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Abstract 
This paper proposes an alternative theoretical approach to analyzing oscillatory systems in situations involving 

translation or rotation, emphasizing energy as a methodological tool. Traditionally, the analysis of these systems is 

performed through the direct application of Newton's second law, which can pose conceptual challenges for high school 

students involving vector addition and decomposition. In this study, we discuss how elastic constants—the restoring 

characteristic—as well as the moment of inertia—the inertial characteristic—and, consequently, the period and 

frequency of oscillation, emerge naturally from the analysis of the system's mechanical energy, without using any 

approach explicitly involving rotational dynamics. The methodology presented aims to foster the development of critical 

thinking, as well as skills and strategies associated with solving complex problems, offering an effective alternative to 

traditional approaches, in a sort of introductory essay on analytical mechanics. We also present a proposal for a 

conceptual discussion associated with an experimental activity; the latter can be used by the teacher to spark students' 

curiosity and spark discussion on the topic in the classroom. 

 

Keywords: Rotational dynamics, Oscillatory motion, period, frequency, Physics teaching. 

 

Resumen 
Este artículo propone un enfoque teórico alternativo para el análisis de sistemas oscilatorios en situaciones de traslación 

o rotación, haciendo hincapié en la energía como herramienta metodológica. Tradicionalmente, el análisis de estos 

sistemas se realiza mediante la aplicación directa de la segunda ley de Newton, lo que puede plantear desafíos 

conceptuales para estudiantes de secundaria que involucran la adición y descomposición de vectores. En este estudio, 

analizamos cómo las constantes elásticas (la característica restauradora), así como el momento de inercia (la 

característica inercial) y, en consecuencia, el período y la frecuencia de oscilación, surgen naturalmente del análisis de 

la energía mecánica del sistema, sin utilizar ningún enfoque que involucre explícitamente la dinámica rotacional. La 

metodología presentada busca fomentar el desarrollo del pensamiento crítico, así como las habilidades y estrategias 

asociadas con la resolución de problemas complejos, ofreciendo una alternativa efectiva a los enfoques tradicionales, 

en una especie de ensayo introductorio a la mecánica analítica. También presentamos una propuesta para una discusión 

conceptual asociada a una actividad experimental; esta última puede ser utilizada por el profesor para despertar la 

curiosidad de los estudiantes y generar debate sobre el tema en el aula. 

 

Palabras clave: Dinámica rotacional, Movimiento oscilatorio, período, frecuencia, Enseñanza de la Física. 

 

 

I. INTRODUCTION  
 

In textbooks typically used in regular high school, it is stated, 

without formal proof, that a particle oscillating slightly 

around a stable equilibrium position (potential well) under 

the action of conservative forces performs a harmonic 

movement (HM). The usual practice is to seek examples 

(illustrations) that corroborate this assertion, showing that the 

resulting force on the particle in these cases is of the algebraic 

form FR = -kx (x = algebraic displacement from the 

equilibrium position), the well-known Hooke's Law. Then, 

by comparison with the mass-spring system, we obtain what 

would become the "effective force constant" (kef) for a given 

physical situation. If m is the mass of the oscillating body, we 
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obtain the angular frequency 𝜔 = √
𝑘𝑒𝑓

𝑚
 and the period 𝑇 =

2𝜋√
𝑚

𝑘𝑒𝑓
. Examples commonly involve applications of SHM 

in various fields of physics, such as hydrostatics, gravitation 

and electrostatics [1, 2, 3] and [4]. 

When we have a system of discrete particles or even a 

rigid body, the associated difficulties become even greater. 

For these cases, we propose in this article a theoretical 

approach in which we choose to develop the theory through 

energy—along with the comparison (analogy) with the mass-

spring system—with one of the main objectives being to 

obtain and discuss, both qualitatively and quantitatively, the 

following quantities: the "effective force constant" (keff)—

which, in oscillatory movements, relates to the restoring 

forces and torques—and also the system's "coefficient of 

inertia," which, in rotational movements around an axis, 

corresponds to the moment of inertia. These quantities 

determine the period and frequency of such movements. 

We will discuss these concepts through a case study, 

analyzing a physical asymmetric pendulum without directly 

using the equations of rotational dynamics, as is done in 

higher education (e.g., Newton's Second Law in angular 

form, torque = moment of inertia x angular acceleration). 

