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Abstract
Among the significant potential that showed its great importance in the literature is what is known as the Manning-Rosen
potential with a Yukawa tensor coupling because it has wide applications to a wide variety of physical systems. In this
work, new Bound-state solutions of the deformed Dirac equation with improved spin and pseudo-spin symmetries are
investigated for the new combined Manning--Rosen and Yukawa tensor potentials (NCMRYPs) in the context of three-
dimensional relativistic noncommutative quantum space (3D-RNCQS) symmetries. The new energy eigenvalues a are
obtained using the parametric Bopp's shift method and the like Greene-Aldrich approximation for the centrifugal terms

ZZ ZS/Z Z3/2 ZS/Z Z3 Z7/2 ZZ . h ff . . I f h I
0" oD U 2 ) (2 and -—; to obtain the effective potentials of the NCMRYPs model in 3D-RNCQS

symmetries. The new energy levels are sensitive depending on noncommutativity parameters (1, 1,y), the potential depths
(B, A, Vp) of the NCMRYPs model, the quantum numbers (j, I/1,, s/s,, m/m,) in addition to arbitrary spin-orbit coupling
quantum number k, radial quantum numbers n, and screening parameter § which are known in the literature. The non-
relativistic limit is obtained and the composite systems such as molecules made of N = 2particles of masses m,,(n = 1,2)
in the frame of three-dimensional nonrelativistic noncommutative quantum space (3D-NRNCQS) symmetries are
considered. After studying the relativistic and nonrelativistic solutions of the NCMRYPs model in 3D-RNCQS and 3D-
NRNCQS symmetries, we examine some important cases that we see as useful to the reader and the researcher.

Keywords: Dirac equation; Schrédinger equation; Manning-Rosen potential; Pseudospin and spin symmetry; Yukawa
tensor interaction; Noncommutative space; Bopp's shift method.

Resumen

Entre los potenciales significativos que han demostrado su gran importancia en la literatura se encuentra el denominado
potencial de Manning-Rosen con acoplamiento tensorial de Yukawa, debido a sus amplias aplicaciones en una amplia
variedad de sistemas fisicos. En este trabajo, se investigan nuevas soluciones de estado ligado de la ecuacion de Dirac
deformada con simetrias de espin y pseudoespin mejoradas para los nuevos potenciales tensoriales combinados de
Manning-Rosen y Yukawa (NCMRYPs) en el contexto de simetrias tridimensionales relativistas no conmutativas del
espacio cuantico (3D-RNCQS). Los nuevos valores propios de energia a se obtienen utilizando el método paramétrico de
72 25/2 23/2

(1-2)3" (1-2)*" (1-2)?'

desplazamiento de Bopp y la aproximacion de Greene-Aldrich similar para los términos centrifugos

ZS/Z Z3 Z7/Z

2% G-2* a2¢ )
nuevos niveles de energia son sensibles a los parametros de no conmutatividad (7, 4, y), las profundidades potenciales (5,
A, Vo) del modelo NCMRYPs, los nimeros cuanticos (j, I/lp, s/sp, m/mp), ademas del nimero cuantico de acoplamiento
espin-orbita arbitrario k, los nimeros cuanticos radiales n y el parametro de cribado 8, conocidos en la literatura. Se obtiene
el limite no relativista y se consideran los sistemas compuestos, como moléculas formadas por N = 2 particulas de masas
mn (n =1, 2), en el marco de simetrias tridimensionales del espacio cuantico no relativista no conmutativo (3D-NRNCQS).
Tras estudiar las soluciones relativistas y no relativistas del modelo NCMRYPs en las simetrias 3D-RNCQS y 3D-

NRNCQS, examinamos algunos casos importantes que consideramos Utiles para el lector y el investigador.

V4

22)4 para obtener los potenciales efectivos del modelo NCMRYPs en simetrias 3D-RNCQS. Los

Palabras clave: Ecuacion de Dirac; Ecuacion de Schrddinger; Potencial de Manning-Rosen; Pseudoespin y simetria de
espin; Interaccion del tensor de Yukawa; Espacio no conmutativo; Método de desplazamiento de Bopp.
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I. INTRODUCTION

In 1933, Manning and Rosen (see Eg. (3.1)) proposed a
potential function for diatomic molecules known as the
Manning-Rosen (MR) potential model [1] which is used in
different fields such as atomic, condensed matter, particle, and
nuclear physics. In addition, this potential is used to describe
the vibrations of diatomic molecules HCI, CH, LiH, CO, NO,
Oy, 12, Na, Hy, and Ar, [2]. Wang et al. (2012), proposed a
convenient form (see Eq. (3.2)) for the original expression of
the MR potential function [3]. Wei and Dong carried out
approximately analytical bound state solutions of the Dirac
equation (DE) with the MR potential for arbitrary spin-orbit
coupling quantum number k by taking a properly approximate
expansion for the spin-orbit coupling term [4]. Chen et al;
(2009) solved approximately the DE with the MR potential
for the arbitrary spin-orbit quantum number k using the basic
concept of the supersymmetric shape invariance formalism
and the function analysis method [5]. Eshghi and Mehraban
obtained analytically the approximate energy equation and the
corresponding wave functions of the DE for the MR potential
coupled with a Coulomb-like tensor under the condition of the
pseudo-spin symmetry using the parametric generalization of
the Nikiforov-Uvarov (NU) method [6]. Oktay and Sever
obtained an approximate analytical solution of the DE for the
Yukawa potential under the pseudospin symmetry condition
using the asymptotic iteration method [7]. Aguda obtains the
approximate analytical solutions of the DE for an improved
expression of the Rosen-Morse potential energy model,
including the Coulomb-like tensor under the condition of spin
and pseudospin symmetry [8]. Jia et al. explored the
analytical solutions of the DE with the spin symmetry for the
improved MR potential energy model and presented the
bound state energy equation and the corresponding upper and
lower radial wave functions [9]. Yanar and Havare spin and
pseudospin symmetry are obtained by solving the DE with
centrifugal term Dirac spinors and energy relations with
generalized MR potential using the NU method and also the
Pekeris approximation to the centrifugal term [10]. Wei et al.
(2008) studied approximately the bound state solutions of the
Klein-Gordon equation with the MR potential [11]. Taskin
[12] investigated approximately the bound state solutions of
the DE with the MR potential within the framework of the
spin  symmetry and pseudo-spin symmetry concepts.
Recently, Ahmadov et al. (2022) presented the bound state
solutions of the DE with spin and pseudo-spin symmetries for
the combined MR potential with Yukawa-like tensor
interaction in the framework of supersymmetry quantum
mechanics and NU methods [13]. It should be noted that there
are other studies of MR that we mention [14, 15, 16, 17]. The
objective of this work is to calculate the new relativistic and
nonrelativistic energy eigenvalue for the combined MR and
Yukawa tensor potentials using an  unperturbed
hypergeometric function with a centrifugal approximation
factor within the framework of the extended symmetries of
relativistic and non-relativistic quantum mechanics. For this,
we develop a mathematical model using the unperturbed
Dirac spinor to find the new energy eigenvalue. It is important
to refer to previous studies that we have carried out in recent
years related to MR potential, but in another context, we
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mention it. Very recently, we have studied the new
generalized Schibberg and MR potentials within the
generalized tensor interactions in the framework of three-
dimensional extended QM symmetries [18]. In 2021, we
investigated the bound state of deformed KGE and SE under
the modified equal vector and scalar MR and class Yukawa
potential (CYP) in relativistic and nonrelativistic extended
QM symmetries [19]. In the same context deformed (KGE
and SE), we carried out a study on, modified MR [20] and
modified MR plus quadratic Yukawa potential [21] in
addition to the modified MR and Yukawa potential [22].To
the best of my knowledge, no researcher has addressed the
combined MR and Yukawa tensor potentials in the
symmetries of deformed Dirac theory 3D-RNCQS. I hope that
through this study we will discover more investigations at the
sub-atomic scale and achieve more scientific knowledge of
elementary particles in the field of Nanoscales. We aimed to
shed more light on combined MR and Yukawa tensor
potentials within the framework of an extended space that

contains large  symmetries based on the new
postulate [q"?7 ¢$*"V] # 0and[z >V 2™ ] £ 0 in

addition to the generalized postulate [q{™"; 7S] # 0
(see below equations ). The wide interest of researchers in the
field of noncommutativity came as a result of it being a strong
candidate alternative to solve many of the problems that have
emerged strongly such as quantum gravity, string theory, and
the divergence problem of the standard model [22, 23, 24, 25,
26, 27, 28, 29, 30, 31]. NC of space-space and NC of phase-
phase play an important role in changing the physical
properties of a lot of quantum physical systems, and they have
achieved interesting successes in recent years. The NC
properties idea is not new but goes back decades and was
suggested by Snyder [32, 33] in 1947, and its geometric
analysis was introduced by Connes in 1991 and 1994 [34, 35].
Seiberg and Witten, extend earlier ideas about the appearance
of NC geometry in string theory with a nonzero B-field and
obtain a new version of gauge fields in noncommutative
gauge theory [36]. Among the potential goals of NC
deformation of space-space and phase-phase is the emergence
of new quantum fluctuations capable of canceling the
observed unwanted divergences or the infinities that appear to
cause short-range effects in field theories that include
gravitational theory [37]. The research reported in the present
paper was motivated by the fact that the study of the new
combined MR and Yukawa tensor potentials (NCMRYPs) in
the 3D-RNCQS symmetries has not been reported in the
available literature. In this work, the vector and scalar
NCMRYPs model (V,,-(d),S,.-(d)) to be employed is
defined as:

