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Abstract 
The proposed effect of gravity hypothesis considers that gravity can be explained by the inertial effect that results of 

combine both, curvature of space-time and its accelerated expansion as a non-inertial frame of reference, deriving an 

approximate equivalent to the so-called “concise form of Einstein’s field equation”, but where “field of gravity” 

concept is not involved. On this hypothetical scenario, corresponding non-relativistic expressions analogous to the 

Friedmann equations and inflationary cosmology are described. 
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Resumen 

La hipótesis propuesta del efecto de gravedad considera que la gravedad puede explicarse por el efecto inercial que 

resulta de combinar la curvatura del espacio-tiempo y su expansión acelerada como un sistema de referencia no-

inercial, derivando una equivalencia aproximada a la llamada “forma concisa de las ecuaciones de campo de Einstein”, 

pero donde el “campo de gravedad” no está involucrado. Bajo este escenario hipotético, son descritas las 

correspondientes expresiones no relativistas análogas a las ecuaciones de Friedmann y la cosmología inflacionaria.  
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inflacionario. 
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I. INTRODUCTION 
 

Gravitation is considered one of the four fundamental 

interactions of nature, together with the electromagnetism, 

weak interaction and strong interaction [1]. As background, 

gravity was described in 1687 by Newton as the force 

exerted by a central force acting upon point masses around 

it [2], as the dynamics of a body orbiting around a massive 

body. 

Thus, although most orbits are elliptical in nature, a 

special case is the circular orbit, considered as an ellipse of 

zero eccentricity. This consideration simplifies the 

calculations to the case of circular orbit. Formula for 

velocity of a given body in a circular orbit around a central 

mass [3] is given by 

 

,2
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GM
v                                    (1) 

 

where vo is the orbital velocity of body, being G the 

Newtonian constant of gravitation, M the mass of a massive 

body (as that of the Sun) and r is the distance from the 

center of mass where M exists. Applying equivalence with 

the accelerated circular motion, hence  
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where a is the acceleration of the given body. According to 

the Newton’s second law, undergone force is defined as the 

mass m of given body by its acceleration, given by: 
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According to this formulation, GM is dependent of the 

acceleration and geometrically related to the inverse of the 

square of the distance. 

Later, in 1796 Laplace attempted to model gravity as 

some kind of radiation field or fluid [4]. Thus, since the 19
th

 

century, gravity has been usually explained in terms of a 

“field model”, rather than undergone forces by the bodies 

as result of the experienced impulse given by the 

acceleration of their masses, in accordance to the Newton’s 

second law. 

Einstein’s General Theory of Relativity (GTR) [5] also 

considers gravity due to a gravitational field which causes 
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attractive forces between the bodies, where that field is 

determined as the solution of Einstein’s field equations. 

These equations are dependent on the distribution of 

matter and energy in a region of space (described by the 

stress-energy tensor), unlike Newtonian gravity, which is 

dependent only on the distribution of matter (described by 

the quantity of matter in a given volume). 

Curvature of space-time is one of the main 

consequences of GTR, which states that gravity is the effect 

or consequence of the curved geometry of space-time. GTR 

deducts the equivalence principle (introduced by Einstein in 

1907) [6] assumes the complete physical equivalence of a 

gravitational field and a corresponding accelerated frame of 

reference. 

From this principle, Einstein concluded that free-fall is 

actually inertial motion. In this way, gravitational “force” 

as experienced locally while standing on a massive body is 

actually the same as the non-inertial (also called pseudo-

force) experienced by an observer in a non-inertial 

(accelerated) frame of reference. 

On the other hand, in 1922 Alexander Friedmann 

derived his Friedmann equations [7] by inserting the metric 

for a homogeneous and isotropic universe into Einstein’s 

field equations for a fluid with a given density and pressure, 

showing that the universe might expand at a rate calculable 

by the equations (Georges Lemaître independently found a 

similar solution in 1927). This idea of an expanding 

universe would eventually lead to the Big Bang model. 

In 1929 Edwin Hubble from previous and his own 

observations of distant galaxies where redshift increases 

with distance deducted the expansion of the universe [8]. 

