A further look at capacitors in complex arrangements

Kenneth V. Cartwright ${ }^{1}$, Patrick Russell ${ }^{1}$ and Edit J. Kaminsky ${ }^{2}$
${ }^{\text {I }}$ School of Mathematics, Physics, and Technology, College of The Bahamas, P.O. Box N4912, Nassau, Bahamas.
${ }^{2}$ Department of Electrical Engineering, EN 846 Lakefront Campus, University of New Orleans, New Orleans, LA 70148, USA.
E-mail: kvcartwright@yahoo.com

(Received 1 July 2014, accepted 26 November 2014)

Abstract

Recently, a previous contributor showed how the delta-wye conversion may be applied to find the equivalent capacitance of five capacitors arranged in a bridge configuration. In fact, that contributor gave an algorithm for this purpose which showed that the equivalent capacitance depends upon all five capacitors. However, in this paper, we point out that there is a special case where the equivalent capacitance does not depend upon one of the five capacitors.

Keywords: Combination of capacitors, Bridge circuits, Delta-wye and wye-delta conversions.

Resumen

Un contribuidor anterior recientemente demostró cómo usar la conversión Delta-Estrella para encontrar la capacitancia equivalente de cinco capacitores en una configuración de puente. De hecho, ese contribuidor presentó un algoritmo para este propósito y mostró que la capacitancia equivalente depende de los cinco capacitores. Sin embargo, en este artículo mostramos que existe un caso especial para el cual la capacitancia equivalente no depende de uno de los cinco capacitores.

Palabras Clave: Combinaciones de capacitores, Circuitos puente, Conversiones delta-estrella y estrella-delta.
PACS: 84.32.Tt, 84.30.BV, 84.32.-y, 01.40.Fk.
ISSN 1870-9095

I. INTRODUCTION

In [1], Rizhov investigated the problem of finding the equivalent capacitance C_{0} (with respect to terminals T_{3} and T_{4}) of five capacitors connected in a bridge configuration as shown in Figure 1.

FIGURE 1. Five capacitors connected in a bridge configuration.

His approach was to arrive at a system of seven unknowns, which were solved for one particular case. However, as pointed out by Atkin [2], this method "did not reveal how a general solution could be obtained, giving C_{0} as a function of the five capacitances". On the other hand, Atkin [2] showed how the delta-wye conversion may be applied for this very purpose. (Incidentally, the use of delta-wye and Lat. Am. J. Phys. Educ. Vol.8, No. 4, Dec. 2014

II. REVIEW OF THE METHOD DESCRIBED BY ATKIN

In Atkin's method [2], the delta configuration of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{5} in Figure 1 is first converted to a wye circuit, given by $\mathrm{C}_{6}, \mathrm{C}_{7}$ and C_{8} of Figure 2i, where:
In fact, there is no hint at all in [1] or [2] that the equivalent capacitance might not depend upon C_{5} It is the purpose of this paper to demonstrate this fact in two ways: by using i the algorithm given by Atkin [2] and ii the concept of a balanced bridge circuit.

$$
\begin{align*}
& \mathrm{C}_{6}=\mathrm{C}_{1}+\mathrm{C}_{5}+\frac{\mathrm{C}_{1} \mathrm{C}_{5}}{\mathrm{C}_{2}} \tag{1a}\\
& \mathrm{C}_{7}=\mathrm{C}_{2}+\mathrm{C}_{5}+\frac{\mathrm{C}_{2} \mathrm{C}_{5}}{\mathrm{C}_{1}} \tag{1b}
\end{align*}
$$

and:

$$
\begin{equation*}
\mathrm{C}_{8}=\mathrm{C}_{1}+\mathrm{C}_{2}+\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{5}} \tag{1c}
\end{equation*}
$$

(i)

(iii)

FIGURE 2. Simplification of Figure 1 using a delta-wye transformation.

