 

Eq. (2) for frequencies less than (/2)
2
 fc. 

From Eq. (19) it can be observed that the phase lag 

decreases linearly with the modulation frequency in the 

range f ≤ (/2)
2
 fc with a slope equal to – 1/fc. Hence, by 

fitting Eq. (19) to the experimental photoacoustic phase 

signal can be obtained easily the characteristic frequency fc 

= s/ls
2
. Then, the thermal diffusivity s of the sample is 

obtained when is know the thickness of the sample ls [6]. 

The utility of Eq. (19) in determining the thermal 

diffusivity of a material from the experimental data of the 

photoacoustic signal has been widely reported since its 

introduction [6, 12, 13, 14, 15], however, is in this work 

where the mathematical development that reduces equation 

(2) to the linear form given by (19) is reported now for the 

first time. 
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V. CONCLUSIONS 
 

It is presented the mathematical reduction of the phase lag 

model of the photoacoustic signal to a linear form for 

determining the thermal diffusivity in opaque solids at low 

modulation frequencies using the open-cell photoacoustic 

technique. It is shown that for f ≤ (/2)
2
 fc, where fc is the 

modulation frequency at which  the thermal diffusion 

length matches the sample thickness, the photoacoustic 

phase signal can be written in linear form with the 

modulation frequency f . Then, obtaining the 

proportionality coefficient by fitting the experimental data, 

the thermal diffusivity of the sample can be determined. 

The advantage of this method is that it is realized in a range 

of modulation frequencies below those normally used, 

hence, the photoacoustic signal should be alone attributed 

to the mechanism of thermal diffusion. Moreover, the 

noise-signal ratio will be less important, thus increasing the 

reliability of the experimental data obtained. 
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