V(1) LO
Vi (d) = Vyy (r) = 225228 4 0(02),
s asmr(r) LO 2 (1)
Sy (@) = Sy (r) = =5 ==+ 0(6%),
and
a mr Lp0
VE(d) = Vyy (r) = 222022 4 0(92), "

8Smr(r) Lp®
SB(d) = Sy (r) = E22B22 1 0(62),
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where (Vi (r), Smy (1)) are the vector and scalar potentials
according to the view of 3D-RQM known in the literature
[13,17]:

_ _h (B(B-Dexp(-48r)  Aexp(-28r)
er(r) ~ 2mb2 ( (1—exp(—267))2 1—exp(—26r)) ’ 3.1
S, (r) = h (ﬁ(ﬁ—l)exp(—46r) _Asexp(—zér)) ( ’ )
mr ') = 2Mb2 \ (1—exp(—2671))2 1—exp(=261)/"’
Or a convenient form for the original expression [2]:
_ _ exp(areg)—1 2
Vir () = D, (1 exp(ar)—l) ’ (3-2)

where § = % is the screening parameter while A/A; and 8

are parameters associated with the height of the potential,
(d and r) are the distance between the two particles in the
deformation of Dirac theory symmetries and QM symmetries,
respectively. The two couplings (L® and L,®) are the scalar
product of the usual components of the angular momentum
operators L(Ly, Ly, L,)/Ly(L3, L, 1%) and the modified
noncommutativity vector @(0,,, 6,3, 6;3)/ which present is
the noncommutativity elements parameter. In the case of the
NC-quantum group, the noncentral generators can be suitably
realized as self-adjoint differential operators ( q(Sh D lshiy
appear in three varieties the first one is the canonical_structure
(CS), the second is Lie structure (LS) and the last corresponds
to the quantum plane (QP) in the representations of
Schrédinger, Heisenberg, and interactions pictures, obeying
the following set of commutation relations (we have used the

natural units h=c=1) (see, e.g.;
[38,39,40,41,42,43,44,45,46,47]):
xlgs,h l)’ 1Eshl) _ lh5 N [q(shL) (shL)] lheff
In QM_sy. In DDT _sy.
(4.1)
and
[ (shl) (shz)] =0> [q(shl)'%(/shz) )
6,y 1 My € IC For CS,
=l ifg$"M  f) €ICForLS,  (4.2)
iC10 g qS"): ¢ € IC For QP.
with q(”“) (g5, 4% q})and T[(Shl) (mg, mh, m)) are the

generalized coordinates and the corresponding generalizing
coordinates in the 3D-RNCQS and 3D-NRNCQS symmetries
while IC denotes the complex number field while x(s’”)
(x5, xt,xt) and p(s’”) = (p5.pl.p.) are corresponding
coordinates in the 3D-RQM and 3D-NRQM symmetries.
Furthermore, the usual uncertainty relation corresponds to the
LHS of Eq. (4.1) will be extended to become two uncertainties
in the following formula in the new form symmetries as
follows:

. . hé
|Ax‘(ls,h,L)Ap1(/S.h,l)| > % =
. A1 hersd
| Aq!(ls,h,t) AT[,ES'h'l)| > @ (5.1)
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and
‘ |6,v|/2 For CS,
|Aq(sh1)Aq1(/5,h'l)| > f#v/Z For LS,
CHV/Z For QP.

(5.2)

» are present the following average values,

Here f,,and C,
n (Shl) d 3 1]5 (s,h,i) _(s,hi) tivel
|Zn 1y | an |Z,,,,g wdy s respectively.

The uncertainty relation in Eq. (5.1) is obtained as a result of
the generalization of LHS Eq. (4.1) to RHS form while the
second uncertainty relation in Eq. (5.2) is the result of the
deformation of space-space that appears from RHS of
Eq.(4.2) that is divided into three varieties. We extended the
modified equal time noncommutative canonical commutation
relations (METNCCCRs) to include the Heisenberg and
interaction pictures in 3D-RNCQS and 3D-NRNCQS
symmetries. Here h,qr = h is the effective Planck constant
Ny = w0 (6 is the non-commutative parameter and ¢, is
just an antisymmetric number ¢, = —¢,, =1 with u#v
and &, = 0) which is an infinitesimal parameter if compared
to the energy values and elements of antisymmetric (3 x 3)
real matrices and &, is the Kronecker symbol. The symbol *
denotes the Weyl-Moyal star product, which is generalized
between two ordinary functions f(x)g(x) to the new
deformed form f(q)g(q) is mapped onto the product of
symbols of operators f(x) * g(x), in the symmetries of
deformation space-space symmetries, called the star-product
determined by (see, e.g.; [48]):

fG)*g(x) =
exp(is“"@@,faj‘) (fg)(x) For CS,

xS0 g, (187, iaaf)) (Fg)(x) For LS,

exp ( (6)

[iq® 22k f (u, v)g (', v")]., . For QP.

With

1
In (k,p) = _kupvflgw + gkupv(pn n)flw m

In the current paper, we apply the MASCCCRs in the 3D-
RNCQS and 3D-NRNCQS symmetries, which allows us to
rewrite to the following simple form at the first order of
noncommutativity parameter ¢#V@ as follows [49, 50, 51, 52,
53, 54, 55, 56, 57, 58]:

(f*g)x) = exp(ie"0050y) (fg)(x) = (fg)(x) —
0 f O gt 0(62) )

The indices u,v = 1,2,3 and 0(62%) stand for the second
and higher-order terms of the NC parameter. Physically, the
second term in Eq. (7.1) presents the effects of space-space
noncommutativity. The main aim of the paper is to investigate
the (k,[)-states solutions of deformed DE and deformed
Schrédinger equation (DSE) with the NCMRYPs model in the
symmetries of 3D-RNCQS and 3D-NRNCQS symmetries,
within the frame of parametric Bopp's shift method. The
present paper is organized as follows. The first section
includes the scope and purpose of our investigation, while the
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remaining parts of the paper are structured as follows. A
review of the DE with the combined Manning-Rosen and
Yukawa tensor potentials is presented in Sect. 2. Sect. 3 is
devoted to studying the DDE by applying the usual well-
known Bopp's shift method and the like Greene-Aldrich
approximation for the centrifugal term to obtain the effective
potentials of the NCMRYPs model in 3D-RNCQS
symmetries. Furthermore, via standard perturbation theory,
we find the expectation values of some radial terms to
calculate the corrected relativistic energy generated by the
effect of the perturbed effective potentials 2.9 (r) and

pert
Aps (1) of the NCMRYPs model, we derive the global

corrected energy with the NCMYPs model. In the next
section, we obtain the nonrelativistic limit and consider the
composite systems such as molecules made of N =2
particles of masses m,(n = 1,2) in the frame of 3D-
NRNCQS symmetries are considered. Sect. 5 is reserved to
study the relativistic and nonrelativistic special cases that can
be generated from the NCMYPs model. Finally, the
conclusion is given in Sec.6

I1. AN OVERVIEW OF DE UNDER COMBINED
MANNING-ROSEN AND YUKAWA TENSOR
POTENTIALS

For a deeper understanding of the relativistic interactions of
fermion particles that interacted with NCMYP's model in
extended Dirac theory, it is useful to recall the eigenvalues
and the corresponding eigenfunctions that influenced this
system within the framework of relativistic quantum
mechanics known in the literature. In this case, the system is
governed by the basic equation:

{HB’"

here HJ'" is the Dirac Hamiltonian operator, M is reduced
rest mass, p = —ikV isthe momentum. The vector potential
Vi () due to the four-vector linear momentum operator A*(
Vi (r), A = 0) and space-time scalar potential S,,,,- () due to
the mass, E,, is the relativistic eigenvalues, (n, k)
representing the principal and spin-orbit coupling terms,
respectively. The tensor interaction U(r) equal to

(—V0 exp(r—&”))l V, denotes the strength of the interaction and

§ is the screening parameter, a = anti_diag(t;,t;), B =
diag(l,x2, —I,x2) and t; are the usual Pauli matrices. Since
the combined Manning-Rosen and Yukawa tensor potentials
have spherical symmetry, the solutions of the known form
Fnk(r)
Wi (r,0,6) U fm(®9)
2 @)= ) '
(DY (0,9)
represent the upper and lower components of the Dirac
spinors W, (7, 6, ¢) while Y, (6, ¢) and lerfl,, (8, ¢) are the

spin and pseudospin spherical harmonics and (m, mp) are
the projections on the z-axis. The upper and lower
components Fg.(r) and G () for spin symmetry and

H{)nr nk (T, 9' ¢) = Enkl‘Unk (T', 9' ¢)

=ap+ ﬁ(M + Smr(r)) —iBdU(r) + Vpp (1), 8)

Fre(r) and  Gp(r)
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pseudospin symmetry satisfy the two uncoupled differential
equations as below:

2

d
(g = kU + Dr 2+ U7 () ~ (M + Eg — 45, (0)

14
LD (L k- vo)

M —Ep + 23 +
(= B e O = 2,6

Y (r) = 0,(9)

and
2

d _
(5 = ke = Dr™2 + U7 () = (M + B}y = 45, (1)

O 0)

- s P —
(M Enk + Zmr(r)) + M+ Enk T ernr(r) )Gnk(r) 0.
(10)
Here
- 2kU(r) — dU(r)
U2 () = 2O 3 LD g2y, (11)
That can be expressed analytically as,
t—s/ _ pFexp(=6r) + exp(—=67) exp(—267)
Ugps P () = B* == F Vo ——— —V§—7—
(12)

with B¥ = (=2k F1)V, while
AP (1) = V. (r) are determined by:

2o () = Vi (r) and

s _ _h (B(B-1)exp(-48r)  Aexp(=28r)
L () = 2Mb2( (1-exp(-261))? 1—exp(—25r))' (13)
p
and 2@ — o = AP = ¢, for spin sy.
and
D ok B(B—-1) exp(—46r) _ Aexp(—26r)
A (1) = 2Mb2( (1-exp(-261))2 1—ex1’(—25r>) (14)

d dz’;‘—:(r) =0 = X5, = Cps for p-spin sy.