The observed velocity of distant galaxies, taken together 

with the Einstein’s cosmological principle [9] 

(homogeneity and isotropy structure of the universe), was 

the first observational support for the Big Bang model from 

which is considered that time and the universe began from 

the Big Bang (when time equals zero) [10]. According to 

the observations of the Supernova Legacy Survey (SNLS) 

[11], it is considered that the universe is currently in 

accelerated expansion [12]. 

Furthermore, in 1959 Robert H. Dike first proposed to 

make a distinction between the wake and the strong 

equivalence principle (SEP) [13] which suggests that 

gravitation has a nature purely geometric (it means that the 

metric defines the effects of the gravity) and it does not 

contain any field associated with it. In such a concept, the 

fields themselves would represent the curvature of space-

time. Nevertheless, nature of gravity has not been enough 

clarified and some theories and hypothesis have been 

developed to explain its nature. 

A previous work [14] considers a hypothetical scenario 

where gravity results as an inertial effect of combine both, 

curvature of space-time (for instance, as a spherical surface 

distorted by the high concentration of matter, as proposed 

by Einstein) [5] and its acceleration from a central origin as 

a non-inertial frame of reference that follows the 

accelerated expansion of the universe. Relating escape 

velocity when it tends to the speed of light results an 

equivalent expression to the so-called “concise form of 

Einstein’s field equation”, but it derived from an inertial 

effect where “field of gravity” is not involved. In this 

scenario, action-at-a-distance for gravity is not due to any 

kind of localized field, but is present when one or more 

bodies share a given common region on a spherical surface 

in accelerated dilation, and its distortion (if any) deflects 

the moving bodies, resulting in a different movement of 

them that is perceived as a “direct interaction” [15]. Here is 

shown that geometry and dynamics of such a scenario is 

also consistent with the Friedmann equations and 

Inflationary cosmology theory.  

 

 

II. THE NON-INERTIAL FRAME IN RADIAL 

ACCELERATION AND THE EFFECT OF 

GRAVITY REVISITED 
 

Einstein’s equivalence principle considers that a 

gravitational field is equivalent to an accelerated frame of 

reference. Here is considered that such an accelerated frame 

of reference corresponds to the accelerated expansion of the 

universe. Non-inertial frame of reference is traditionally 

derived by a coordinate transformation. Thus, in order to 

derive the undergone effect on a non-inertial frame of 

reference, let us consider a given body in circular motion 

with constant velocity v and radius r circumgyrating around 

a central point O on the x and y axes. Its position vector 

[16] is given by 

 

' ,tr v t                                     (4) 

 

where vt is the tangential velocity of the given body and t is 

the time. When such a body in circular motion is also 

uniformly accelerated towards the vertical direction (it is, 

along the z-axis), then its position vector is given by 
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where v0 is the initial velocity of the given body and a is its 

acceleration along that z-axis. Having that relative velocity 

is the velocity of a body (or a frame of reference) with 

respect to other; it is related only in systems of two bodies 

(or two frames of reference). Thus, for a fixed observer is 

given by 
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where its components in a three-dimensional frame of 

reference are given by: 
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Solving (7), equation of its trajectory as it is seen by a fixed 

observer on the given body, hence: 

,

2

2
1

0 





















tt v

r
a

v

r
vz                        (8) 

 

which is a parabola. When the acceleration starts from the 

rest, initial velocity equals zero and expression (8) 

becomes: 
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We can generalize expression (9) for a spherical scenario 

extending vertical acceleration from along only one z-axis 

to several radial “z-axes” starting all of them from a 

common central point. Then, in a homogeneous 

acceleration, a sphere (by simplicity) in accelerated dilation 

is formed. Equation of the radial motion will be equivalent 

to the radius R of the formed sphere, hence: 
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In order to derive the scalar curvature of a spherical surface 

in accelerated dilation, we can write expression (10) in 

terms of the resultant area. Surface of the formed figure can 

be derived by multiplying expression (10) by 4R, hence: 
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Furthermore, Gaussian curvature of a surface is the real 

number K(P0) which measures the intrinsic curvature in 

each regular point P0 of such a surface [17]. This Gaussian 

curvature in general varies from a point to other of the 

surface and it is related with the main curvatures of each 

point (k1 and k2) through the expression K = k1k2, where to 

the spherical surface of radius r (2-sphere), Gaussian 

curvature is the same for all of its points, defined as: 
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Thus, finding out the curvature for a given section of the 

distorted spherical surface from (11) and applying equation 

(2), yields: 

 

   

2 2

2 22 2 2 2 2

1 4 4
.

