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Abstract

This paper proposes an alternative theoretical approach to analyzing oscillatory systems in situations involving
translation or rotation, emphasizing energy as a methodological tool. Traditionally, the analysis of these systems is
performed through the direct application of Newton's second law, which can pose conceptual challenges for high school
students involving vector addition and decomposition. In this study, we discuss how elastic constants—the restoring
characteristic—as well as the moment of inertia—the inertial characteristic—and, consequently, the period and
frequency of oscillation, emerge naturally from the analysis of the system's mechanical energy, without using any
approach explicitly involving rotational dynamics. The methodology presented aims to foster the development of critical
thinking, as well as skills and strategies associated with solving complex problems, offering an effective alternative to
traditional approaches, in a sort of introductory essay on analytical mechanics. We also present a proposal for a
conceptual discussion associated with an experimental activity; the latter can be used by the teacher to spark students'
curiosity and spark discussion on the topic in the classroom.

Keywords: Rotational dynamics, Oscillatory motion, period, frequency, Physics teaching.

Resumen

Este articulo propone un enfoque tedrico alternativo para el analisis de sistemas oscilatorios en situaciones de traslacion
0 rotacion, haciendo hincapié en la energia como herramienta metodoldgica. Tradicionalmente, el andlisis de estos
sistemas se realiza mediante la aplicacion directa de la segunda ley de Newton, lo que puede plantear desafios
conceptuales para estudiantes de secundaria que involucran la adicion y descomposicidn de vectores. En este estudio,
analizamos cémo las constantes elasticas (la caracteristica restauradora), asi como el momento de inercia (la
caracteristica inercial) y, en consecuencia, el periodo y la frecuencia de oscilacion, surgen naturalmente del analisis de
la energia mecanica del sistema, sin utilizar ningin enfoque que involucre explicitamente la dindmica rotacional. La
metodologia presentada busca fomentar el desarrollo del pensamiento critico, asi como las habilidades y estrategias
asociadas con la resolucién de problemas complejos, ofreciendo una alternativa efectiva a los enfoques tradicionales,
en una especie de ensayo introductorio a la mecanica analitica. También presentamos una propuesta para una discusion
conceptual asociada a una actividad experimental; esta Ultima puede ser utilizada por el profesor para despertar la
curiosidad de los estudiantes y generar debate sobre el tema en el aula.

Palabras clave: Dinamica rotacional, Movimiento oscilatorio, periodo, frecuencia, Ensefianza de la Fisica.

I. INTRODUCTION

In textbooks typically used in regular high school, it is stated,
without formal proof, that a particle oscillating slightly
around a stable equilibrium position (potential well) under
the action of conservative forces performs a harmonic
movement (HM). The usual practice is to seek examples
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(illustrations) that corroborate this assertion, showing that the
resulting force on the particle in these cases is of the algebraic
form FR = -kx (x = algebraic displacement from the
equilibrium position), the well-known Hooke's Law. Then,
by comparison with the mass-spring system, we obtain what
would become the "effective force constant” (ker) for a given
physical situation. If m is the mass of the oscillating body, we

http://www.lajpe.org



Leonardo Sampaio Motta et al.
obtain the angular frequency w = /% and the period T =

27 /% Examples commonly involve applications of SHM

in various fields of physics, such as hydrostatics, gravitation
and electrostatics [1, 2, 3] and [4].

When we have a system of discrete particles or even a
rigid body, the associated difficulties become even greater.
For these cases, we propose in this article a theoretical
approach in which we choose to develop the theory through
energy—along with the comparison (analogy) with the mass-
spring system—uwith one of the main objectives being to
obtain and discuss, both qualitatively and quantitatively, the
following quantities: the "effective force constant" (Kef)—
which, in oscillatory movements, relates to the restoring
forces and torques—and also the system's "coefficient of
inertia,” which, in rotational movements around an axis,
corresponds to the moment of inertia. These quantities
determine the period and frequency of such movements.

We will discuss these concepts through a case study,
analyzing a physical asymmetric pendulum without directly
using the equations of rotational dynamics, as is done in
higher education (e.g., Newton's Second Law in angular
form, torque = moment of inertia x angular acceleration).
Thus, one of the article's objectives is to arrive at the concept
of moment of inertia in a different way from that traditionally
used. Generally, the moment of inertia is quantitatively
introduced when analyzing the kinetic energy of a system of
solid particles (or rigid body) rotating around an axis [1]. If
such an expression involves the inertial masses of the
particles, in the authors' view, the moment of inertia as a
physical—in fact, a coefficient of rotational inertia—is
merely suggested; clarification would come through
Newton's Second Law in angular form.