Thus, one of the article's objectives is to arrive at the concept 

of moment of inertia in a different way from that traditionally 

used. Generally, the moment of inertia is quantitatively 

introduced when analyzing the kinetic energy of a system of 

solid particles (or rigid body) rotating around an axis [1]. If 

such an expression involves the inertial masses of the 

particles, in the authors' view, the moment of inertia as a 

physical—in fact, a coefficient of rotational inertia—is 

merely suggested; clarification would come through 

Newton's Second Law in angular form.  

We understand that the methodological-didactic approach 

to theoretical development using energy broadens the range 

of situations that can be analyzed in a high school context. 

We can say that, theoretically, this article addresses problems 

involving oscillatory systems by subtly and fundamentally 

introducing some concepts of analytical mechanics, such as 

generalized coordinates and the elimination of binding 

forces. After all, as we know from mechanics, approaching 

some problems using the linear force-momentum approach 

can be quite laborious, even making it virtually impossible to 

solve certain problematic situations in some cases. In such 

cases, analytical methods involving energy can prove to be a 

fruitful option. 

After the theoretical development of the physical 

pendulum, a didactic activity of discussion of concepts is 

proposed, involving some points that we consider important 

and interesting, with experimental results as auxiliary 

elements. 

  

 

 II. LITERATURE REVIEW 

 
Regarding the theoretical development of HM via energy to 

determine the period and frequency of small oscillations, 

when researching some textbooks most commonly used in 

the basic cycle of undergraduate studies [1, 2, 3], and [4], we 

noticed that this method was addressed in only two solved 

exercises in reference [4]: one concerning the oscillation of a 

U-shaped liquid column and the other concerning the 

oscillation of a diatomic molecule. In turn, reference [1] 

follows the line used by us in this article, as its development 

falls within the scope of physics and mathematics commonly 

seen in high school. It is worth noting that in the oscillation 

of a liquid column, there is the particularity, for an 

incompressible fluid, that all the particles that make up the 

system have the same magnitude of velocity. In this article, 

we explore slightly more general situations in which the 

different parts of the system have their velocities related 

through the bonds respected by the system. 

The other topic covered in this article, rotational 

dynamics, requires students to hone their critical thinking 

skills to understand abstract concepts such as moments of 

inertia, equilibrium, and torque. However, there are 

significant obstacles and difficulties in approaching this 

topic. 

A study involving 70 11th-grade high school students 

from the SMA (Brazilian State School of Social Sciences) 

employed a descriptive quantitative methodology to 

investigate the topic [5]. Data was collected through a 

multiple-choice test based on five indicators of critical 

thinking: elementary clarification, basis for decision-making, 

inference, advanced clarification, and strategies and tactics. 

The results revealed that 51.4% of the students had low 

critical thinking skills, 34.3% moderate, and only 14.3% 

high. Performance varied across the indicators, with the best 

results in elementary clarification (61%) and the worst in 

advanced clarification (21.4%) and strategies and tactics 

(25.2%). This indicates that students have greater ease with 

basic understanding and recognition of fundamental concepts 

of rotational dynamics, but encounter difficulties in 

formulating inferences, making evidence-based decisions, 

and developing strategies to solve more complex problems. 

These difficulties may be associated with traditional 

teaching approaches, which prioritize the memorization of 

concepts and formulas over the active exploration of physical 

principles and investigative problem-solving [5]. In this 

sense, a teaching model based on a problem-solving 

laboratory (PSL), as proposed by [6], highlights the 

importance of active and experimental learning. This model 

allows students to participate in the learning process through 

experiments, data analysis, and discussion of results, and has 

been shown to improve conceptual understanding and the 

development of scientific skills, such as hypothesis 

formulation and analysis of experimental errors. 

The difficulties faced by students in physics can have 

several causes. The studies developed in [7] highlight the lack 

of connection between theory and practice, the difficulty in 

manipulating mathematical equations (especially formulas 

for moment of inertia and torque), the fragmented 

understanding of concepts, and the absence of structured 

problem-solving strategies. [8] add that most students have 

low skills in areas such as basic clarification, basic support, 

and advanced clarification, essential for analyzing problems, 

presenting evidence-based facts, and evaluating issues 

logically. 
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Conventional teaching methods, such as exclusively 

expository classes and traditional teaching materials, make it 

difficult to visualize and understand the concepts of rotational 

dynamics. The content is particularly challenging due to the 

need to visualize rotational motion, calculate the moment of 

inertia, and understand the relationships between complex 

physical quantities, which directly impacts students' ability to 

provide clear explanations or solve problems logically and 

systematically. 