2 4 2 4t t

a r GMa

r v R v R

 

 
              (13) 

 

According to the cosmological principle [9], space-time 

could be considered as a spherical surface (by simplicity) 

currently in accelerated dilation, where its area in S
3
 given 

by A = 4R
2
, could be distorted by a massive body M that 

exerts a force F per unit area on such a surface while R 

accelerated increases [18]; where for the case of sphere is 

giving by: 
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where T’, is the “stress tensor” and indexes , run 

through 1, 2, 3. Expression (14) represents distortion of the 

spherical surface due to the pressure as force per unit area. 

Stress tensor could be considered as an approximated 

equivalent to the stress-energy tensor (T,) considered in 

GTR [19]. Nevertheless, stress tensor is a scalar magnitude 

and no energy part (by a field) is involved, but the 

acceleration of the frame of reference acts as source of the 

dynamics. Thus, substituting stress tensor from expression 

(14) in expression (13), yields: 
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In two dimensions (for a given area), scalar curvature is 

exactly twice the Gaussian curvature [20]. For an embedded 

surface in Euclidean space, this means that for expression 

(15), yields: 
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where 1, 2 are the principal radii of the surface. For 

example, scalar curvature in S
3
 of a sphere with radius r is 

equal to 2/r
2
. The 2-dimensional Riemann tensor has only 

one independent component and it can be expressed in 

terms of scalar curvature and metric area form. In any 

coordinate system, one thus has: 
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Now considering that each point on the radial w-axis that 

forms the surface has its own z-axis (orthogonal to the x, y-

axes), then we can extend expression (16) to a four-

dimensional frame of reference in function of (w, x, y, z), 

and expressing it in Riemann tensor terms (applying tensor 

Einstein’s notation), hence: 
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where indexes , run through 1, 2, 3, 4. Expression (18) 

extended to a four-dimensional frame of reference is related 

by the tangential velocity of the given body. Nevertheless, 
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we can attempt to derive an approximation to the relativistic 

expression related by the speed of light [5] by considering a 

given body orbiting around a center of mass [21], where 

radius from the center of mass is tending to the 

Schwarzschild radius [22] (approximately of 2.95 Km for 

the Sun). Equivalence between orbital velocity and escape 

velocity [23], where escape velocity is tending to the speed 

of light is given by: 
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           (19) 

 

where ro is the distance from the center of mass, being re 

the escape radius, rS is the Schwarzschild radius, vo is the 

orbital velocity, ve is the escape velocity and c is the speed 

of light in vacuum. Then, replacing expression (19) in (18), 

we can write as: 
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where indexes , run through 1, 2, 3, 4. Expression (20) 

describes scalar curvature of a spherical surface in 

accelerated dilation when is distorted by the presence of 

high concentration of matter on such a surface, related by 

the orbital velocity of a given body along the curvature of 

space-time in accelerated dilation. Thus, the body should 

undergo an “induced” motion by the deviation along the 

distorted surface experiencing as inertial force acting upon 

the given body (which could apparent an attractive force 

between the bodies). Replacing speed of light from 

expressions (19) in expression (18), hence: 
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where G is the Einstein’s tensor and indexes , run 

through 1, 2, 3, 4. This is an equivalent expression to the 

so-called “concise form of Einstein’s field equation” [5, 9], 

but it derived from a non-relativistic way which does not 

consider energy from a “field of gravity”. 

