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Abstract 
The motion of a charged particle through a velocity selector is an example of a general class of motions through 

crossed electric and magnetic fields. In this paper particular attention is paid to the relationship between observables of 

this type of motion measured in two reference frames connected through a galilean transformation: the lab frame and a 

frame traveling at speed E/B relative to the lab (“selector frame”). The electromagnetic field only has a magnetic 

component in the selector frame, which makes solution of the equations of motion easier, and also affects conserved 

quantities such as energy and angular momentum. The electric field in this context breaks the rotational symmetry in 

one frame affecting angular momentum conservation consistent with Noether’s theorem. Analyzing the motions in this 

manner is a way to introduce concepts from relativity into discussions of electromagnetism. 
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Resumen 
El movimiento de una partícula cargada a través de un selector de velocidad es un ejemplo de una clase general de los 

movimientos a través de campos eléctricos y magnéticos cruzados. En este documento se presta especial atención a la 

relación entre los observables de este tipo de movimiento, medido en dos marcos de referencia conectados a través de 

una transformación de Galileo: el sistema del laboratorio y un marco que viaja a la velocidad de E/B relativo al 

laboratorio ("marco selector"). El campo electromagnético sólo tiene un componente magnético en el marco selector, lo 

que hace que la solución de las ecuaciones de movimiento sea más fácil; y también afecta a cantidades conservadas 

como la energía y el momento angular. El campo eléctrico en este contexto rompe la simetría de rotación en una trama 

que afecta a la conservación del momento angular consistente con el teorema de Noether. El análisis de los 

movimientos de esta manera es una forma de introducir los conceptos de la relatividad en las discusiones sobre el 

electromagnetismo. 
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I. INTRODUCTION 

 
A common example of the practical uses of magnetic fields 

is the velocity selector; a device which is usually a 

component of a mass spectrometer. Mass spectrometers are 

instruments found in many pure and applied science 

laboratories. When treated in physics textbooks [1, 2] the 

velocity selector is an example of how a combination of 

electric and magnetic interactions can be used to steer 

particles that differ from a particular velocity (the “selector 

velocity”) away from the aperture of the spectrometer, thus 

reducing the number of variables that the trajectory of the 

particle depends on within the spectrometer to one: the 

mass. 

The motion of a charged particle through a velocity 

selector is part of a more general class of motions; namely 

motions through crossed electric and magnetic fields. In an 

educational setting it can be used to distinguish between the 

two interactions, one of which is clearly dependent on 

velocity and the other which is independent of this variable. 

The combination of these two interactions is usually 

referred to as the Lorentz force: 

 



F  qE qvB ,                         (1) 

 

which describes the interaction of a particle with charge q 

moving with velocity 



v  interacting with fields 



E and 



B. 

In the cases considered here we are interested in field 

configurations such as that described in Figure 1, where a 

uniform electric field is directed parallel to the y axis 

described by the vector 



E  Eˆ y  and a uniform magnetic 

field is parallel to the z axis, and described by the vector 



B Bˆ z . Textbook discussions are mostly focused on the 

motion at the selector velocity, but examining the other 

trajectories can shed light on the nature of the two distinct 

interactions that collectively are thought of as 

electromagnetism. 
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In this paper we examine those trajectories by using a 

galilean transformation to what we will call the “selector 

frame”, namely a reference frame moving at the selector 

velocity relative to the lab. An observer in this frame will 

not be able to detect an electric field, only a magnetic field 

will be present in an operational sense. The particle 

trajectories in this frame are all circular (or helical) and thus 

solving the equations of motion in this reference frame is 

much easier than it would be in the lab frame. 

 
FIGURE 1. The coordinate system and field directions. 

 

 
An inverse transformation can then be used to determine 

trajectories in the lab frame. This is of some practical 

mathematical use to be sure, but what is more interesting is 

the disappearance, if you will, of the electric field. This 

turns out to be a special case of the more general Lorentz 

transformations, and can be used to illustrate the 

relationship between electric and magnetic fields. In 

addition, conserved quantities differ from frame to frame. 

Mechanical energy is conserved in both frames, but the 

form differs. Angular momentum conservation, on the other 

hand, is directly affected by the presence (or absence) of an 

electric field which breaks the rotational symmetry 

consistent with Noether’s theorem [3]. 
 