We obtain the following second-order Schrddinger-like
equation in 3D-RQM symmetries, respectively:

2 g—
[;— —k(k + Dr2 + UZ55() — A5, (M — E5, +
50 )] i) = 0 (15)
and
[ﬁ — k(= Dr2 + U257 () — (M + ED, -
dr? eff nk

8 () B, | 6B =0 (16)

with k(k —1) and k(k + 1) are equals to lp(lp — 1) and
I(1 + 1), respectively. The authors of refs.[13,17] using both
the  Nikiforov-Uvarov method and Greene-Aldrich
approximation for the centrifugal term to obtain the
expressions for the upper and lower components F3, (r) and

GP ( ; ; (Vak/2501) (4 _
(1) as hypergeometric polynomials P, (1-22)

and Pn(v;’"k/z'z’l’"k)

(1 —2z) in 3D-RQM symmetries as,
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F3(s) = Cosvhi(1 — 2) (162 p@ i) (1 _ 27) (17

and

2vl . 1n
6,(5) = CP, 21 — ) (148b)r2p(nkine)

1-22),
(18)

here z = exp(—267), vir, {iks
by:

1 1 H
Vpnk and e are given

Vi = 55 VM? = Ext — Cgs(M — E3),
(o =1+ 4k(k+ 1) + 45, /52,

{ 1 19
N L R

Conke = \/1 +4k(k — 1)+ 47, /82,
With ASk =M + ES CSE’ Ap =M - Ep - CPS While

Cs, and CP are the normallzatlon constants. For the spin

symmetry and the p-spin symmetry, the equations of energy

are given by [13,17]:
M? — E3;

— Cgs(M — E3y) = 462

2
BB-DAS,

AT 1
oM —k(k+1)-n(n+1) —+k(k+1)+

2M ' 20)
A
2n+1+2m
and
2 p2 o
M? —E + Cps(M + Ep ) = 46
2
n _1aP
Afﬁk_k(k—l)—n(n+1)\/%+k(k_1)+%
(21)
_1aP
l 2n+1+2\/%+k(k—1)+% J

Later, we will need another formula for each of the upper and
lower components F3,(z) and G, (z). We will use the
transform expression of Pn(“"’b")(l — 2z) in the following
form:

(an,bn) _ I'(n+an+1)
B v -22) = n!F(a:+1) 2

1,1+ a,, z).

Fi(-n,n+a, + b, +
(22)

This allows us to reformulate them in terms of the generalized
hypergeometric function ,F;(—n,n+2vk, + {4 + 1,1+
2vi,z) and LF (-nn+ 2V + Cpnie + 11+ 2Vp 0, 2)
as follows:

F3(s) = Cis"ne(1 — 2)(H6nid/2 JFy (—n,n + 2v}, +

e + 1 14 2v},, 2), (23)
and

G2 (s) = C"0z"nk (1 — 2)(1¥nk)/2 JF (=n,m + 20, +
Ok + L1+ 2V, 2), (24)
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s I(nr2vyyr) p I(n+2vpmct1)
nk n‘F(ZV +1) nk n|r(zvpnk+1)
lower component G, (s) of spin symmetry and the upper
component FL (s) of p-spin symmetry are obtained as:

here Cpf = , CF = . The

( (;r+——U(T)>FSk(z)
G?ik(z) - M+ES, —Cs
nk (25)
<£—;—U(r>)c”k(z>
P
Fh(2) =——"——

_gP
M Enk+Cp

I11. THE NEW SOLUTIONS OF DDE UNDER
NCMRYPs IN 3D-RNCQS SYMMETRIES

A. Review of Bopp's shift method

Let us begin in this subsection by finding the DDE in the
symmetries of deformation Dirac theory under the
NCMRYPs. Our objective is achieved by applying the new
principles that we have seen in the introduction (Egs. (4) and
(7)), summarized in the new relationships between
MASCCCRs and the notion of the Weyl-Moyal star product.
Thus, these data allow us to rewrite the usual Dirac equation
in Eq. (8) in the 3D-RNCQS symmetries as follows:

(ap + B(M + Sy (1)) — iadU(r)

~(Enie = Vonr () ) * Wy (,6,¢) = 0.

(26)
In 3D-RNCQS symmetries, the upper and lower components

E3.(r) and G}l’k(r) satisfying the following second-order
differential equations:

- dq2? _2 yt—s
o7 ke + Dr2 + U7 ) ES,(n =0, (27)
—Ay(M — ESy + 25, (1))
and
—k(k— Dr 2+ U7 (r
—=—k( ) err (1) «GP (=0 (28)
- (M +ED, — 40, (1) A

There are two approaches to including non-commutativity in
quantum field theory: The first method is represented by
rewriting the various NC physical fields such as the spinor
W,.;, KG operator &,,;, antisymmetric bosonic tensorF ,zand
tedrad fields e; in terms of their corresponding fields
(Wnt, Py €2, Fap, ... ) in the known quantum space in the
literature, in proportion to the non-commutative parameters
0(6,,,0,3,6:3)/2, which is similar to the Taylor
development [24,59,60,61,62,63,64] while the second method
depends on reformulating the non-commutative operator
(g, ) with its view of the quantum operators (g, ) known in
the literature and the properties of space associated with the
non-commutative parameters 0(6,,,0,3,6,3)/2. Itis normal
for the physical results to be identical when using either of
them. It is known to specialized researchers that Bopp had
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proposed a new quantization rule (x,p) =(q = x — éap, =

(q=
x,q=p+ éax) which is called Bopp's shifts method (BSM)

[64,65,66,67]. This quantization procedure is called Bopp
quantization [68]. The Weyl-Moyal star product f(x,p) *
g(x, p) induces BSM in the respect that it is replaced by

flx—- p,p +- ax) * g(x,p) [69]. This, allows us to obtain

p+ éax) instead of the usual correspondence (x,p) —

[k(k + Dr=2 + U275 ()] * Fie(r) =

[k(k + 1)d=2 + U2F° ()] F5 (),

eff
(M = Exie + Z5r (1) % 3 (1) =

(M = E3jc + 5 () Fe (1),
[k = Dr2 + V2P (]« 6, () =
[k(k — 1)d~2 + U2 P (@)]GE, (),
(M +ED, — 45,1 + 6B, () =

(M + ED, — a0, (@)  GL, ().

The BSM has achieved great success when applied by
specialized researchers to the four basic equations that
correspond to the relativistic Schrodinger equation (see,
e.g.;[70,71,72]) and the other three relativistic equations

represented by the Klein-Gordon equation  (see,
e.9.;[73,74,75,76,77,78,79,80]), Dirac  equation  (see,
e.g.;[81,82,83,84,85,86,87,88,89,90]) and the Duffin-

Kemmer-Petiau equation (see, €.g.;[90,91,92]). In addition to
some recent related research (see, e.g.;[93,94,95, 96, 97,98]).

It is worth motioning that the BSM permutes us to reduce Egs.
(27) and (28) to the simplest form:

—k(k+1)d2+U0°(d)

eff
| _A‘flk(M -

FS =0,
ESy + 25 () | @

(29)

and

— k(k = 1)d™2 + U7 (d)

GP.(r)=0.
- (M + Epy — qur(d)) A

(30)

The modified algebraic structure of noncommutative
covariant canonical commutation relations with the notion of
the Weyl-Moyal star product in Egs. (4) becomes new
METNCCCRs with ordinary known products in literature as
follows (see, e.g.; [64,65,66,67]):

Jh, /R .
g2, 0] = thepr6y
(s,h, L) (s,h,0) ; (31)
[0, @] = ingy.

In the symmetries of 3D-RNCQS, the generalized positions

and momentum coordinates ¢$*? and n(**" are defined
as:
q(shl) (s,h,i)_z3 Muv _(s,h0)
# *u v=1 2 00 (32)
(shi) _ . (shi)
T, =p,
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This allows us to find the operator d? equal to [81, 82, 83, 84,
85, 86, 87, 88, 89, 90]:

L0 for spin symmetry

d?=r%-
L, 0 for p-spin symmetry

+ 0(6?), (33)

VE.(d), UZEP(a),

eff
the 3D-RNCQS

while the new operators X;.,.(d),
k(k+1)d™? and k(k—1d? in
symmetries, are expressed as:

a)jmr (r) Le

Lo (d) = 25y (r) — - +0(6?),

A, (d) = A5, (r) —
yt—s yt—s
Uepr™ = Uzpp (1) =
eyff”(d) = 3,ffp( r) — +0(@2)
kk+1)d?2=k(k+1r 2+ k(k + 1)r‘4L0 +0(0?),
k(k — 1Dd™% = k(k — Dr=2 + k(k — 1)r~*L,0 + 0(6?).