In the same way, from the equivalences (2) and (19), 

equivalence of expression (10) is defined as: 
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which is a non-relativistic expression equivalent to the 

Schwarzschild metric [23]. Applying equivalence between 

matter and density of matter (m = Vol) in equation (13), 

for the spherical surface, yields: 
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III. THE FRIEDMANN EQUATIONS AND THE 

DYNAMICS OF THE UNIVERSE 
 

In the early twentieth century, redshift of some galaxies 

was discovered, being associated to the Doppler effect for 

light [24]. Doppler effect describes the change in frequency 

of a wave for an observer moving relative to the wave 

source [25]. Redshift happens when light or other 

electromagnetic radiation from an object is increased in 

wavelength, which can be done due to the motion of the 

light source with respect to other objects. Based on 

wavelength, redshift is defined as: 
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                                   (24) 

 

where z is the redshift, λr is the wavelength of the receiver 

relative to the medium; positive if the receiver is moving 

towards the source (and negative in the other direction) and 

λe is the wavelength of the emitter. 

Discovery of the linear relationship between redshift 

and distance, coupled with a supposed linear relationship 

between recessional velocity and redshift, allowed Hubble 

to combine his measurements of galaxy distances with the 

previous measurements of the redshifts associated with the 

galaxies, proposing a rough proportionality between 

redshift of an object and its distance [9], given by: 
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and then, 
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where v is the recessional velocity (v = dD/dt), H0 is 

Hubble’s constant and corresponds to the value of H for the 

present (often termed the Hubble parameter which is a 

value that is time dependent, being the reciprocal of H0 the 

Hubble time), D is the proper distance from the galaxy to 

the observer, measured in mega parsecs (Mpc), and c is the 

speed of light. Thus, Hubble’s Law is defined as: 

 

0 .v H D                                 (27) 

 

Considering the proper velocity (called peculiar velocity) of 

a galaxy through the space by the effect of gravity, then the 

velocity-distance relation is written as: 



The Friedmann equations and Inflationary cosmology in the effect of gravity hypothesis 

Lat. Am. J. Phys. Educ. Vol.8, No. 4, Dec. 2014 4315-5 http://www.lajpe.org 

 

 

.v HD V                              (28) 

 

Value of H can be calculated by: 
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where h = H0/100. 

The parameter used by Friedmann is known as the scale 

factor which can be considered as a scale invariant form of 

the proportionality constant of Hubble’s Law. In the 

Friedmann equations, redshift is defined as: 
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where anow is the scale factor for now and athen is the scale 

factor for then, and R(t) is the “radius” of the universe, or 

more precisely, its scale factor. Then, relationship with the 

Hubble’s constant is given by: 
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being the Hubble’s constant given by: 

 

.
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H
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Furthermore, dynamics and geometry described by the 

Friedmann equations are “compatible” with the solution 

given by the classical mechanics to describe dynamics of a 

homogeneous and isotropic spherical surface in accelerated 

dilation. Then, total energy of the system is given by: 
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where Ec is kinetic energy and Ep is potential energy. For a 

gravitational system, total energy of the system is given as: 
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Applying equivalence between matter and density of matter 

(multiplied by volume), for a spherical surface, yields: 
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Then, multiplying (36) by 2/mR
2
 and reordering, hence: 
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Furthermore, in a homogeneous and isotropic spherical 

surface, according to (12), curvature is given by: 
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where K is the Gaussian curvature. Multiplying this 

expression by 2mv
2
, yields: 
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where sign is negative by convenience. 

Rewriting and considering that velocity is tending to the 

speed of light, hence: 
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Replacing (40) in (37), yields: 
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and according to the expression (32), we can write as: 
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and for acceleration, hence: 
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where sign is negative by convenience, which comes from 

the derivative of , given by d/dt  = -3H( + p). 

Equivalence of density of matter and pressure [26] 

according to (14) is given by: 
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where p denotes the pressure. Replacing  in one of the 

terms of (43), yields: 
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Equations (42) and (45) are non-relativistic expressions 

analogous to the Friedmann equations without a 

cosmological constant. In the Friedmann equations, 

geometry of the universe also depends of the curvature, 

where K = +1 for a closed universe, −1 for an open 

universe, or 0 for a flat Friedmann universe. 

Thus, regardless of the model used (K = ±1, 0), the scale 

factor vanishes at some time t = 0, and the matter density at 

that time becomes infinite. It can also be shown that at that 

time, the curvature tensor Rμ goes to infinity as well. That 

is why the point t = 0 is known as the point of the initial 

cosmological singularity (Big Bang). 