Comparing Figure 2 i with Figure 2 ii shows that C_{9} is the series combination of C_{3} and C_{6} and C_{10} is the series combination of C_{7} and C_{4} Hence:

$$
\begin{equation*}
\mathrm{C}_{9}=\frac{\mathrm{C}_{3} \mathrm{C}_{6}}{\mathrm{C}_{3}+\mathrm{C}_{6}} \tag{2a}
\end{equation*}
$$

and:

$$
\begin{equation*}
\mathrm{C}_{10}=\frac{\mathrm{C}_{4} \mathrm{C}_{7}}{\mathrm{C}_{4}+\mathrm{C}_{7}} \tag{2b}
\end{equation*}
$$

Furthermore, comparing Figure 2ii with Figure 2iii shows that C_{11} is the parallel combination of C_{9} and C_{10} Hence:

$$
\begin{equation*}
\mathrm{C}_{11}=\mathrm{C}_{9}+\mathrm{C}_{10} . \tag{3}
\end{equation*}
$$

Finally, from Figure 2iii, it is clear that C_{0} is the series combination of C_{8} and C_{11}
where $\mathrm{K}=\left(\frac{\mathrm{C}_{1}+\mathrm{C}_{2}}{\mathrm{C}_{1} \mathrm{C}_{2}}\right) \mathrm{C}_{5}+1$, and $\mathrm{C}=\frac{\mathrm{C}_{3}}{\mathrm{C}_{1}}$.
Similarly, from Equations 2 b and 1 b :

$$
\begin{align*}
\mathrm{C}_{10} & =\frac{\mathrm{C}_{4}}{1+\frac{\mathrm{C}_{4}}{\mathrm{C}_{7}}}=\frac{\mathrm{C}_{4}}{1+\frac{\mathrm{C}_{4}}{\mathrm{C}_{2}+\mathrm{C}_{5}+\frac{\mathrm{C}_{2} \mathrm{C}_{5}}{\mathrm{C}_{1}}}}, \\
& =\frac{\mathrm{C}_{4}}{1+\frac{\mathrm{C}_{4} / \mathrm{C}_{2}}{1+\frac{\mathrm{C}_{5}}{\mathrm{C}_{2}}+\frac{\mathrm{C}_{5}}{\mathrm{C}_{1}}}}, \tag{6}\\
& =\frac{\mathrm{C}_{4}}{1+\frac{\mathrm{C}}{\mathrm{~K}}} \\
& =\frac{\mathrm{KC}}{\mathrm{~K}+\mathrm{C}}
\end{align*}
$$

With:

$$
\mathrm{C}=\frac{\mathrm{C}_{4}}{\mathrm{C}_{2}} .
$$

Substituting Equations 5 and 6 into Equation 3 gives:

$$
\begin{equation*}
\mathrm{C}_{11}=\frac{\mathrm{K}}{\mathrm{~K}+\mathrm{C}}\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right) . \tag{7}
\end{equation*}
$$

Furthermore, Equation (1c) can be written as:

$$
\begin{gather*}
\mathrm{C}_{8}=\left(\left(\frac{\mathrm{C}_{1}+\mathrm{C}_{2}}{\mathrm{C}_{1} \mathrm{C}_{2}}\right) \mathrm{C}_{5}+1\right) \frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{5}}, \tag{8}\\
=\mathrm{K} \frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{5}} .
\end{gather*}
$$

Substituting Equation (7) and Equation (8) into Equation (4) gives:

$$
\begin{align*}
\mathrm{C}_{0} & =\frac{\mathrm{K}^{2} \frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{5}} \frac{1}{\mathrm{~K}+\mathrm{C}}\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right)}{\mathrm{K} \frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{5}}+\frac{\mathrm{K}}{\mathrm{~K}+\mathrm{C}}\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right)}, \\
& =\frac{\mathrm{K} \frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{5}} \frac{1}{\mathrm{~K}+\mathrm{C}}\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right)}{\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{5}}+\frac{1}{\mathrm{~K}+\mathrm{C}}\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right)} . \tag{9}
\end{align*}
$$