The work of [9] presents a systematic review on the 

teaching of oscillations, which offers a solid basis for 

developing teaching materials, technology-based 

instructional media and educational instruments related to 

oscillations, emphasizing the need to expand research on 

effective teaching methods on this topic, offering practical 

insights for educators and researchers. 

Finally, the study by [10] shows that a significant portion 

of future science teachers have important conceptual 

difficulties on the topic of vibration and in this work, we seek 

to strengthen the fundamental concepts of basic physics that 

are essential for physics teachers. 

 

 

III. METHODOLOGY AND RESULTS 

 
We will analyze an asymmetrical physical pendulum that can 

rotate frictionlessly around a horizontal axis, where we will 

develop the concept through conservation of mechanical 

energy. In the authors' view, the analysis of such exercises 

not only provides examples of the fundamental points of the 

theoretical development we intend to present but also allows 

for a qualitative and quantitative discussion of important 

concepts involving physical pendulums, a discussion covered 

in the didactic proposal presented below. 

 

A. Theoretical Development of the Case Study   

 

Let the system consist of two point masses, m and M (m < M), 

rigidly connected by two rods of negligible mass of lengths ℓ 

and L (ℓ < L), which form an angle β between them, this 

system capable of rotating with negligible friction around a 

horizontal axis, as shown in Figure 1. 

 

 
FIGURE 1. Asymmetrical physical pendulum that oscillates in a 

vertical plane. 

 

Neglecting any friction or buoyancy forces, the two-mass 

system is acted upon by the connecting forces exerted by the 

rods and the weight forces. In this case, the system is 

conservative. 

It is known from the study of statics that a system has two 

equilibrium points: the first, unstable, with the system's 

center of mass vertically above the suspension point, and the 

second, stable, with the system's center of mass vertically 

below the suspension point. We will analyze small 

oscillations of the system around the stable equilibrium 

position. 

Equalizing the the intensities of the torques of the 

weights, to calculate the equilibrium positions: 

 

m g . ℓ sen (β – α) =  M g. L sen α                  (1) 

 

α  = arc tg [m ℓ sen β / (m ℓ cos β + M L)] (2) 

 

Considering the horizontal plane that passes through the axis 

as the reference level for the gravitational potential energy 

(height; z = 0), when the rod forms, at an instant t, an angle θ 

with the vertical direction, as shown in figure 1, we have the 

following expressions for the kinetic (Ek) and potential (Ep) 

energies of the system: 

 

Equilibrium position α 

 

EP1 = - m g ℓ cos (β - α) – M g L cos α,              (3) 

 

𝐸𝑘1 =
𝑚 𝑢2

2
+

𝑀 𝑈2

2
.                            (4) 

 

Since both masses have the same angular velocity (ω) due to 

the bond, the relationship between the linear velocities is (u / 

ℓ) = (U / L) = ω. Then putting the kinetic energy of the system 

in terms of the velocity U of the larger mass M: 

 

𝐸𝑘1 =
(𝑚 𝑙2+ 𝑀 𝐿2) 𝑈2

2 𝐿2  .                         (5) 

 

Generic position θ   

 

EP2 = - m g ℓ cos (β - θ) – M g L cos θ.            (6) 

 

Similarly, with V being the velocity of the larger mass: 

 

𝐸𝑘2 =
(𝑚 𝑙2+ 𝑀 𝐿2) 𝑉2

2 𝐿2  .                           (7) 

 

Expressing the generic angular coordinate (θ) in terms of the 

angular coordinate at equilibrium (α) and the angular 

displacement from the equilibrium position (Δθ), we have: 

 

 θ = α + Δ θ                                     (8) 

 

From the conservation of mechanical energy: 

  

EM1 = EM2    →   EP1 + EC1 = EP2 + EC2            (9). 

 

From the previous equations: 

 
(𝑚 𝑙2+ 𝑀 𝐿2) 𝑈2

2 𝐿2   =  (1- cos Δθ) [m g ℓ cos (β - α) + M 

g L cos α]  + 
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(sen Δθ) [ - m g ℓ sen (β – α) + M g L sen α ]  +  
(𝑚 𝑙2+ 𝑀 𝐿2) 𝑉2

2 𝐿2  .    (10) 

 

Since the equilibrium equation (eq. 1a) is precisely m g ℓ  

sen (β – α) =  M g L sen α;  it follows that   

 
(𝑚 𝑙2+ 𝑀 𝐿2) 𝑈2

2 𝐿2   =  (1- cos Δθ) [m g ℓ cos (β - α) + M 

g L cos α]  +   
(𝑚 𝑙2+ 𝑀 𝐿2) 𝑉2

2 𝐿2  .            (11) 

 

Since these are small oscillations, we will consider 

approximations referring to small angles and binomial 

expansions. 