In a closed universe with p > −/3, there will be some 

point in the expansion when the term 1/a
2
 in (42) becomes 

equal to 8πG/. Thereafter, the scale constant a decreases, 

and it vanishes at some time tc (Big Crunch) [27]. On the 

other hand, an open or flat universe will continue to expand 

forever. 

An expression for the critical density is found from the 

Friedmann equations by assuming cosmological constant to 

be zero (as it is for all basic Friedmann universes) and 

setting the normalized spatial curvature, K, equal to zero. 

This consideration simplifies the calculations. When the 

substitutions are applied to the first of the Friedmann 

equations (42), yields 
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where c is the critical density. In addition, the density 

parameter Ω is defined as the ratio of the actual (or 

observed) density to the critical density of the Friedmann 

universe. The ratio of the actual density of the universe to 

the critical density (useful for comparing different 

cosmological models) is given by the quantity: 
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Evolution of the scale factor a(t) for three different versions 

of the Friedmann hot universe theory can be closed, open or  

flat. The relation between the actual density and the critical 

density determines the overall geometry of the universe. 

When Ω is larger than unity, the space sections of the 

universe are closed and the universe will eventually stop 

expanding, and then collapse. When Ω is less than unity, 

they are open and the universe expands forever. The 

observational data imply that Ω = 1.01 ± 0.02 [27]. 

 

 

IV. INFLATIONARY COSMOLOGY AND THE 

DENSITY OF MATTER 
 

In 1980 Alan Guth proposed that the universe could drive 

cosmic inflation in the very early universe [28], resulted in 

an enormous and exponential expansion of the universe 

slightly after the Big Bang. This expansion is an essential 

feature of most current models of the Big Bang, providing a 

solution to the horizon and flatness problems. 

Considering that the universe began its expansion in the 

vacuum then density for vacuum v is constant in the 

beginning, and Friedmann equation (42) becomes: 
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Having the property of e, given by: 
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we can write as: 
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and then: 
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This analogous equation to the Inflationary cosmology has 

an exponential growing with H as constant which means 

inflation in the period while v remained constant. The 

inflationary period finished when the quantity of matter 

density changed. 

 

 

V. CONCLUSIONS 
 

This paper follows the hypothetical alternative physical 

explanation for a celebrated effect, the gravity (which is not 

merely a reformulation of the previous knowledge). 

Nevertheless, this hypothesis is based on an inertial 

effect which is explained by the classical mechanics and 

also considers some deductions from the main theories 

about gravity, as curvature of space-time and the 

equivalence principle regarding to the comparison of 

gravity and a non-inertial frame of reference, which are 

considered in GTR. 

Then, gravity is related with the curvature of space-time 

(for instance, distorted by a massive body) and its 

considered accelerated expansion, where both together 

would contribute to produce an inertial effect experienced 

as a motion due to the inertial force (which could be 

undergone like the effect of gravity) by a given body 

looking for the equilibrium on the curved surface in 

accelerated dilation. 

An approximated equivalent expression with the 

“concise form of Einstein’s field equation” is derived 

mainly from classical mechanics concepts by consider 

space-time as a non-inertial frame of reference, where 

derived “stress tensor” is also an approximated equivalent 
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with the stress-energy tensor of GTR, but those without the 

concept of mutual attractive forces of gravity exerted as a 

“field of gravity” to produce effect of gravity. 

This scenario is also applied to derive the Friedmann 

equations without a cosmological constant, being consistent 

with the known predictions about evolution of the universe 

and Inflationary cosmology theory. 

Regarding to the education, main Newtonian and 

relativistic concepts and main principles for gravity are 

revisited. It is showed the possibility to apply the current 

knowledge in order to propose alternative explanations of 

the observed natural phenomena. As a possible 

interpretation, we represent space-time as a dynamics 

surface in accelerated dilation capable to be distorted by 

high concentrations of matter, in order to apply classical 

concepts also to attempt explain some effects of nature that 

are traditionally explained by the relativistic theories. 
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