Further simplification of Equation (9) gives:

$$
\begin{align*}
\mathrm{C}_{0} & =\frac{\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{5}} \mathrm{~K}\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right)}{\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{5}}(\mathrm{~K}+\mathrm{C})+\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right)}, \\
& =\frac{\mathrm{K}\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right)}{\mathrm{K}+\mathrm{C}+\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right) \frac{\mathrm{C}_{5}}{\mathrm{C}_{1} \mathrm{C}_{2}}}, \\
& =\frac{\mathrm{K}\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right)}{1+\mathrm{C}+\left(\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}\right) \frac{\mathrm{C}_{5}}{\mathrm{C}_{1} \mathrm{C}_{2}}}, \tag{10}\\
& =\frac{\mathrm{K}\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right)}{(1+\mathrm{C})\left[1+\left(\frac{\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}}{1+\mathrm{C}}\right) \frac{\mathrm{C}_{5}}{\mathrm{C}_{1} \mathrm{C}_{2}}\right]}, \\
& =\frac{\mathrm{K}\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right)}{(1+\mathrm{C})\left[1+\left(\frac{\mathrm{C}_{1}(1+\mathrm{C})+\mathrm{C}_{2}(1+\mathrm{C})}{1+\mathrm{C}}\right) \frac{\mathrm{C}_{5}}{\mathrm{C}_{1} \mathrm{C}_{2}}\right]} .
\end{align*}
$$

Note the underscore indicates a phasor voltage or current.
If we replace Z_{5} with an open circuit, i.e., remove Z_{5} the total impedance will be given by the parallel combination of $Z_{1}+Z_{3}$ and $Z_{2}+Z_{4}$ giving rise to Equation 11 .

Furthermore, to ensure that the bridge is balanced, it is easily shown that $\frac{Z_{1}}{Z_{3}}=\frac{Z_{2}}{Z_{4}}$, or equivalently, $\frac{C_{3}}{C_{1}}=\frac{C_{4}}{C_{2}}$.

Kenneth V. Cartwright, Patrick Russell and Edit J. Kaminsky
To see this, note that the current through Z_{5} is zero when the voltage across Z_{5} is zero, i.e.:

$$
\begin{equation*}
\underline{\mathrm{V}}_{5}=\underline{\mathrm{V}}_{3}-\underline{\mathrm{V}}_{4}=0 . \tag{12}
\end{equation*}
$$

Furthermore, when $\underline{I}_{5}=0$, we apply the voltage divider rule to obtain:

$$
\begin{equation*}
\underline{V}_{3}=\frac{\mathrm{Z}_{3}}{\mathrm{Z}_{1}+\mathrm{Z}_{3}} \underline{E}=\frac{1}{1+\mathrm{Z}_{1} / \mathrm{Z}_{3}} \underline{E} \tag{13}
\end{equation*}
$$

and:

$$
\begin{equation*}
\underline{V}_{4}=\frac{\mathrm{Z}_{4}}{\mathrm{Z}_{2}+\mathrm{Z}_{4}} \underline{E}=\frac{1}{1+\mathrm{Z}_{4} / \mathrm{Z}_{2}} \underline{E} \tag{14}
\end{equation*}
$$

Substituting Equation 13 and 14 into Equation 12 gives the desired result:

$$
\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{3}}=\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{4}}
$$

IV. CONCLUSIONS

We have shown that the equivalent capacitance of five capacitors connected in a bridge configuration does not depend upon one of the capacitors for a special case. We showed this by using the algorithm provided by Atkin and also by using the concept of a balanced bridge.

REFERENCES

[1] Rizhov, A., Computation of capacitors in complex arrangements, Physics Education 46, 551-553 (2011).
[2] Atkin, K., An alternative approach to capacitors in complex arrangements, Physics Education 47, 326-328 (2012).
[3] Robbins, A. H. \& Miller, W. C., Circuit analysis: theory and practice, 3rd Ed. (Thomson Delmar Learning, New York, 2004).
[4] Boylestad, R. L., Introductory Circuit Analysis, 9th Ed. (Prentice Hall, New Jersey, USA, 2000).