 

Δθ ≈ sen Δθ,                                   (12) 

 

and   (1- cos Δθ)  ≈  (Δθ)2 / 2.                        (13) 

 

Geometrically, the linear displacement of the larger mass M 

along the arc of the circle can be approximated by a 

straightline segment of length X (approximation already 

known from the simple pendulum), 

 

Δθ ≈ (X / L)                                    (14) 

 

From equations 11 to 14, in equation 10, we have: 

 
(𝑚 𝑙2+ 𝑀 𝐿2) 𝑈2

2
   =   

  𝑔 [𝑚 𝑙 𝑐𝑜𝑠 (𝛽 − 𝛼)  + 𝑀 𝐿 𝑐𝑜𝑠 𝛼]  𝑋2

2
    

+  
(𝑚 𝑙2+ 𝑀 𝐿2) 𝑉2

2
 .                    (15) 

 

The first term is the maximum kinetic energy of the system, 

which is reached at the stable equilibrium position. The 

equation corresponding to (15), in a mass-spring system of 

mass m´ (inertial characteristic) and elastic force constant k´ 

(restoring characteristic), taking the mechanical energy at the 

points of generic abscissa x and equilibrium (x = 0) is: 

 
 𝑚´𝑢´2

2 
 = 

 𝑚´𝑣´2

2 
 +  

𝑘´ 𝑥2 

2
 .                        (16) 

 

Note that in the physical pendulum analyzed here, the 

movement of any of the masses depends, due to the geometric 

constraint, on the following characteristics of the system as a 

whole: i) the inertia associated with the rotation around the 

axis; ii) restoring characteristic. 

It is concluded, then, comparing equations (15) and (16), 

that 

 

m ℓ 2 + M L2 = moment of inertia of the system,        (17) 

 

g [m ℓ cos (β - α) + M L cos α] = “effective force constant” 

of the system.           (18) 

 

The moment of inertia (I) and the "effective force 

constant"(kef) emerge, both qualitatively and quantitatively. 

The oscillation period is 

 

𝑇 = 2𝜋√
𝑚 𝑙2+ 𝑀 𝐿2 

𝑔 [𝑚 𝑙 𝑐𝑜𝑠 (𝛽 − 𝛼) + 𝑀 𝐿 𝑐𝑜𝑠 𝛼]
 .          (19) 

 

Specific cases:  i) β = 0° (which implies α = 0°, stable; or α = 

π, unstable); masses "on the same side" (see Fig. 2), in that 

case: 

 

𝑇1 = 2𝜋√
𝑚 𝑙2+ 𝑀 𝐿2 

𝑔 (𝑀 𝐿 + 𝑚 𝑙)
 .                      (20) 

 

 

ii) β = 180° (which implies α = 0°, stable; or α = 180°, 

unstable); diametrically opposite masses (see Fig. 3). In that 

case: 

 

𝑇2 = 2𝜋√
𝑚 𝑙2+ 𝑀 𝐿2 

𝑔 (𝑀 𝐿 − 𝑚 𝑙)
 .                         (21) 

 

 

 
FIGURE 2. Asymmetrical physical pendulum that oscillates in a 

vertical plane for β = 0 o. 
 

For β = 180°, the torques due to gravitational forces have 

opposite directions (causing rotational effects in opposite 

directions); or, in terms of potential energy, while one mass 

rises, the other descends, reducing the effects of potential 

energy variation and, consequently, the gain of kinetic energy 

(and speeds). 

In the case β = 0°, the torques due to gravitational forces 

have the same direction, causing overlapping rotational 

effects; or, in terms of potential energy, the two masses rise 

and fall together, accentuating the effects of potential energy 

variation and, consequently, the gain of kinetic energy (and 

speeds), resulting in a shorter period compared to the 

previously mentioned case. 

