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Abstract 
A standard problem in introductory physics is to determine the peak height and flight time of a ball projected at a 

specified initial speed without drag. Here a ball is instead launched vertically upward in the presence of quadratic air 

resistance with a fixed initial kinetic energy so that its launch speed depends on the mass of the ball, as does the quadratic 

drag force. The optimal radius of ball to reach either the greatest peak height or flight time is calculated. 
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Resumen 
Un problema estándar en física introductoria es determinar la altura máxima y el tiempo de vuelo de una pelota 

proyectada a una velocidad inicial especificada sin arrastre. Aquí, en cambio, se lanza una pelota verticalmente hacia 

arriba en presencia de una resistencia cuadrática del aire con una energía cinética inicial fija, de modo que su velocidad 

de lanzamiento depende de la masa de la pelota, al igual que la fuerza de arrastre cuadrática. Se calcula el radio óptimo 

de la bola para alcanzar la mayor altura máxima o el tiempo de vuelo. 
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I. INTRODUCTION 
 

If a ball is launched with a specified kinetic energy, its initial 

speed depends on the mass of the ball. A bowling ball has a 

large mass and thus a small launch speed, but it is only 

slightly affected by air resistance. A ping-pong ball would be 

launched at a far higher speed to have the same kinetic 

energy, but it also will only reach a small height because air 

drag takes a large toll. This reasoning suggests that for any 

given launch energy, there is an optimal ball mass (or radius) 

to reach the greatest height. One might likewise expect a 

(different) optimal mass to maximize the total flight time of 

the ball up and back down. 

 

 

II. MOTION UNDER GRAVITY WITH 

QUADRATIC DRAG 
 

Consider a ball of mass m launched vertically upward 

(defining the +y axis) in a uniform downward gravitational 

field of magnitude g, neglecting buoyancy and the added 

mass term [1]. The decrease in its speed  with time t as it 

rises upward is described by Newton’s second law as 
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where CD is the drag coefficient, A is the cross-sectional area 

of the ball, and air is the atmospheric density [2]. The chain 

rule implies that 

 

 21

2

d dy d d d
m m m m

dt dt dy dy dy

  
 

 
    

 
 (2) 

 

so that Eq. (1) becomes 
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where 
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2
K m  is the kinetic energy of the ball. Equation 

(3) integrates as 
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where K0 is the (fixed) launch kinetic energy at y = 0, and a 

characteristic energy is 
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in terms of the radius R and average density ball of the ball. 

Here B is a constant with units of J/m4. The ball attains its 

peak height y = H when K = 0 so that 
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according to Eqs. (4) and (5). Introducing the dimensionless 

energy ratio 
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where 0 is the launch speed of the ball, Eq. (6) becomes 
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2
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As a check, the drag force in Eq. (1) becomes zero in the limit 

as D 0C  , in which case 0X   according to Eq. (7). But 

ln(1 )X X   in that limit, so that Eq. (8) reduces to the 

familiar drag-free result 2
0 0 / 2H g . Equation (8) is 

graphed in Fig. 1. As drag increases, X increases and the peak 

height H correspondingly decreases. 

 

 

 
FIGURE 1. Ratio of peak heights in the presence and absence of air 

drag as a function of the dimensionless ratio of energies defined in 

Eq. (7). 

 

 

 

III. MAXIMIZING THE PEAK HEIGHT 
 

In the presence of drag, the peak height is optimized by 

setting dH/dR = 0 in Eq. (6) to obtain 
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This equation can be rewritten as 

 

  1exp 4 1 1X X    
 

 (10) 

 

which can be solved by iteration. A starting value is obtained 

by assuming X is large to obtain 

 

  exp 4 1 54X    . (11) 

 

Substitute this value back into the right-hand side of Eq. (10) 

to obtain the improved value 50X   (which can be further 

iterated if increased accuracy is desired, but is already within 

about 1% of the exact value of opt 49.435X   that can be 

obtained using the Lambert W function [3]). This value can 

be substituted into Eqs. (7) and (8) to find the optimized 

radius and peak height, respectively, of the ball. Specifically, 
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for which opt 0/ 7.93%H H   in accord with Fig. 1. 

 

 

 

IV. MAXIMIZING THE FLIGHT TIME 
 

Equation (1) for the upward motion of the ball can be 

rewritten as 
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using Eq. (7). Equation (13) integrates as 
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for the initial condition  = 0 at t = 0. If the drag is weak, 

such that 1X , then Eq. (14) reduces to the familiar 

kinematic equation 
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which decreases linearly with time. On the other hand, when 

the drag is strong, the ball’s velocity decreases nonlinearly. 

For example, when opt 49.435X X   as found after Eq. 

(11), a graph of Eq. (14) is presented in Fig. 2 for the range 

of values of /0 decreasing from 1 to 0. 

The ball reaches its maximum height when  = 0 at a time 

of 
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according to Eq. (14). In the drag-free limit as 0X  , this 

upward flight time becomes 0 0 /t g  as expected. 
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FIGURE 2. Ratio of the velocity of the ball to its launch velocity as 

a function of the dimensionless time after launch for X = X
opt

. 