We understand that the methodological-didactic approach
to theoretical development using energy broadens the range
of situations that can be analyzed in a high school context.
We can say that, theoretically, this article addresses problems
involving oscillatory systems by subtly and fundamentally
introducing some concepts of analytical mechanics, such as
generalized coordinates and the elimination of binding
forces. After all, as we know from mechanics, approaching
some problems using the linear force-momentum approach
can be quite laborious, even making it virtually impossible to
solve certain problematic situations in some cases. In such
cases, analytical methods involving energy can prove to be a
fruitful option.

After the theoretical development of the physical
pendulum, a didactic activity of discussion of concepts is
proposed, involving some points that we consider important
and interesting, with experimental results as auxiliary
elements.

Il. LITERATURE REVIEW

Regarding the theoretical development of HM via energy to
determine the period and frequency of small oscillations,
when researching some textbooks most commonly used in
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the basic cycle of undergraduate studies [1, 2, 3], and [4], we
noticed that this method was addressed in only two solved
exercises in reference [4]: one concerning the oscillation of a
U-shaped liquid column and the other concerning the
oscillation of a diatomic molecule. In turn, reference [1]
follows the line used by us in this article, as its development
falls within the scope of physics and mathematics commonly
seen in high school. It is worth noting that in the oscillation
of a liquid column, there is the particularity, for an
incompressible fluid, that all the particles that make up the
system have the same magnitude of velocity. In this article,
we explore slightly more general situations in which the
different parts of the system have their velocities related
through the bonds respected by the system.

The other topic covered in this article, rotational
dynamics, requires students to hone their critical thinking
skills to understand abstract concepts such as moments of

inertia, equilibrium, and torque. However, there are
significant obstacles and difficulties in approaching this
topic.

A study involving 70 11-grade high school students
from the SMA (Brazilian State School of Social Sciences)
employed a descriptive quantitative methodology to
investigate the topic [5]. Data was collected through a
multiple-choice test based on five indicators of critical
thinking: elementary clarification, basis for decision-making,
inference, advanced clarification, and strategies and tactics.
The results revealed that 51.4% of the students had low
critical thinking skills, 34.3% moderate, and only 14.3%
high. Performance varied across the indicators, with the best
results in elementary clarification (61%) and the worst in
advanced clarification (21.4%) and strategies and tactics
(25.2%). This indicates that students have greater ease with
basic understanding and recognition of fundamental concepts
of rotational dynamics, but encounter difficulties in
formulating inferences, making evidence-based decisions,
and developing strategies to solve more complex problems.

These difficulties may be associated with traditional
teaching approaches, which prioritize the memorization of
concepts and formulas over the active exploration of physical
principles and investigative problem-solving [5]. In this
sense, a teaching model based on a problem-solving
laboratory (PSL), as proposed by [6], highlights the
importance of active and experimental learning. This model
allows students to participate in the learning process through
experiments, data analysis, and discussion of results, and has
been shown to improve conceptual understanding and the
development of scientific skills, such as hypothesis
formulation and analysis of experimental errors.

The difficulties faced by students in physics can have
several causes. The studies developed in [7] highlight the lack
of connection between theory and practice, the difficulty in
manipulating mathematical equations (especially formulas
for moment of inertia and torque), the fragmented
understanding of concepts, and the absence of structured
problem-solving strategies. [8] add that most students have
low skills in areas such as basic clarification, basic support,
and advanced clarification, essential for analyzing problems,
presenting evidence-based facts, and evaluating issues
logically.
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Conventional teaching methods, such as exclusively
expository classes and traditional teaching materials, make it
difficult to visualize and understand the concepts of rotational
dynamics. The content is particularly challenging due to the
need to visualize rotational motion, calculate the moment of
inertia, and understand the relationships between complex
physical quantities, which directly impacts students' ability to
provide clear explanations or solve problems logically and
systematically.

The work of [9] presents a systematic review on the
teaching of oscillations, which offers a solid basis for
developing teaching materials, technology-based
instructional media and educational instruments related to
oscillations, emphasizing the need to expand research on
effective teaching methods on this topic, offering practical
insights for educators and researchers.