(’) L o 22+ 0(62),

aU
eff (T) L@ + 0(02)

6Ueff (r) L,0

(34)

Substituting Egs. (34) into Egs. (29) and (30), we find the
following two like Shrodinger equations:

d? _ k(e+1
LMD L U2 = A((M = By + Egr (1) —
ZhT )] Fae@) =0, (35)
and
d? k(k—1
R U0 — (M + B, — 45, () Ay -
a6k =0, (36)
with
avYtsm)
pert _%err 1 k(k+1) 6):mr(r)(r) Ank
2 ( ) - ( or 2r+ r4 or 2r LG
(37)
and
auYiP () _ P
pert _TVeff 1 k(k—-1) _ 045, (1) Ak
A ()_< ar 2r+ r4 ar 2>L@(38)

By comparing (Egs. (9) and (10)) and (Egs. (35) and (36)), we
observe two additive potentials ZP<*(r) and APSC(r).
Moreover, these terms are proportional to the infinitesimal
noncommutativity parameter . From a physical point of
view, this means that these two spontaneously generated
terms 27 (r) and  APSTE(r) as a result, the topological
properties of the deformation space-space can be considered
very small compared to the fundamental terms 25, (r) and

AP (1), respectively. A direct calculation gives % and
quYt=s/v
SWerr @ s tollows:
or
055 () _ 26B(B—1)  exp(=49r)
or Mb?2 (1 — exp(—261))2
4 2B6(B—1)  exp(—66rT)
2Mb%? (1 —exp(—261))3
E_A exp(—26T) 6_A exp(—46T) (39)
Mb2 1—exp(-26r)  Mb? (1—exp(-261))2 "’
and
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<L 5(B+ IV )exp( &1) ZBi expi;&r) T
(—6)5[/0 exp(r o) + 26V02 exp(rzz&r) + 2V02 exp(;zﬁr) ) (40)

Substituting Egs. (39) and (40) into Egs. (37) and (38), we
obtain spontaneously generated terms 257 (r) and APt (r)
as follows:

) = (8B = Vo)
exp( 28r) 5V2 exp( 3261”)
2r
6[3([3‘ DAy exp(=48r)  BS(B-1)A5,
Mb? r(1—exp(—281))? 2Mb?
JAAnk exp(—-281) SAAflk exp(—4687r)
2Mb? r(1—exp(—267)) 2Mb?2 r(l—exp(—er))Z

_exp(—6r)
r4
exp(—28T)
Ve ——
exp(—66T)
r(1—exp(—267))3

k(k+1))L(E) +0(6%),
(41)

exp( 6r)

and

exp(— 6r) . exp(—6r) +

t
A =
+62V,
8B(B-1)AL,

Mb?
_8AAl,  exp(—267)
2Mb? r(1—exp(-2671))

(5(B* + V)< ++B

exp( 28r) 6V2 exp( 26r) VZ exp(— 26r)
2r r4
exp(—487r) SB(ﬁ—l)Ank exp(—68T)
r(1—-exp(—26r))? - 2Mb? r(1—exp(-267))3
84N, exp(-46r) k(k 1)
T 2mb? r(1—exp(—25r))2

(42)
For spin symmetry, we first consider Eq. (35), which contains
the new combined Manning-Rosen and Yukawa tensor
potentials in the deformation of Dirac theory symmetries. It
can be solved exactly only for k =0 and k = —1 in the
absence of tensor interactions V, =0, since the two
centrifugal terms (proportional to k(k + 1)r~2 and k(k +
1)r~*) vanish. In the case of arbitrary k, an appropriate
approximation needs to be employed on the centrifugal terms.
We apply the following new approximation which was
applied by Greene and Aldrich [99]:

1
28e0T 2622
1-e-26T7 T 1-7°

1 48272 48?2z 1

= e -=
r? (1_3—26r)2 (1-2)? r

(43)

For p-spin symmetry, we now consider Eq. (36) and will
follow similar steps with the spin symmetry case in the
deformation of Dirac theory symmetries. Same as before, Eq.
(31) cannot be solved exactly for k = 0 and k = 1 without
tensor interaction, since the two centrifugal terms
(proportional to k(k — 1)r~2 and k(k — 1)r™*). Applying
the approximations Eq. (43) to the centrifugal terms of Egs.
(41) and (42), the general form of the additive potentials

Pt (2) and AP (z) will be as follows:

pert 25 2° 23 4s 25/2
2 ( ) (Xnk (1 Xnk (1-2)* + Xnk (1-z + Ank (1-2)3
Z
+Xnk (1- 2)4 + Xgi (1- 2)4 + Xnk (1 )LG + 0(92)
(44)
and
pert z2 2p z%/2 3p z3/2 4p 252
A ( ) (Xnk (1-2)3 + Xnk (1-z + Ank (1-2)2 + Xnk (1-2)3

6p 2’
Xnk (1- 2)4

+ Xk )4)L 0 +0(6?),
(45)

+Xnk (1- 2)4

with

Lat. Am. J. Phys. Educ. Vol. 19, No. 4, Dec., 2025
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Xk = 48*(B™ — Vo), xpb = 48*(B* + V)
X% = 1685*B~, B2 = 166*B*,
82 AAn 8244
x5 = — (264, + ), i = 264V, — ok,
26288 1)An 52445
) gi = Tk — 85412 — R k )
ap _ 202BB-DAy, g onyyn _ S2AMy
nk Mb?2 0 mMb2 '
Xk = Koy = —168*VZ,
6s _ _ 2B82(B-DA5, ep _ _ 2B8%(B-1Ap,
XBrk = T mz Ak T T T opz
X355 =168%k(k + 1), xoh = 165*k(k — 1).

Furthermore, using the unit step function (also known as the
Heaviside step function 6(x) or simply the theta function) to

rewrite the global induced two potentials X% (r) and
A’;’e;ﬁr(r) for spin and pseudospin symmetries corresponding
to upper and lower components (F;5,(s) and G, (s) ) and (

EP.(s) and G?, (s)), respectively as:

L) = ERT (O ER ) — ER7 (N6 (= |E 1)
B {Z Pert (1) for Uc of spin symmetry, )
Pt (1) for Lc of spin symmetry,
and

B () = 45 6 (|En P |) — A3 (6 (=[x )

_ { AP (r) for Uc of p-pin symmetry , 48)
AP (1) for Le of p-spin symmetry.
Where the step function 8(x) is given by:
_(1forx =0,
() = {0 otherwise’ (49)

Notably, the results yielded by the Greene and Aldrich
approximation, for small values 6&r << 1, are in good
agreement with those obtained using other methods. We have
replaced the terms k(k + 1)rv~* and k(k — 1)r~* with the
approximation in Eqg. (37). The combined Manning-Rosen
and Yukawa tensor potentials are extended by including new

additive potentials Z2*(r) and AR (r) expressed to the

5/2 3/2 5/2 3 7/2

22 z

(1-2)3" (1-2% (1-2? (1-23 (1-2* (1-2)*

radial terms and

(1 remers to become the newly combined Manning-Rosen and

Yukawa tensor potentials in 3D-RNCQS symmetries. The
generated new two effective potentials X2 (r) and APer(r)
are also proportional to the infinitesimal vector @. This allows
us to consider the new additive parts of the effective potential
Pt (r) and APSTC(r) as perturbation potentials compared
with the main potentials Z$,,.(r) and 4% ..(r) which are also
known with the parent potential operator in the symmetries of
3D-RNCQS, that is, the two inequalities X2 (r) <<
23.(r) and AP (r) << AP, (r) have become achieved.
That is all physical Justlflcatlons for applying the time-
independent perturbation theory become satisfied to calculate
the expectation values of previous radial terms. This allows

http://www.lajpe.org
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us to give a complete prescription for determining the energy
. th .

level of the generalized (n, 1, s, 1, s,,m,m,) " excited states.