 

 

An analytical solution for the ascent of the ball as a function 

of time can be obtained by replacing  with dy/dt in Eq. (14) 

and integrating to get 
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for the initial condition y = 0 at t = 0. In the drag-free limit as 

0X  , the cosine term is approximately 1 and the square 

root term in front of it is approximately 1 / 2X , so that 
2

0 0 / 2y g  as expected. Equation (17) scaled by the peak 

height H from Eq. (8) is graphed in the rising portion of Fig. 

3 for the same value of opt 49.435X X   as used in Fig. 2. 

 

 
FIGURE 3. Ratio of the height of the ball to its peak height as a 

function of the dimensionless time after launch for X = X
opt

. 

 

For the downward motion of the ball back to its launch point, 

it is convenient to redefine the y-axis with the origin at the 

maximum height and downward positive, so that Eq. (1) 

becomes 
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and thus Eq. (13) becomes 
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where 0 remains the launch speed. Restarting the timer so 

that t = 0 refers to the topmost point of the ball’s trajectory 

where  = 0, Eq. (19) integrates as 
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If the drag is weak, such that 1X , then Eq. (20) becomes 

gt   which increases linearly with time as expected. On 

the other hand, in the presence of significant drag, the ball’s 

speed asymptotically approaches the terminal value 

0T X   if it falls far enough [4]. The negative of Eq. 

(20) shifted horizontally to the right is graphed in Fig. 2 over 

the vertical range of values from 0 to T 0/   for 

opt 49.435X X  . 

Replacing  with dy/dt in Eq. (20) and integrating, the 

descent of the ball as a function of time is described by 
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for the initial condition y = 0 at t = 0. The descending portion 

of the graph in Fig. 3 plots this expression ratioed to H, 

flipped over vertically, and shifted horizontally to the right 

for opt 49.435X X  . Equating Eqs. (8) and (21), the 

downward flight time of the ball back to its launch point is 
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which again reduces to 0 0 /t g  in the drag-free limit as 

0X  . The total up and down flight time is obtained by 

adding together Eqs. (16) and (22) to get 
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where the total flight time is 0 02 /T g  in the absence of 

drag. Their ratio is plotted in Fig. 4, showing that the flight 

time decreases monotonically with increasing drag. 

Although the ball’s speed (at any given height after launch) 

is smaller in the presence of drag than in its absence, the ball 

subject to drag also climbs up to a smaller peak height. The 

second effect dominates over the first effect for quadratic 
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drag, so that in a race between two balls simultaneously 

launched upward with the same starting speed, one inside an 

evacuated tube and one in air, the one in air would return to 

the ground first [5]. 

 

 
FIGURE 4. Ratio of flight times in the presence and absence of air 

drag as a function of the dimensionless ratio of energies defined in 

Eq. (7). 

 

 

Using Eqs. (5), (7), and (23), the total flight time is written in 

terms of the radius of the ball as 
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which is optimized by setting dT/dR = 0 to obtain 
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whose numerical solution is opt 88.0X    which can be 

substituted into Eq. (12) to find the optimal radius with 

corresponding flight time opt 0/ 23.5%T T   in agreement 

with Fig. 4. 

 

 

 

V. APPLICATIONS 
 

Suppose one uses a spring-loaded ball launcher with 100% 

conversion efficiency from elastic energy into kinetic energy 

so that 
21

0 2
K kx  where k is the spring constant and x is the 

initial compression of the spring. Then Eq. (12) predicts the 

radius of ball that will achieve the largest peak height for this 

launcher. 

 

 
FIGURE 5. Peak height attained by the ball as a function of its 

radius for the parameters specified in the text. 

 

 

For example, suppose the drag coefficient is CD = 0.5, the air 

density is air = 1.3 kg/m3, the average density of the ball is 

ball = 1000 kg/m3, the gravitational field strength is g = 9.8 

m/s2, and the launcher imparts an initial kinetic energy of K0 

= 10 kJ (using say a spring with k = 20 kN/m and x = 1 m). 

Then Fig. 5 plots the peak height of the ball as a function of 

its radius from Eqs. (5) and (6). The maximum is Hopt = 320 

m when Ropt = 3.9 cm. 

If a ship were to launch a distress flare, one might wish to 

instead maximize its flight time for a given launch energy, so 

as to give it the longest chance of being seen. Using the same 

parameters as above, Fig. 6 graphs the flight time as a 

function of the radius. The maximum is Topt = 17 s at a 

slightly different radius (than in Fig. 5) of Ropt = 3.4 cm, 

according to the final paragraph of Sec. IV. 

 

 
FIGURE 6. Total flight time of the ball as a function of its radius 

for the parameters specified in the text. 

 

 

VI. CONCLUSION 
 

This article has explored the properties of spheres launched 

vertically with a given initial kinetic energy. Numerical 
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solution determines the optimal ball radius (or mass) to reach 

the greatest height or flight time, depending on the strength 

of the quadratic air drag. 
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