Finally, the study by [10] shows that a significant portion
of future science teachers have important conceptual
difficulties on the topic of vibration and in this work, we seek
to strengthen the fundamental concepts of basic physics that
are essential for physics teachers.

I11. METHODOLOGY AND RESULTS

We will analyze an asymmetrical physical pendulum that can
rotate frictionlessly around a horizontal axis, where we will
develop the concept through conservation of mechanical
energy. In the authors' view, the analysis of such exercises
not only provides examples of the fundamental points of the
theoretical development we intend to present but also allows
for a qualitative and quantitative discussion of important
concepts involving physical pendulums, a discussion covered
in the didactic proposal presented below.

A. Theoretical Development of the Case Study

Let the system consist of two point masses, m and M (m < M),
rigidly connected by two rods of negligible mass of lengths {
and L (€ < L), which form an angle p between them, this
system capable of rotating with negligible friction around a
horizontal axis, as shown in Figure 1.

M

FIGURE 1. Asymmetrical physical pendulum that oscillates in a
vertical plane.

Neglecting any friction or buoyancy forces, the two-mass
system is acted upon by the connecting forces exerted by the
rods and the weight forces. In this case, the system is
conservative.
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It is known from the study of statics that a system has two
equilibrium points: the first, unstable, with the system's
center of mass vertically above the suspension point, and the
second, stable, with the system's center of mass vertically
below the suspension point. We will analyze small
oscillations of the system around the stable equilibrium
position.

Equalizing the the intensities of the torques of the
weights, to calculate the equilibrium positions:

mg.f{sen(Bp—a)= Mg.Lsena Q)

a =arctg[mesenf/(MmeLcospf+ML)(2)

Considering the horizontal plane that passes through the axis
as the reference level for the gravitational potential energy
(height; z = 0), when the rod forms, at an instant t, an angle 6
with the vertical direction, as shown in figure 1, we have the
following expressions for the kinetic (EK) and potential (Ey)
energies of the system:

Equilibrium position a
Epp=-mgLcos(f-a)—MgLcosa, ?3)

mu?  MU?
2 2

Ey, = 4
Since both masses have the same angular velocity (w) due to
the bond, the relationship between the linear velocities is (u /
0) =(U/L) = w. Then putting the kinetic energy of the system
in terms of the velocity U of the larger mass M:

_ (mi2+m12)v?

Ekl - 212 (5)
Generic position @
Epp=-mgLcos(f-60)—MgL cos 0. (6)
Similarly, with V being the velocity of the larger mass:
Epp = (mi2+M1?)v? )

212

Expressing the generic angular coordinate () in terms of the
angular coordinate at equilibrium () and the angular
displacement from the equilibrium position (Ad), we have:

O=a+A6 (8)
From the conservation of mechanical energy:
Emi=Em2 — Ep1+Eci=Ep2+Ec 9).

From the previous equations:

(m 12+ M 1%) u?
212

= (1-cosA9)[mglcos(f-a)+M
gLcosa] +
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(senAf)[-mglsen(f—a)+MgLsena] +
2 2 2
(m1 +21L\42L v (10)

Since the equilibrium equation (eq. 1a) is precisely mg ¢
sen (f—a) = M gLseng; it follows that

(mi2+ M L%) U2

= (1-cos AQ) [mgtcos (B-a)+ M

2L2 2 2 2
l“+ ML°)V
gLcosa] + % (11)
Since these are small oscillations, we will consider

approximations referring to small angles and binomial
expansions.

A6 = sen A6, (12)

and (1- cos AG) = (AB)?] 2. (13)
Geometrically, the linear displacement of the larger mass M
along the arc of the circle can be approximated by a
straightline segment of length X (approximation already
known from the simple pendulum),

AG= (X /L) (14)
From equations 11 to 14, in equation 10, we have:
(m12+mL2) U2 g[mlcos(B-a) + ML cos a] X?
? + (m 122+ML2)V2 . (15)

2

The first term is the maximum Kinetic energy of the system,
which is reached at the stable equilibrium position. The
equation corresponding to (15), in a mass-spring system of
mass m” (inertial characteristic) and elastic force constant k
(restoring characteristic), taking the mechanical energy at the
points of generic abscissa x and equilibrium (x = 0) is:

(16)