B. The expectation values under the NCMRYPs in the 3D-
RNCQS for spin symmetry

In this subsection, we want to apply the perturbative theory,
in the case of deformation Dirac theory symmetries, we find

2 \s—mr
the expectation values M3 () = <(1i—z)3> s M3 sy =
(nlms)
< 25/2 >S—mr MS—mT = < z3/2 >S—mr somr
(1-2)% (nims) 3(nlms) (1-2)2 (nims) 4(nlms)
45/2 \S™MT B 43 \S—mT ~

(=) o M=) M =

(1-2)* (nlms) A=2*/ (nims)

<z7/2 >s—mr — < 22 >s—mr for th )
an = (—— or the spin

(a-2)* (nlms) 7(nims) (1-2)* (nlms)

symmetry taking into account the unperturbed upper
component F;5, (r) which we have seen previously in Eq. (23).
Thus after straightforward calculations, we obtain the
following results:

+o0
Sy = Cu” f 222 (1 — 2)nk 2 [2F, (-n,n +
+o0 1 1
Seims) = Crie . z2nk*3/2(1 — z)%nk=3 [2F; (—n,n +
2vi o+ ¢+ 1+ 20k, 2)]%dr,  (50.2)
— 2 to 1 1
;(nr?r;s) = 1711; o z2Vnit3/2 a- Z){nk_l [2F,(—n,n +
vl + ¢+ 1,1+ 2v),, 2))%dr, (50.3)
4+
Z(_nr?rzs) = 1¥I§2 . sz"llk+5/2(1 - Z)grllk_z [2F,(-n,n +
2V + G + 11+ 2vE,, 2))%dr, (50.4)
4o N .
Saiims) = Cnic” . z2nk*3(1 — z)n3 [2F (—=n,n +
2V + O + 11+ 21, 2))%dr, (50.5)
+o0 1 1
g(_rm;s) = C;Z,fz o z2Vnit7/2 1- Z)Z"k_3 [2F;(—n,n +
2vi + ¢+ 151+ 20, 2))dr, (50.6)
and
+o0
Tanims) = Cik* J 222 (1 — z)%n=3 [2F, (—n,n +
Vi + e+ 1+ 20, 2))%dr. (50.7)
We have used useful abbreviations (R)(,/ms) instead to

average values (n, [, m|R|n, [, m) to avoid the extra burden of
writing equations. Furthermore, we have applied the property
of the spherical harmonics, which has the form

Y0, $)Y™ (6, ) sin(8) dOdD = 811/ Symm-
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Introducing the change of variable z = exp(—26r). This
maps the region 0 <r <o to 0 <s <1 and allows us to

obtain r = —1/2% , and transform Egs. (50,i = 1,7) into
the following form:

s—mr Cnliz A 2vi 42-1 Zl 2
_ _Cy v _ _
1(nlms) — 55 z%"nk (1 = z)Snk [2F1 (—n,n+

2V + O + 11+ 2vE,, 2)]2dz, (51.1)

s—mr Chic: + 2v}, +5/2-1 ¢t.—3

2(nlms) — 28 z2Vni*s/ (1 — z)énk [2F1(—n,n +
2Vhe + G + L1+ 2vyy, 2)]%dz, (51.2)

s—mr Cnliz 1 2vl,+3/2-1 -1

3(nlms) — ;l(g f z%Vni*3/ a- Z){nk [2F1(_n;n +

2vnie + e + L1+ 2y, 2)dz, (51.3)

nsz +1
S—mr

4(nlms) — Z; fo sz}lk+5/2_1(1 - Z)Z}‘k_z [2F,(—n,n +

v+ 4+ 1,1+ 2v),, 2))%dz, (51.4)
Mg = Gk " 22nct3=1(1 — 7)ok~ [2F; (—n,n +
5(nims) = L5 1 ’
2vh 4+ O+ 11+ 2v),, 2)]2dz, (51.5)
s—-mr _ iliz = 2v1k+7/2—1 1— 4'1k—3 2F (—
6(nims) — 55 f z=m ( Z) n [ 1( n,n+
0
2vh + e+ L1+ 2v)y, 2)]2dz, (51.6)
and
nsz +1
75(_nr;l‘r:15) = C;—:; ZZV}IkJrZ_l(l - Z){rllk_3 [2F;(—n,n +

2V + e+ 1420, 2)]%dz . (51.7)
We can evaluate the above integrals either in a recurrence way
through the physical values of the principal quantum number
(n=0,1,..) and then generalize the result to the general
(n,1,5,1,,5,m,m,)" excited state or we use the method
proposed by Dong et al. [100] and applied by Zhang [101], to
obtain the general excited state directly. We calculate the
integrals in Eqs. (43,i = 1,7) with the help of the special
integral formula:

+1

j 21 - 2P, Fi(—nn+ B +a—2;2a +1,2),]%dz
0

(-DI(n+a+p)
=n! n a
n: F(a + 1))F(ﬁ + 1) Zq:o (q+a)r(n-q) 'q \r(q+a+p+1)

sB(—nq+an+a+pB;a+1,q+a+pB;1), (52)

. . n (c)n(e2)n(n
here 3F,(cy, ¢, {;¢3, 7+ &;1) equal to Z"ZO—(Ca)nn!(HS)’

the symbol (n + a + ), denotes the rising factorial or

r(n+a+p+q) . .
Pochhammer symbol et while I'(§) denoting the

usual Gamma function. By identifying Egs.(51,i = 1,7)
with the integrals in Egs. (52), we obtain the following results:
Ss—=mr —
1(nlms) —
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n

ﬁ%k (_1)q(n + Knk)q

Zq;o @+vi+2(n—q)'q'T(q+Kpe + 1)

3F,(—n,q + 2vi, + 2,n + Ky, 2vi, + 3, + Ky + 1; 1), (53.1)

s—mr  _
2(nlms) —
n

2 B (=1)A(n + Ky — 1/2),

o @+ 2y +5/2)(0 = @)1 q' T(q + Kn +1/2)
sFo(—n,q + 2vi, +5/2,n 4 Ky — 1/2,2vE, + 7/2;q + Ky +
1/2;1), (53.2)

s—mr

M3(nlms) =
Z B (=D)I(n + Ky + 1/2),
— (g +2va +3/2)(n = D1 T (q + K +3/2)

3F(—n,q + 2vk, +3/2,n+ Kpp + 1/2,2v2, +5/2; 9 + Ky +
3/2;1), (53.3)

n

s—mr _
4(nlms) —
n

Z B (=19 (n + Ky + 1/2),
(q+2vi +5/2)(n— ' q' T (q + Kp +3/2)

sFo(—n,q 4+ 2vi, +5/2,n 4+ Ky + 1/2,2vE, + 7/2;q + Ky +

3/2;1), (53.4)
Mg(_nrlnr‘rrls) =
n
Z B (=1 + Kni)g
@+2v, +3)(n—'q!T(q+Kp + 1)
3B (=1, q + 2vi, + 3, n + K, 2vE, + 459 + Ky
+1;1), (53.5)
S—mr _—
6(nlms) —
1
n BE (=17 (n+ Ky + 7)q

q=0 (Q+2v,11k +%) (n—q)!q!l"(q+Knk+%)

, 7 1 9 1
3F; —n,q+2vnk+E,n+Knk+—+E;q+Knk+E;1 ,

2,2v},
(53.6)
and
;(_n"lnr;s) =
n
Z B (=D (n + Ky — 1)
=, @+ 2v+ 2 —@)g (g + Kn)
3Fo (=1, + 2va + 2,1+ Ko — L2V + 35 + K 1),
(53.7)
with
Ko = 2V + S
Cnliz
ﬁ‘r]ik = ;5 n! I—'(ZV.,],:k + 3)1—'(6711:1( - 1)’
2 _ Crrzlliz 1 1
Bl = 55! T @V + 7/2T Gy = 2),
3 _ ngz ' 1 1
B3, = 05 n! T (2vy + 5/2)T (),
< Cnsz (54‘)
B = %n! rvay +7/2rGy. — b,
s _ G 1Ir(2vl, +4 L —2
B3, = 55 ™ 'y + DI Gy — 2),
6 _ Crrzlliz 1 1
Bl = S I (v + 9/2)T Gy = 2),
7 C;Lllzz 1 1
| Bk = 55 ! T vyy + 3 (G — 2).
and
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F(n+Knk+q)
F(n+Knk) ’
rn+ Ky +£1/2+q)

K. +1/2), =
(n+ Kne £1/2)0 = —Fe ik — 1/2)

[ rn+Ky,—1+q)

K, —1), =
| @+ K= Do =—Fa Tk —1

(n+ Knk)q =

, (55)

C. The expectation values under the NCMRYPs in the 3D-
RNCQS for p-spin symmetry

In this subsection, we want to apply the perturbative theory,
in the case of deformation Dirac theory symmetries, we find

_ 2 p—mr
the expectation values Mf(n’frm ) = <—(1iz)3> .
p™MpSp (nipmpsp)
p—mr _ < 25/2 >p_mr p—mr =
2(nlpympsp) ~ \(1-2)* (nl,,mps,,), 3(nipmpsp) —
< £3/2 >p—mr p—mr < 25/2 >p—mr
1-2)2 ) a(nlymysy) = \(1-2)3 '
=2/ (niympsp) (nlpmpsp) = \(1-2) (nipmpsp)
p-mr = < z3 >p—mr p-mr =
5(nlpmpsp) — \(1-2)* (nlpmpsp)’ 6(nlpmpsp) ~
Z7/2 \P~TT p—mr _ 22 \p—mr
<(1—z)4> and M7("lpmp5p) = <(1—Z)4> for p-
(nlpmpsp) (nlpympsp)

spin symmetry with tensor interaction taking into account the
wave function which we have seen previously in Eq. (24). By
examining the two expressions of the upper and lower
components (Fy, (r) and G, (r)) shown in Egs. (23) and (24),
we note that there is a possibility to move from the
unperturbed upper component F3,(r) to the other lower
component G?, (r) by making the following substitutions:
1

e © Copo Ve ©"Pnk and Oy © G- (56)