 

II. TRAJECTORIES 

 
According to Equation 1 the equations of motion for a 

charged particle of mass m and charge q moving in the x-y 

plane through the field configuration described in Figure 1 

are given by: 

 



m
dvx

dt
 qvyB.                               (2a) 

 



m
dvy

dt
 qE  qvxB .                           (2b) 

The form of Equation 2b suggests that a change of variable, 

that can be viewed as a galilean transformation, will 

simplify the mathematics, namely: 

 



v x  vx  vs,                          (3a) 

 
which is consistent with: 

 



x  x  vst ,                              (3b) 

 

where 



vs 
E

B
 is the magnitude of the selector velocity. 

Particles that enter the field region with velocity 



vs  vs
ˆ x  will follow straight line (inertial) paths at constant 

speed. 

Applying Equations 3 to Equations 2, we find: 

 



m
d v x

dt
 q v yB,                            (4a) 

 



m
d v y

dt
 q v xB.                           (4b) 

 

Note that in this reference frame a charged test particle at 

rest will remain at rest. There is no electric field. Only a 

velocity dependent interaction will affect the test particle, 

namely a magnetic force. This result is consistent with the 

Lorentz transformation [4], for an observer moving along 

the x direction relative to the unprimed frame: 

 



E y   (Ey  vBz) ,                          (5) 

 

but must be viewed as a 



v  c  approximation as the 

Lorentz transformations also predict that the magnetic field 

will be different in this frame: 

 



B z   (Bz 
v

c2
Ey) . 

 

In the primed (selector) frame the velocity and position 

vectors consistent with Equations 4 are: 

 



v  v cos(t )ˆ x  v sin(t )ˆ y ,          (6a) 

 



r  rc sin(t )ˆ x  rc(cos(t ) C)ˆ y ,    (6b) 

 

Where 



 
qB

m
, and 



rc 
m v 

qB
. 

If we choose 



  0 and C=-1 Equations 6 describe the 

trajectory of a positively charged particle that enters the 

field region moving parallel to the x axis in the positive 

direction, and passing through the origin at t=0. This 

particle will execute half of a circular trajectory with 

clockwise rotation. If the field extends into quadrants 2 and 

3 (or somehow just 3) the circle will be completed confined 

to quadrants 4 and 3 in the x-y plane. With suitable 
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adjustments to the free parameters and the sign of the 

frequency, Equations 6 can describe motions for positive 

and negative particles (all circular) passing through the 

origin at t=0 parallel to the x axis. For example, setting 

C=+1, 



    and choosing a negative frequency, will 

describe the counter clockwise motion of a negatively 

charged particle, that passes through the origin along the x 

axis, with a positive velocity. 

Inverting the transformation described by Equations 3 

we can determine solutions in the lab frame: 

 



v  (v vs cos(t )  vs) ˆ x  



 v vs sin(t ) ˆ y ,               (7a) 

 



r  (rc sin(t )  vst)ˆ x  



 rc(cos(t ) C)ˆ y ,             (7b) 

 
In this frame: 

 



rc 
v vs


. 

 

In Figure 2 we show several trajectories of positively 

charged particles with positive initial velocity as viewed in 

the lab frame. With sufficiently high initial velocity 

(relative to the selector velocity) the trajectories are 

cycloids, but at lower velocities they reduce to nearly 

sinusoidal shapes reducing further to a straight line motion 

at the selector velocity. 

 

 

III. CONSERVATION LAWS 

 
A primary difference between an electric field and a 

magnetic field is that a magnetic field is incapable of doing 

mechanical work. The distinction between the two 

interactions in this regard is evident here, especially if we 

compare the two reference frames. In the primed, or 

selector frame, the net force on the particle takes the form: 



F  q v B and the force is always orthogonal to the 

velocity. As a result, no work is done and the kinetic energy 

of the particle is conserved. This is not true in the lab frame 

where an electric field is present and the net force takes the 

form of Equation 1. In this frame, the quantity (to within an 

arbitrary constant) 



 
1

2
mv2  qEy  is conserved. In both 

cases we can refer to the conserved quantity as the 

mechanical energy, but in the primed frame we would 

describe the quantity by 



H 
1

2
m v 2 . The galilean 

transformation preserves the energy conservation principle 

as it applies to mechanical energy, but the form is different. 