 

B. Teaching Proposal 

 

The authors understand the multiplicity of possibilities and 

objectives involved in each activity, whether theoretical or 

experimental. Here are just a few comments and suggestions 

regarding points to be discussed with the students: i) 

Highlight that the moment of inertia mathematically depends 

on the sum of products, where each term is directly 

proportional to the mass and the square of the distance of the 
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terms to the axis of rotation; ii) Possibility of introducing the 

generalized expression for the moment of inertia for a system 

of n discrete particles I = ∑ 𝑚𝑖𝑟1
2𝑛

1 , where the derivation of 

the expression for rotational kinetic energy Ek =  
𝐼 𝜔2 

2
 occurs 

naturally from equations (5) and (7), and definition (17); iii) 

Discuss the dimensionality aspect of the formulas obtained; 

iv) Develop the scheme referring to β = 180o and ask students 

to investigate the changes that theoretically exist for the case 

of β = 0o, regarding torques, energy variations, and their 

implications; v) As is known from the dynamics of rotation, 

when analyzing physical pendulums, it cannot be considered 

that all the mass of the physical pendulum is concentrated in 

the center of mass and treat it as simple pendulums, where 

the length of the “equivalent simple pendulum” is the 

distance between the center of mass (CM) and the axis of 

rotation [1, 2, 3] and [4]. 
 

 
 

FIGURE 3. Asymmetrical physical pendulum that oscillates in a 

vertical plane for β = 180 o. 

 

 

The following questions could be posed to students: could we 

replace the masses with a single mass located at the center of 

mass and think of the period of the physical pendulum in 

terms of an equivalent simple pendulum? In this case, it is 

possible to introduce the concept of radius of gyration. 

Taking the axis of rotation as a reference point (origin), 

the centers of mass (CM) of the systems constituted by the 

two masses are at distances from the axis of rotation, for the 

cases β = 0° and β = 180° respectively: 

 

d3 = (ML + m ℓ) / (m + M)  e   d4 = (ML - m ℓ) / (m + M), 

 

 

𝑇3 = 2𝜋√
(𝑀 𝐿 + 𝑚 𝑙) 

𝑔 (𝑀 + 𝑚 )
 ,                         (22) 

and 

 

𝑇4 = 2𝜋√
(𝑀 𝐿 − 𝑚 𝑙) 

𝑔 (𝑀 + 𝑚 )
 .                          (23) 

 

In such predictions, T3 and T4, which are in themselves 

already wrong, lead us to T3 > T4, which is at odds with what 

is expected qualitatively, according to the previous 

conceptual argument (i and ii). 

When considering masses and lengths with very close 

values γ = (M / m) ≈ 1; σ = (L / ℓ) ≈ 1, the period T4 (23) would 

approach zero and not “infinity”, which shows a great 

mistake in the reasoning used to obtain such an expression. 

Comparing the expressions for the periods of the physical 

pendulums (20) and (21) with the expression for the period 

of the simple pendulum, the true associated radii of gyration 

(v) would be: 

𝑑1 = 
𝑚 𝑙2+ 𝑀 𝐿2 

 𝑀 𝐿 + 𝑚 𝑙
 (for β = 0o).                          (24) 

 

𝑑2 =
𝑚 𝑙2+ 𝑀 𝐿2 

 𝑀 𝐿 − 𝑚 𝑙
  (for β = 180o).                    (25) 

 

For the case β = 0o, it is possible to demonstrate that the 

period of the physical pendulum T1 (20) is greater than that 

of a physical pendulum of length l and less than that of a 

simple pendulum of length L; or, in other words, that the 

distance d1 obtained previously is greater than l and less than 

L. Demonstrating: 

 

2𝜋√
 𝑙 

𝑔 
  <  2𝜋√

𝑚 𝑙2+ 𝑀 𝐿2 

𝑔 (𝑀 𝐿 + 𝑚 𝑙)
    2𝜋√

 𝐿 

𝑔 
  ↔ ℓ  <  

𝑚 𝑙2+ 𝑀 𝐿2 

 (𝑀 𝐿 + 𝑚 𝑙)
  < L. 

 

The previous equation is true for any values of ℓ and L, with 

ℓ < L. vi) Compare the theoretical predictions for the periods 

T1 (20), T2 (21), T3 (22), and T4 (23), and also for the 

associated radii of gyration d1, d2, d3, and d4, respectively, 

with the experimental results; vii) Include the influence of the 

rods, asking students to discuss how the expressions for the 

periods (and radii of gyration) would be altered. 