This allows us to obtain the expectation values for p-spin

symmetry from Eqgs. (45,i = 1,7) without re-calculation, as
follows:

p—mr

) 1(nlpymys,) =
Zn ﬁ‘rz:k (_1)q(n + Krzz)k)q
0 (q +v11mk +2)(n—q)'q'T(q+ Kﬁk +1)
3F(—n,q + 2vpu + 2,0 + KB 2vi e + 359 + Ky
+1;1), (57.1)
p—mr —
2(nlymps,)
j BEE(-1)9(n+ KD, — 1/2),
= (g+2vp +5/2)(n—)'q' T(q + Kb, +1/2)
sFo (=1, q + 2vpn +5/2,n+ KB — 1/2,2v0,, +7/2,9 + KD,
+1/2;1), (57.2)
p-mr _
3(nlpmpsp) -
i Bre(—D(n+ Ky, +1/2)
0 (¢ + ZV;nk +3/2)(n—q)'q'T'(q+ Kﬁk + 3/2)
3Fo(—n,q + 2V +3/2,n + KB+ 1/2,2v0, + 5/2;,q + Kby
+3/2;1), (57.3)
p-mr _
4(nlympsy) —
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i‘ B (=1)9(n + K? +1/2)
(q+2v;nk+5/2)(n—q)! 'T(q + K2,

+3/2)

3Fo(—n,q + 2V +5/2,n + KB +1/2,2v5, + 7/2;q + K,
+3/2;1), (57.4)
p—-mr
S(nlpmpsp)
Z" Bre =D (n+ KR,
(q+2v;nk +3)(n—q)lq 'F(q+ K? +1)
3Fo(—1,q + 2vin + 3,n + Kpy, 2V + 45 + K,
+1;1), (57-5)
p—-mr
6(nlpmpsp) -
i Bre =D (n+ Kl +1/2),
= (a4 2vu +7/2)(n—)'q! (g + Ky +1/2)

sFo(—n,q + 2V + 7/2,n + KB 4+ 1/2,2v0, + 9/2;:q + K,

+1/2;1), (57.6)
and
- i BT (=1)9(n+KP, — 1),
(ntymps;) = (a+2vpu +2)(n— @) q! T (q + KE,)
312'2(—11,q + ZVpnk + 2 n+ Kp - l,ZV;nk +3;q
nk' 1) (57'7)
with
Krzl.)k vank + {pnk'
Cnpz
BYL = 2 i P (2vd e + 3) (G — 1),
Cnpz
‘3 nk_ n'I"(vanlc + 7/2)F(§pnk 2),
Cnpz
BYS = 2B P (2vd e + 5/2)1 (Chte),
CZPZ (58)
‘3 T (2vpn + 7/2)T (Gpnie — 1),
Cnpz
ﬁnk Snk g I (2vpn + ) (Gpni — 2),
Can
Bre n'F(vank +9/2)r ((p x )'
np2
Bri = 26 5 T (2Vpnic + 3)1 (G = 2).
and
( +K ) _ r(n+KE +q)
nT By r(n+k?,) "’
_ r(n+kB, +1/2+q)
(n + K X 1/2) m. (59)
p r(n+k?, -1+q)
l (n+ K3 1)q T r(n+kb-1)

D. New energy for NCMRYPs in 3D-RNCQS symmetries

The main objective underlined in this subsection is to find the
contribution resulting from topological properties based on
our strategy which we have successfully applied in previous
works and which we try to develop in every new work. We
can say that the global relativistic energy in the perspective of
3D-RNCQS symmetries produced with NCMRYPs model as
a result of a major contribution to relativistic energy known in
the literature under the combined Manning-Rosen and
Yukawa tensor potentials model in usual Dirac theory and
Lat. Am. J. Phys. Educ. Vol. 19, No. 4, Dec., 2025
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which we paved for through a quick look for the spin(p-spin)-
symmetry in Egs. (20) and (21), while the new contribution is
produced from the topological properties under space-space
deformation, which can be evaluated through several
contributions, we will address three of them. The first one is
generated from the effect of the perturbed spin-orbit effective
potentials  XP“(r) and APST°(r) corresponds to spin
symmetry and pseudospin symmetry. These perturbed
effective potentials are obtained by replacing the coupling of
the angular momentum (L and L,) operators and the NC
vector ®@ with the new equivalent couplings ( OLS and
OL,S,) for spin and p-spin-symmetry, respectively(with
0? = 0%, + O3, + 673 ). This degree of freedom comes
considering that the infinitesimal NC vector @ is arbitrary. We
have oriented the two spin-s and spin-s,, of the fermionic
particles to become parallels to the vector ® which interacted
with new combined Manning-Rosen and Yukawa tensor
potentials. Additionally, we substitute the previous new spin-
orbit couplings with the corresponding new physical form
(O/Z)Gzand (0/2)G3 , with G =J2—1*—S% and G} =
J?2 - S2 for a spin (p-spin)- symmetry respectively. It is
well known thatthe operators (H®r, J2, L%, % and J,) form
a complete set of conserved physics quantities, the
eigenvalues of the operators G2 and G; are equal to the
values:

F(].,l‘s): [](]+1)_l(l+1)—s(s+1)],

for |l —s|<j<

|1+ s]|
and

[j(j +1) - lp(lp _ 1) _ Sp(sp + 1)],

for |lp —sp| <j< |lp +sp|

F(j'lp'sp) =

that corresponding to the spin and p-spin-symmetry,
respectively. Consequently, the partially corrected energies

AESSS(n, 8, B,A,Vy,m,j,1,s) = AESS™S and
AE, P(n,6,B,A,Vo,n, ), 1y, s) =AE, P due to the

perturbed effective potentials 257 () and A7 () produced

for the (nls,l,s,)" in 3D-RNCQS
symmetries, as follows:

excited state,

AESS™S = OF(j, )X (1,6, ,A,Vy),
_ . mr 60
BE = OF (b5, )Xo (0,6, 6,A,Vo) (60)

The global two expectation values (X){s (1, 6, 5,4,V,)
and <XP>Zrzpm,,sp)(n’ 5,8,A4,V,) for a spin(p-spin)-

symmetry, respectively are determined from the following
expressions:

Xy (1,8, 8, 4,Vy) = Z Bl

s—mr
u(nlms)’

(61)
Up pyp-mr
(X0 gy 1 8- 4, V) Z Bk Mty mys
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where g7 and B! (H =1 7) are determined from Eqgs. (46)

while M, ims) and Mp(m mpsy) € determined from Eqgs.

(53,i = 1,7) and Egs. (57, i = 1,7), respectively. The second
main part is obtained from the magnetic effect of the
perturbative effective potentials Z2%°(r) and APt (r)
under the NCMRYPs model in 3D-RNCQS symmetries.
These effective potentials are achieved when we replace both
(L® and L,®) by (AXL, and ARLY ), respectively, and 0,
by AX, here ( X and A) are present the intensity of the
magnetic field induced by the effect of the deformation of
space-space geometry and a new infinitesimal
noncommutativity parameter, so that the physical unit of the
original noncommutativity parameter ,, (length)? is the
same unit of AX , we have also need to apply
(n’,U,m/|L,In,l,m) =mé,,,,8,16,n and
(n" lI'J'm;J|LIZ)|n’ lp’mp> = mp6mpmp lplp nn( l mp -
l, and =1 < m < 1) for spin(p-spin)-symmetry, respectively.
All of these data allow for the discovery of the new energy
shift AE; 97 (n,8,B8,A,Vo, A,j,1, m)=AEn?™°  and
AER? P (n,6,8,A,Vo, A, j, Lmy)= AE, 2P due to the
perturbed Zeeman effect created by the influence of the

NCMRYPs model for the (n,1,5,1,,s,m,m,)" excited
state in 3D-RNCQS symmetries as follows:

Ay’ ™ = AXX)(aims) (0, 6, B, A, Vo)m,

BERST = 2NN (8,8 A Vo), (62)

After we completed the self-energy additions resulting from
the self-deformation generated by perturbed (spin/p-spin)-
orbit interactions and the new modified Zeeman effect. We
are now in the process of reviewing another addition that is
no less important than the previous ones under the NCMRYPs
model in 3D-RNCQS symmetries. This new physical
phenomenon is generated automatically from the effect of
perturbed effective potentials Z2*(r) and 427" () which
we have seen in Egs. (44) and (45). We consider the fermionic
particles undergoing rotation with angular velocity w. The
features of this subjective phenomenon are determined by
replacing the arbitrary vector ® with yw . Allowing us to
replace the two couplings (L® and L,®) with ( yLw and
L,w ), respectively, as follows:

L 6 L w for spin-sy 63
(Lp) - (pr for p-spin-sy)' (63)

Here, we consider y is just an infinitesimal real proportional
constant. We can express the effective potentials 2347 (2)
and A77,;"°"(z) which induced the rotational movements of
the fermionic particles as follows:

N v

2 z
ymr— rot

pert (Z) = V(Xnk (1 z ) + Xnk (1 ) +
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73/2 £5/2 23

+ + + Xnn
Xnk (1 ) Xnk (1 ) Xnk (1 _ 2)4
7712 2

Z
+xss a—o" + x0 a- 2)4)Lw + 0(06?),(64.1)

and
2 . ZS/Z
A;negtrat(z) = Y(Xnk (1 ) + an (1 _ 2)4 +
23/2 75/2 . 23
+Xnk (1 ) Xnk (1 ) + an (1 _ Z)4'

+

7/2 72

+xop (12 P —+ X - )4)L ® + 0(02).(64.2)

To simplify the calculations without changing the physical
content, by applying the same principle that we examined a
short while ago, we choose the rotational velocity w parallel
to the (0z) axis (w = we,). Thus, the above equation can be
reduced to its simplified form as