The primary principle, that the quantity is conserved, is 

retained. 
It is interesting to note that, the net force vector is 

invariant under the transformation described. The galilean 

transformation does not change the acceleration of the 

particle, both observers measure the same vector, thus the 

net force is the same in both frames. It is the relationship 

between the velocity and acceleration vectors that is 

different for the two observers. This affects the resulting 

motions, and the scalar quantities that are conserved. 

 

 

 
FIGURE 2. Two trajectories for a singly ionized positive ion 

(m=16 amu) entering the field region along the positive x axis at 

t=0. Top: vx0=2.5vs. Bottom: vx0=1.5vs. B=0.1 T, E=200 V/m. 

 

 

We can also understand this using a lagrangian/ 

hamiltonian approach. Equation 2 can be derived from the 

lagrangian: 
 

,
2

1

2

1 22 qEyqBxvmvmvL yyx 
 

 

which can be written in the form: 

 



L 
1

2
mvx

2 
1

2
mvy

2 
d

dt
(qByx) qByv x  qEy . 

 

Since Hamilton’s principle is invariant to a total time 

derivative added to the lagrangian: 

 



L 
1

2
mvx

2 
1

2
mvy

2  qByv x  qEy ,           (8) 
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is equivalent in that it will generate the same equations of 

motion. From Equation 8 using the generalized momenta 



px  mvx  qBy  and 



py  mvy
, we can generate the 

hamiltonian: 

 

,
2

1

2

1 22 qEymvmvH yx   

 

which is a constant of the motion in the lab frame and can 

also be expressed in terms of the momenta and coordinates 

alone. 

But Equation 8 can also be written in the form: 

 



L 
1

2
mvx

2 
1

2
mvy

2  qBy(vx  vs)  

 

which suggests a transformation to the primed frame. Since 

galilean transformations do not affect time derivatives of 

velocities, we can add primes to the two kinetic energy 

terms, and write out a lagrangian (in the same form) that 

will generate the equations of motion in the primed frame: 

 



L 
1

2
m v x

2 
1

2
m v y

2  qBy v x  .                 (9) 

 

The generalized momenta also have the same form in this 

frame: 

 



p x  m v x  qB y , 



p y  m v y . 

 

But now, combining these momenta with Equation 9 we 

generate the hamiltonian: 

 

,
2

1

2

1 22

yx vmvmH   

 

where the absence of a potential energy term is a direct 

consequence of there being no electric field in this frame. 

This quantity is a constant of the motion in the primed 

frame. In each frame the hamiltonian does not depend 

explicitly on time and is therefore a constant of the motion. 

Noether’s theorem [4] states that translational 

invarience of the lagrangian leads to conservation of linear 

momentum. The x component of the generalized linear 

momentum (which includes an electromagnetic term) is 

conserved in both frames, as the electric field does not 

break the translational symmetry of the system in that 

direction: in each frame the lagrangian is cyclic in the x 

coordinate. 

We cannot say the same for rotational symmetry as the 

electric field does play the role of disrupter, in this regard, 

in the lab frame. This affects angular momentum as we 

discuss below. 

Angular momentum is another quantity associated with 

a conservation law. In the primed frame it is fairly easy to 

see that an observer using an axis of rotation that passes 

through the center of one of the circular orbits, will find 

that the particle’s angular momentum is conserved, namely: 



d  

dt
 r c  q v B  0 ,                   (10) 

 

due to the centripetal nature of the force. In the lab frame 

the same result will be arrived at even though this observer 

explicitly takes into account the effect of the electric field: 

 



d

dt
 rc  qvB  rc  qE.                  (11) 

 

To see this note that in each frame the radial vector is the 

difference between the position vector of the particle and 

the position of the center of the circle, both relative to the 

respective origin: 



rc  r  r0 and 



r c  r  r 0 . However, 

displacements are invariant under a galilean transformation 

so 



r c  rc
. Also, 



vs 
E

B
ˆ x , which means 



E vs B. 