Note that in the physical pendulum analyzed here, the
movement of any of the masses depends, due to the geometric
constraint, on the following characteristics of the system as a
whole: i) the inertia associated with the rotation around the
axis; ii) restoring characteristic.
It is concluded, then, comparing equations (15) and (16),
that
m £2 + M L2 = moment of inertia of the system, (%))
g [m € cos (B-a)+ ML cos a] = “effective force constant”
of the system. (18)

The moment of inertia (I) and the "effective force

constant"(ker) emerge, both qualitatively and quantitatively.
The oscillation period is
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m 12+ M L?
r= 27T\/g[mlcos(ﬁ—oz)+MLcosoz]'

(19)

Specific cases: i) = 0° (which implies a = 0°, stable; or o =
w, unstable); masses "on the same side" (see Fig. 2), in that

case:
, 124+ M L2
gML+ml)

ii) p = 180° (which implies o = 0°, stable; or « = 180°,
unstable); diametrically opposite masses (see Fig. 3). In that

case:
mliZ2+ M L2
T, =2m /79(1“_"”).

axis

(20)

(21)

ZLL

m

L-{

M

FIGURE 2. Asymmetrical physical pendulum that oscillates in a
vertical plane for g =0°.

For g = 180°, the torques due to gravitational forces have
opposite directions (causing rotational effects in opposite
directions); or, in terms of potential energy, while one mass
rises, the other descends, reducing the effects of potential
energy variation and, consequently, the gain of Kinetic energy
(and speeds).

In the case S = 0°, the torques due to gravitational forces
have the same direction, causing overlapping rotational
effects; or, in terms of potential energy, the two masses rise
and fall together, accentuating the effects of potential energy
variation and, consequently, the gain of kinetic energy (and
speeds), resulting in a shorter period compared to the
previously mentioned case.

B. Teaching Proposal

The authors understand the multiplicity of possibilities and
objectives involved in each activity, whether theoretical or
experimental. Here are just a few comments and suggestions
regarding points to be discussed with the students: 1)
Highlight that the moment of inertia mathematically depends
on the sum of products, where each term is directly
proportional to the mass and the square of the distance of the
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terms to the axis of rotation; ii) Possibility of introducing the
generalized expression for the moment of inertia for a system

of n discrete particles | = Y% m;rZ, where the derivation of
2

. . . . Iw
the expression for rotational kinetic energy Ex = occurs

naturally from equations (5) and (7), and definition (17); iii)
Discuss the dimensionality aspect of the formulas obtained,;
iv) Develop the scheme referring to = 180° and ask students
to investigate the changes that theoretically exist for the case
of f = 0° regarding torques, energy variations, and their
implications; v) As is known from the dynamics of rotation,
when analyzing physical pendulums, it cannot be considered
that all the mass of the physical pendulum is concentrated in
the center of mass and treat it as simple pendulums, where
the length of the “equivalent simple pendulum” is the
distance between the center of mass (CM) and the axis of
rotation [1, 2, 3] and [4].

m

axis

M

FIGURE 3. Asymmetrical physical pendulum that oscillates in a
vertical plane for = 180°.

The following questions could be posed to students: could we
replace the masses with a single mass located at the center of
mass and think of the period of the physical pendulum in
terms of an equivalent simple pendulum? In this case, it is
possible to introduce the concept of radius of gyration.

Taking the axis of rotation as a reference point (origin),
the centers of mass (CM) of the systems constituted by the
two masses are at distances from the axis of rotation, for the
cases f = 0° and § = 180° respectively:

ds=(ML+me)/(Mm+M) e ds=(ML-mC)/(m+M),

_ ML+ml)
T; =2m f—g rm) (22)
and
_ ML-ml)
T, =2m /—g Trmy (23)

In such predictions, Tz and T4, which are in themselves
already wrong, lead us to T > T4, which is at odds with what
is expected qualitatively, according to the previous
conceptual argument (i and ii).
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When considering masses and lengths with very close
valuesy=(M/m)=1;0=(L/¢)= 1, the period T4 (23) would
approach zero and not “infinity”, which shows a great
mistake in the reasoning used to obtain such an expression.