7

> My Lo
1=1
14
KD g gp—mr
kz BrucM #(nipmpsp) pr}

7

US pgs—mr L
nk™u(nims) z

u=1

=yw S . (65)
UD qgp—mr 14
K Z nk MH("lpmpsp) LZ)
u=1
All of this data permuted us to produce the corrected energies
AE;{’rt‘S n,8,B8,4A,V,, Y, m ) and

E;y™P(n, 8, 8,4,V y,m,) due to the perturbed effective
potentlals Zpee % (2) and 43757t (z) which are generated
automatically by the influence of the new combined Manning-

Rosen and Yukawa tensor potentials for the (n, [, L, m, mp)th
excited state in 3D-RNCQS symmetries as follows:

Aquort_s (X)E’}ﬁms)(n S, ﬁ A, Vo)m
(agies) =70 g, w81 4 Voo | 6

It is worth noting that the authors of reference [102] studied
rotating isotropic and anisotropic harmonically confined
ultra-cold Fermi gas in a two and three-dimensional space at
zero temperature, but in this study, the rotational term was
added to the Hamiltonian operator, in contrast to our case,
where in our recent study, the two rotation operators

I (2)Lw and A7t (z)L,m automatically appear
due to the augmented symmetries resulting from the
deformation of space-space under the new combined
Manning-Rosen and Yukawa tensor potentials. For fermionic
particles with spin-1/2, the eigenvalues of the operators G2
and G, are equal to the values:
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e _ 3
4( FU’I’S)Z[J(I‘FU 12(l+1) 1

LF(], Ly, sp) = [j(j +1) -1, -1) - %] /2.

(67)

The possible values of {j} that corresponding spin-1/2 can
be taken ([ +1/2 and [, +1/2) for spin symmetry and
pseudospin symmetry, this allows us to reformulate Eq. (67)
as follows:

F(Gj=1+1/2,s=1/2)
1 l Uppolarity: j=1+1/2, 68
- E{—(l + 1) Down polarity: j = | — 1/2. (68)

and
F(j=1,+1/2,s,=1/2)

1 l, Up polarity: j =1, +1/2, 60
2 —(lp + 1) Down polarity: j = [, — 1/2. (69)
The global relativistic energy
ETT=Sn,8,B8,A,Vy,n,4,7,j,1,5,m) andE,y

(n,6,B,A4,Vo,n,A,7,j,1,,5,m,) for the case of spin-1/2 with
new combined Manning-Rosen and Yukawa tensor
potentials, in the framework of 3D-RNCQS symmetries,

. . th
corresponding to the generalized (n,l,s,1,, s, m m,)

excited with Up polarity (Up) with j =1+ 1/2 and down
polarity (Dp) with j = [—1/2 as

ETTIT}.‘T_S(nI 6! B! A! VO; 9; /1; V,]', ll S; m)

= 51,8, B, A, Vo), HX)ey (0,8, B, A, Vo) | (AR

1
I for Up withj=l+§

—(l + 1) for Dp with j = l—E

+yw)m+ = .(70)

2

and
Ene P(n,8,8,4,V0,0,4,7, ), Ly, Sp, )
=EP (n,8,B,A,V,)

mr
+(X,) (ntymysy) T 8 Br A4: Vo)

l, forUp with j=1, +%
—(lp + 1) for Dp withj = [, —%

(71)
Where Ej, and EJ, are usual relativistic energies under
combined Manning-Rosen and Yukawa tensor potentials
obtained from equations of energy in Egs.(20) and (21). We
can now generalize our obtained energies Ej”,,° and E;, "
under the new combined Manning-Rosen and Yukawa tensor

potentials which are produced with the globally induced two
potentials £F5"(r) and AP (r) for spin and pseudospin

symmetries corresponding to the upper and lower components

AR +yw)m, +

2
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(FS.(s) and G5, (s))and (FF.(s) and G?,(s)), respectively
as:

mr—-s _—
Eg—nc =

Ene 0(ERE 1) — End 0 (=1Eqe ~*1)
_ { EJ =5 for Uc of spin symmetry 72)
—E7Y"~5 for Lc of spin symmetry
and
EgZnd = Ene "O(|Enc "|) = Ene "O(=Enc 1)
B {E,ﬁr_p for UC of p-pin symmetry

_Emr—p

ne  for Lc of p-pin symmetry

. V. THE NEW COMBINED
MANNING-ROSEN AND YUKAWA
TENSOR INTERACTION IN 3D-
NRNCQS SYMMETRIES

In order to study and analyze the nonrelativistic limit, in three-
dimensional nonrelativistic noncommutative quantum
mechanics (3D-3D-NRNCQS) symmetries of the new
combined Manning-Rosen potential, two steps must be
applied, the first step corresponds to the nonrelativistic limit,
in usual nonrelativistic quantum energy. This is done by
applying the following steps, we replace:

(CES' Cps, Vo) d (0,0,0), E‘fl‘k + M d 2/1, E"ik - M d
ok + 1) - I+ 1).

nl»

This allows us to obtain the nonrelativistic energy levels as:

nr__i

nl 2u

2
24 —
[5 26%2A-1(1+1)-n(n+1)A(l,B,8) ] (74)

n+%+A(l,ﬁ,6)

Here A(L, B, §) equal to \/i +I(l+ 1) —262%B(B — 1). Now,

the second step corresponds to the transformation of the
relativistic coefficients x4 (u =1,7) under the previous
correspondence to the new nonrelativistic coefficients
el (u=1,7) of the nonrelativistic expectations values are
given by:

1 _ o2 _ 5
T & =& T 0,
3 _ _ 28%4
nlk — p2 "’
4 _ 48%B(B-1) 2524
9 & = b2 T T2 (75)
6 _ _ 2B8*(B-14A
g‘n.l - b2 )

g7, = 166*1(1 + 1).

Allows us to reexport the relativistic expectation values
(X)(nims) (. 6, B, A, Vo ) of spin symmetry in Eq. (61) from the
corresponding nonrelativistic expectation values
XY (n, 6, B,4,V,) as:

(nlms)
7
(X)nims) (0,8, B, A, Vo) = Eﬂlzg EnitMyi(nms) (76)
with
nr-mr _
3(nlms) —
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n

2,

n (=D + Kl +1/2),
(q+2vit+3/2)(n—q)!q !I"(q+K"T+3/2)

sF(—n,q +2vI¥t +3/2, n+ o+ 1/2,2vI +
5/2;q + K +3/2; 1), (17.1)

nr-mr __
4(nlms) —
n

2,

Bt (=D + K +1/2),
(@+2vit+5/2)(n—q)!q !F(q+K"r+3/2)
3F(—n,q+2vIYt +5/2, n+ 4 1/2,2vI +

7/2;q + + 3/2; 1), (77 2)
nr-mr __
6(nlms) —
n
Z w (DI + Kol +1/2),
- (q+2vit+7/2)(n—q)'q!T(q + K} +1/2)
3Fy(—n, q+2v””+7/2,n+ o+ 1/2,2v0 +
9/2;q + K} +1/2 1), (77.3)
and
nr-mr __
7(nlms) —
n
Z n (=D + Kl — 1),
= (@+2vit+2)(n— q)' IT'(q + K}
sFo(—n,q +2viit + 2,n+ KT — 1,2v) + 3;9 +
K1), (77.4)
with
— Zvnrl + (Tlll
;b” C"k Ot +5/20 (G,
e = n' reviyt+7/2)r(y - 1)'(78)
e = n' rviyt +9/2r(gt —2),
7 = nvr(2v"” +3)r(gyt - 2).
and
r(n+Kp +1/2+q)
m+ Ky +1/2), = —F(n+Knr+1/2) ) 79)
_ r(n+Kp —1+q)
(n + Dq = r(n+kj-1-1)"
This permuted expressing the nonrelativistic correction

energy AEJY .-(n,6,Vy,A,n,A,v,j,1,s,m) produced by the
new combined Manning-Rosen and Yukawa tensor potentials
as

AETT{ECTLT(TI! 6! VOI A! T]! /L ]/rj; l; S; m)
= (XY (0,8, B, A, Vo) (AR + yw)m

mr—nr 0 I Up:j=1+1/2,
OB 008, A S ) 5 21 o 0
The global nonrelativistic energy

EM (0, 8,V,,4A,0,1,v,j,1,s,m) produced with the new
Manning-Rosen potential in 3D-NRNCQS symmetries as a
result the topological properties of the deformation space-
space is the sum of usual energy E;;" in Eq. (74) under
combined Manning-Rosen and Yukawa tensor potentials in
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3D-NRNCQS symmetries and the obtained correction
AETY .(n,6,V,4,0,4,7,j,1,s,m) in Eq. (80) as follows:

ENT (0, 8,Vy,A,0,A,v,j,1,5,m)
2

1|,26%°A- 10+ 1) ~n(n + 1A B,6)
2u n+ 3+ A0S

HOOTE (0,8, 6,4,V0) [N + yw)m +
0 I Up:j=1+4+1/2
5{—(1 +1)Dp:j=1- 1/2]'(81)

Now, considering composite systems such as molecules made
of N = 2 particles of masses m,(n = 1,2 ) in the frame of
NC algebra, it is worth taking into account the features of the
descriptions of the systems in the nonrelativistic case, it was
obtained those composite systems with different masses are
described with different NC parameters [48, 49, 50]:

(s,h,0)

h,
[a5"0, a5 = i6g,, (82)
where the noncommutativity parameter 6y, is determined
from:
2
=% uisl, (83)
n=1
with py = =—F2_ and 6,53) is the parameter

of non-commutativity, corresponding to the mass particle of
mass u,, . Note that in the case of a physical system composed
of two identical particles u; = u, such as the diatomic O,
I, N2, Hz, and Ar, molecules under the effect of the new

Manning-Rosen potential, the parameter 6}5}) = 6y Thus,

the three parameters n, A, and y which appear in Eq. (81) are
changed to become as follows:

2 2 2 2 2 2

E? = (Z u%Ef'Z)) +(Z u%:"é?)) +(Z u2E® ) :
n=1 n=1 n=1

(84)

with Z¢ = (8¢, A°,¥°). As mentioned above, in the case of a

system of two particles with the same mass p; = u,, we have

nfﬁ,) = Ny, Aff},) = A,y and y,fﬁ) =y, Finally, we can

generalize our obtained nonrelativistic total energy

EScnr(n,8,m, 4,15 2°,v5,j,l,s,m) under the new

Manning-Rosen potential considering that composite systems

with different masses are described with different NC

parameters for the HCI, CH, LiH, CO, and NO diatomic

molecules as:
2

1 5 262A—1(1+ 1) —n(n+ DA B,6)

mr - _
Enc—nr =

2u n+ 5+ A0B,6)

_l_(X)mr—nr
6¢ {
2 (—

(ntms) [(ACN +y‘w)m+
1 Upj=1+1/2 ]

U+1)Dp:j=1—172] (85
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V. STUDY OF IMPORTANT RELATIVISTIC
AND NON-RELATIVISTIC CASES IN THE
CONTEXT OF 3D-NRNCQS SYMMETRIES

In this section, we are about to examine some particular cases
regarding the new relativistic bound state energy eigenvalues
in Egs. (70) and (71) and the nonrelativistic bound state
energy eigenvalues in Eqg. (81). We could derive some
particular potentials, useful for other physical systems, by
adjusting relevant parameters of the NCMRY Ps model in 3D-
RNCQS and 3D-NRNCQS symmetries, such as the new s-
wave cases and both the new Dirac and Schrodinger-
Manning-Rosen problems in 3D-RNCQS and 3D-NRNCQS
symmetries.

A. New s-wave under deformed (Dirac-Schrodinger)
equations with NCMRYPs model and Manning-Rosen
problem

If we consider I =0 and [, =0(k =—-1and k= +1 for
spin and p-spin symmetry, respectively), we obtain directly
the s-wave. The new corresponding relativistic energy
eigenvalue equations in 3D-RNCQS symmetries reduce to:

ER¥—=(m,6,B,A,Vy,6,4,y,j,1l =0,5,m)
- Es( nt <X)(n0ms)(n 8,8,4,Vp)

0 forUp withj=1/2
R +yw)m +3 { 1 for Dp with j = 1/2]’ (86)
and
Ene (n,6,B,4,V0,0,4,7,j,1, = 0,s,,m,)
=EP + (X, )( om )(nSﬁAVO)
0 forUp w1th j=1/2
[(M{ + yw)mp { 1 for Dpwithj = 1/2] (87)
with E5 _,yand E7; are given by[13]:
M? — Er§,2—1 - CES(M - Eri,—l) =
A(M+E3 _1-CsE) s 2
452 [Z—MISE-?(n+1)A_1l , (88)
2n+1+245
and
2
A(M-ED  —Cps) s
p2 p _ 2 71\4—11(n+1)/11
M? —EP} + Cos(M + EF)) = 46 YTy
(89)
While the new corresponding nonrelativistic energy

eigenvalue in Eq. (81) reduces to:

EM .0, 68,Vy,4,0,4,y,j,l =0,s,m)
1 s 2624 —n(n + 1)A(0,8,68) i
24" n4a+A0,8,6)
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0 0 Up:j=-
- (90)
+1Dp:j= —=
Here A%;, A7 and A(0,8,8) are -equals to
\/1 | BED01E, 4 ~Csx) \/1 L BE-DM-E —cps)
4 2M 4 2M

/1—262,8(/3—1) respectively. The new expectations

values (X)roms): (Xp)mr and (X)I-nT(n, 5,8, A, Vp)

(nompsp) (noms)
are determined from:

(X)noms) (0, 6, B, A, Vo) = lim(X)E’,‘flms)(n 8,B,A, V),

<XP)1(111:0mps )(n 6,B8,A,Vp) = llm( )

(X)%;g)(n 5,B8,A,Vy) = le(X)E%mﬁ)r(n 8,B,4,V,).
91)

Pl(nlympsp)

B. Deformed (Dirac-Schrédinger) new Manning-Rosen
problems:

If we consider V, = 0, our studied potential turns to the new
Manning-Rosen potential, and the new energy eigenvalue, in
3D-RNCQS symmetries, for the spin and p-spin symmetry
becomes as:
El=S(n,68,B,4,0,1,v,j,1,s,m)
e + (X>€rrll[ms) (n! 6; ﬁ; A)
1
I for Up withj :l+z
—(l+ 1) for Dp with j = l—E
(92)
and
Ene P (n,8,8,4,0,A,v,), 1y, sp,m,)

m
=E7 + (Xp)(mpmpsp)(n, 8,B,4)
l, forUp with j=1, +1
(l + 1)f0erw1th] =1,—=

AR +yw)m, + 9{

(93)
with EJS and E,\F are given by [13]:
M E"ns2 CES(M ms = 462

2

AZA"" —k(k+1) —n(n+ 1)\/ +k(k+1) 4 BB - D ;A})A"kl
[ 2n+1+2\/ +k(k+1)+AA:1n"s |

(94)
and

M? — ERP? + Cpg(M + EJP) = 462
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2

mp - —
A;llrvllk _k(k—1)—n(n+1)\/4+k(k_1)+%
I - DAY |
| 2”+1+2j%+k(k—1)+% J

(95)

While the new corresponding nonrelativistic energy

eigenvalue in Eq. (81) reduces to:

2

1|,20°A-10+1) —n(n + 1ACB,6)

Eftnr = “ou 1
" n+5+40,8,6)
+HX (AR + ya)m + 2 LU=t
yw)m+ - ,
(nims) 2|—(l+ 1) Dp:j = l—%
(96)
here ;’fks and A7;P are equals to (M + — Csg) and

(M- — Cps) respectlvely The new expectatlons values
(X)E’fums)(n 8,8, 4), (X >( Lympsy) (0B A) and
X) " (n, 6, B, A) are determmed from:

(nlms)
( X)imsy) (M, 6,8,4) = lim (X)Zl[lms) n,8,B,A,Vy),

(X)Z;lpms)(né‘ﬁA)—llm( )(lms)

(Vs 1,6, 6,4) = Lim (O (0,8,, 4, Vo).
97)

It is crucial to highlight that using perturbation theory to find
second-order corrections under the new combined MR and
Yukawa tensor potentials is ineffective because we have only
used first-order corrections of infinitesimal parameters
(6,2,y). Therefore, all the energetic corrections resulting
from the deformation of space-space are of the first order of
(6, 4,y) according to the postulates we adopted in our current
research in Egs. (4.2) and (7), this is one of the most important
new results of this research. Worthwhile it is better to mention
that for the three- simultaneous limits (6, 4,y) — (0,0,0) , we
recover the equations of energy for the spin symmetry and the
p-spin symmetry, under the combined Manning-Rosen and
Yukawa tensor potentials which are treated in Refs. [13, 17].
Through our theoretical study of the new MR potential
including Yukawa-like tensor interactions in 3D-RNCQS
symmetries based on the study of researchers, (Ahmadov et
al. and Ortakaya et al.) who clearly showed that shown that
tensor interaction removes the degeneracy between two states
in the pseudospin and spin doublets in usual 3D-RNCQS and
3D-NRNCQS symmetries, and through our current study, we
found that the effect of deformation of space-space on energy
is proportional to three infinitesimal parameters (8, 4, y). This
means that the new energy is slightly offset from its
counterpart in the literature. This confirms the conclusion
reached by the researchers in Refs. [13, 17] remains valid and
confirmed in our current research.
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have obtained the new approximate solutions
of the deformed Dirac equation in three-dimensional
relativistic noncommutative quantum mechanics, for the new
Manning-Rosen potential including a tensor Yukawa
interaction within the framework of pseudospin and spin
symmetry limits. Bopp's shift and perturbation theory
methods were used to solve the deformed Dirac equation
analytically. We have obtained the global energy eigenvalues
in terms of the quantum numbers (j, k, 1/1,, s/s,, m/m,), the
potential depths (B, 4, V;) of the studied potentials, the range
of the potentials &, and noncommutativity parameters
(6, A,y). We have analyzed the nonrelativistic solutions of the
Manning-Rosen potential. Furthermore, we have applied our
results to the composite systems such as diatomic molecules
HCI, CH, LiH, CO, NO, Oy, I, N2, Hz, and Ar.. By altering
parameters (S, A4,V,), we have obtained specific potentials
which is helpful for other physical systems such as the s-wave
of the new combined Manning-Rosen and Yukawa tensor
potentials and the new Manning-Rosen problem in 3D-
RNCQS and 3D-NRNCQS symmetries. It is worth
mentioning that, in all cases, to make the three simultaneous
limits (6,4, y) — (0,0,0), the ordinary physical quantities are
recovered in Refs. [13, 17].
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