If we make this substitution into Equation 11 

recognizing that 



v  v vs, we find: 

 

,
dt

d
q

dt

d
c





Bvr  

 

so, the angular momentum about the axis of one of the 

circular orbits is conserved in both frames. Following a 

moving axis, not surprisingly is equivalent to transforming 

to a moving frame of reference. 

But what if each observer determines the angular 

momentum relative to the origin of their respective 

coordinate systems? In the primed and unprimed frames 

respectively we have: 

 



d  

dt
 r  q v B,                          (12) 

 

,ErBvr qq
dt

d




                     
(13) 

 

and the position vectors are related by the transformation 

equation 



r  r  vst . Using this relationship in Equation 13 

and the fact that 



E vs B we find: 

 



d

dt


d  

dt
 qE v xtˆ z .                      (14) 

 

This is actually a somewhat general result, independent of 

where on the y axis, the axis of rotation is chosen. For 

example, if both observers shift the axis along their 

respective y axes to 



y  y  rc , the primed observer 

will find that the angular momentum is constant as 

described by Equation 10. In the lab frame this quantity will 

change at a rate given by Equation 14 namely, 



d

dt
 qE v xtˆ z . This result can be understood in light of 

Noether’s theorem. The electric field breaks the rotational 

symmetry about the z axis in the lab frame, and angular 

momentum is not conserved. In the primed frame, where 
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there is no electric field, an observer can choose an axis of 

rotation about which angular momentum is conserved. 

The symmetry differences are apparent even if we 

choose the origin as the axis. Since ,ŷrr cc r  and 

considering Equation 10, we can calculate the derivative of 

the angular momentum in the primed frame about the 

origin: 

 

,ẑBvqr
dt

d
yc





 
 

for which the time average over a cycle vanishes, due to the 

sinusoidal character of the velocity. This is not the case in 

the lab frame due to the explicit time dependence of 

Equation 14. And in the primed frame, it is possible 

through a fixed origin shift 



(0,0) (0,rc) to convert this 

vanishing time average to a vanishing instantaneous value. 

 

 

IV. DISCUSSION 
 

Electric and magnetic interactions are distinct but 

intimately related. Like other measurable quantities they 

must be defined operationally, or in terms of how they are 

measured. This is where the idea of a test charge or in the 

case of magnetism, test current, comes into play. To an 

observer in the lab frame of reference, a charged particle 

travelling along the x axis, at the selector velocity has zero 

electromagnetic force acting on it; an observer moving at 

the selector velocity draws the same conclusion but the 

particle is at rest in this frame. The lab frame observer upon 

viewing particle motions with varying velocities will 

conclude that both electric and magnetic interactions are 

taking place and these interactions are simply balancing at 

the selector velocity. For the observer in the selector frame, 

no measurements will reveal the presence of an 

electromagnetic interaction that is not velocity dependent; 

hence, this observer cannot detect an electric field. In an 

operational sense this field is not present. If we were to 

argue that it is present but undetectable, we would be 

arbitrarily singling out the lab frame as some special 

reference frame. Doing so, would violate the basic 

principles of relativity (either galilean or einsteinian). 

Thinking relatively is hard for students, as the idea of 

absolute motion is embedded into our common sense 

notions about the world. But the fact that magnetic 

interactions depend on velocity and electric interactions do 

not, is a hint that reference frames must play a role in 

electromagnetism. The field concept is also hard to grasp, 

and may seem like mere mathematical convenience when 

introduced in the context of electrostatics. Examples like 

the one analyzed here, where both interactions are in play 

and fluid, demonstrates the full power of Maxwell’s theory. 

 

 

REFERENCES  
 

[1] Serway, R. W. and Jewett, J. D., Physics for scientists 

and engineers with modern physics, 9th Ed. (Brooks/Cole, 

Boston, 2014). 

[2] Young, H. D. and Friedman, R. A., University physics 

with modern physics, 13th Ed. (Pearson, San Francisco, 

CA, 2014). 

[3] Deslodge, E. A. and Karch, R. I., Noether’s theorem in 

classical mechanics, Am. J. Phys. 45, 336-339 (1977). 

[4] Feynman, R. P., Leighton, R. B. and Sands, M., The 

Feynman lectures on physics. Vol. 2, (Addison Wesley, 

Reading: USA, 1963). 

 