Comparing the expressions for the periods of the physical
pendulums (20) and (21) with the expression for the period
of the simple pendulum, the true associated radii of gyration
(v) would be:

l
=" L++Mle (for = 0°). (24)
mi24+ M L2
d, = T (for = 180°). (25)

For the case f# = 0°, it is possible to demonstrate that the
period of the physical pendulum Ty (20) is greater than that
of a physical pendulum of length | and less than that of a
simple pendulum of length L; or, in other words, that the
distance d1 obtained previously is greater than | and less than
L. Demonstrating:

mi2+ ML ml2+ML2
21 < 2m
g(ML+ml) (ML+ml)

The previous equation is true for any values of € and L, with
£ < L. vi) Compare the theoretical predictions for the periods
T1 (20), T2 (21), Tz (22), and T4 (23), and also for the
associated radii of gyration d;, dz, ds, and dg, respectively,
with the experimental results; vii) Include the influence of the
rods, asking students to discuss how the expressions for the
periods (and radii of gyration) would be altered.

Note that: representing M' and m' as the masses of the rods
of greater and lesser lengths, respectively, and knowing that
loars = 1/12(M'L2 + m'I?), the general expression for the period
T (19) takes the following form

ml? + L2+Ibars

T =2 - - .
n\/g [(m+m7)lcos (B—a)+(M+M7)L cos a)

(26)

C. Apparatus and Experimental Results

The experiment was conducted with metal bars, cylinders,
and fasteners, whose masses and characteristic dimensions
were determined with appropriate measuring instruments,
including their respective uncertainties. These procedures
ensured the reliability of the data obtained and allowed
comparison with the adopted theoretical model. Figures 3 and
4 illustrate the experimental setup and the main aspects
observed. The set up specifications are:

Muinorbar = (31,23 ¥ 0,05) g ;
Mbigger bar = (91,20 F 0,05) g ;
Metixing screw = (6,08 + 0,05) g ;
Meylinders = Meylingers = (400,42 F 0,05) g;

L=(@0+1)cm; I=(30+1)cm.
http://www.lajpe.org
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FIGURE 4. Set of materials used in the experiment: cylinders,
metal bar and fixing elements. Regarding the measurement of
periods, the sensor indicated the time interval of each oscillation.

FIGURE 5. Experimental apparatus.

In equations (20) to (25), the values of M and m used will be
the masses of the cylinders fixed to the bars added to the
masses of the fixing screws; that is, M = m = (406.5 + 0.1)
g. Tables | and Il present comparisons between experimental
and theoretical values for the oscillation periods.

TABLE 1. Comparison between the theoretical and experimental
values for the oscilation periods for g = 0°.

di(cm) T1(S) ds (cm) T3 (S) Texperiment (S)*
(theory)
57.5 1.74 46 1.36 (1.73F 0.01)
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TABLE I1. Comparison between the theoretical and experimental
values for the oscilation periods for g = 180°.

d2 (cm) T1(S) ds (cm) T4 (S) Texperiment(S)
(theory)
115 2.46 23 0,96 (2.39F 001)
For p=5°

0a=162°;, T=T;

The two previous tables indicating a discrepancy between
predictions based on a mistaken line of reasoning involving
radii of gyration (ds,Ts) and (ds,T4) and the experimental
result, may constitute a trigger for a conceptual change.

IV. CONCLUSIONS

In this paper, we present an alternative approach to HM,
regarding the quantities period and frequency, accessible
physically and mathematically within the typical high school
curriculum. While this approach is not necessarily the
simplest (at least from an algebraic standpoint), when
compared to the typical solution in the basic undergraduate
cycle using Newton's Second Law in angular form (1R = la),
it does provide high school students with a better
understanding of the "power" of analytical methods. Equally
important is addressing the concept of moment of inertia not
only qualitatively, as is routinely done (both theoretically and
experimentally), but also quantitatively; we hope, in this way,
to contribute in some way to bridging the gaps identified.

In the authors' view, the transition from the discrete
situation | = Y7 m;r£to the continuous one [ r2dm becomes
purely mathematical, and no longer physical (In this case, the
results of the calculation could be presented to high school
students, which would greatly expand the range of possible
situations to be addressed.

The condition for approaching the problems along the
path we followed, in the previous case study and also in
general, is that the system of particles is subject to constraints
such that it is possible to express both the total kinetic energy
of the system and the total potential energy, as a function of
the linear velocity and the linear displacement from the
equilibrium position of a given (chosen) particle of the
system.

Regarding the teaching activity, numerous topics can be
discussed involving the proposed problem: extended-body
equilibrium—along with stability and instability analysis—
torque and moment of inertia, mechanical energy (potential
and kinetic), center of mass, and radius of gyration. It is up to
the teacher, depending on factors such as time and objectives,
to decide which topics to cover and to what degree, as well
as, of course, the methodology to be used.
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