Note that: representing M' and m' as the masses of the rods 

of greater and lesser lengths, respectively, and knowing that 

Ibars = 1/12(M'L2 + m'l2), the general expression for the period 

T (19) takes the following form 

 

𝑇 = 2𝜋√
 𝑚𝑙2 + 𝐿2+𝐼𝑏𝑎𝑟𝑠 

𝑔 [(𝑚+
𝑚´

2
) 𝑙 𝑐𝑜𝑠 (𝛽 − 𝛼) + (𝑀+

𝑀´

2
 )𝐿 𝑐𝑜𝑠 𝛼]

.         (26) 

 

C. Apparatus and Experimental Results 

 

The experiment was conducted with metal bars, cylinders, 

and fasteners, whose masses and characteristic dimensions 

were determined with appropriate measuring instruments, 

including their respective uncertainties. These procedures 

ensured the reliability of the data obtained and allowed 

comparison with the adopted theoretical model. Figures 3 and 

4 illustrate the experimental setup and the main aspects 

observed. The set up specifications are: 

 

Mminor bar  =  (31,23 ∓ 0,05)  g  ; 

 

Mbigger bar = (91,20 ∓ 0,05) g ; 

 

Mfixing screw = (6,08 ∓ 0,05)  g ; 

  

Mcylinders = mcylinders = (400,42 ∓ 0,05) g; 

 

L = (90 ± 1) cm;  l = (30 ± 1) cm. 
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FIGURE 4. Set of materials used in the experiment: cylinders, 

metal bar and fixing elements. Regarding the measurement of 

periods, the sensor indicated the time interval of each oscillation. 

 

 

 
 

FIGURE 5. Experimental apparatus. 

 

In equations (20) to (25), the values of M and m used will be 

the masses of the cylinders fixed to the bars added to the 

masses of the fixing screws; that is, M = m = (406.5 ∓ 0.1) 

g. Tables I and II present comparisons between experimental 

and theoretical values for the oscillation periods. 

 
TABLE I. Comparison between the theoretical and experimental 

values for the oscilation periods for β = 0o.  

 
d1 (cm) T1 (s) 

(theory)  

d3 (cm) T3 (s) Texperiment (s)* 

57.5 1.74 46 1.36 (1.73 ∓ 0.01) 

 

TABLE II. Comparison between the theoretical and experimental 

values for the oscilation periods for β = 180o.  

 
d2 (cm) T1 (s) 

(theory)   

d4 (cm) T4 (s) Texperiment(s) 

115 2.46 23 0,96 (2.39 ∓ 001) 

 

For β = 5º  

α = 1,62º ;  T ≈ T1 

 

The two previous tables indicating a discrepancy between 

predictions based on a mistaken line of reasoning involving 

radii of gyration (d3,T3) and (d4,T4) and the experimental 

result, may constitute a trigger for a conceptual change. 

 

 

IV. CONCLUSIONS  
 

In this paper, we present an alternative approach to HM, 

regarding the quantities period and frequency, accessible 

physically and mathematically within the typical high school 

curriculum. While this approach is not necessarily the 

simplest (at least from an algebraic standpoint), when 

compared to the typical solution in the basic undergraduate 

cycle using Newton's Second Law in angular form (τR = Iα), 

it does provide high school students with a better 

understanding of the "power" of analytical methods. Equally 

important is addressing the concept of moment of inertia not 

only qualitatively, as is routinely done (both theoretically and 

experimentally), but also quantitatively; we hope, in this way, 

to contribute in some way to bridging the gaps identified. 

In the authors' view, the transition from the discrete 

situation I = ∑ 𝑚𝑖𝑟1
2𝑛

1 to the continuous one ∫ 𝑟2𝑑𝑚 becomes 

purely mathematical, and no longer physical (In this case, the 

results of the calculation could be presented to high school 

students, which would greatly expand the range of possible 

situations to be addressed. 

The condition for approaching the problems along the 

path we followed, in the previous case study and also in 

general, is that the system of particles is subject to constraints 

such that it is possible to express both the total kinetic energy 

of the system and the total potential energy, as a function of 

the linear velocity and the linear displacement from the 

equilibrium position of a given (chosen) particle of the 

system. 

Regarding the teaching activity, numerous topics can be 

discussed involving the proposed problem: extended-body 

equilibrium—along with stability and instability analysis—

torque and moment of inertia, mechanical energy (potential 

and kinetic), center of mass, and radius of gyration. It is up to 

the teacher, depending on factors such as time and objectives, 

to decide which topics to cover and to what degree, as well 

as, of course, the methodology to be used. 
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