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Abstract 
Among the significant potential that showed its great importance in the literature is what is known as the Manning-Rosen 

potential with a Yukawa tensor coupling because it has wide applications to a wide variety of physical systems. In this 

work, new Bound-state solutions of the deformed Dirac equation with improved spin and pseudo-spin symmetries are 

investigated for the new combined Manning--Rosen and Yukawa tensor potentials (NCMRYPs) in the context of three-

dimensional relativistic noncommutative quantum space (3D-RNCQS) symmetries. The new energy eigenvalues a are 

obtained using the parametric Bopp's shift method and the like Greene-Aldrich approximation for the centrifugal terms 
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 to obtain the effective potentials of the NCMRYPs model in 3D-RNCQS 

symmetries. The new energy levels are sensitive depending on noncommutativity parameters (𝜂, 𝜆, 𝛾), the potential depths 

(𝛽, 𝐴, 𝑉0) of the NCMRYPs model, the quantum numbers (𝑗, 𝑙/𝑙𝑝, 𝑠/𝑠𝑝, 𝑚/𝑚𝑝) in addition to arbitrary spin-orbit coupling 

quantum number 𝑘, radial quantum numbers 𝑛, and screening parameter 𝛿 which are known in the literature. The non-

relativistic limit is obtained and the composite systems such as molecules made of 𝑁 = 2particles of masses 𝑚𝑛(𝑛 = 1,2) 

in the frame of three-dimensional nonrelativistic noncommutative quantum space (3D-NRNCQS) symmetries are 

considered. After studying the relativistic and nonrelativistic solutions of the NCMRYPs model in 3D-RNCQS and 3D-

NRNCQS symmetries, we examine some important cases that we see as useful to the reader and the researcher. 

 

Keywords: Dirac equation; Schrödinger equation; Manning-Rosen potential; Pseudospin and spin symmetry; Yukawa 

tensor interaction; Noncommutative space; Bopp's shift method. 

 

 

Resumen 

Entre los potenciales significativos que han demostrado su gran importancia en la literatura se encuentra el denominado 

potencial de Manning-Rosen con acoplamiento tensorial de Yukawa, debido a sus amplias aplicaciones en una amplia 

variedad de sistemas físicos. En este trabajo, se investigan nuevas soluciones de estado ligado de la ecuación de Dirac 

deformada con simetrías de espín y pseudoespín mejoradas para los nuevos potenciales tensoriales combinados de 

Manning-Rosen y Yukawa (NCMRYPs) en el contexto de simetrías tridimensionales relativistas no conmutativas del 

espacio cuántico (3D-RNCQS). Los nuevos valores propios de energía a se obtienen utilizando el método paramétrico de 

desplazamiento de Bopp y la aproximación de Greene-Aldrich similar para los términos centrífugos 
𝑧2

(1−𝑧)3
, 
𝑧5/2

(1−𝑧)4
, 
𝑧3/2

(1−𝑧)2
, 

𝑧5/2

(1−𝑧)3
, 

𝑧3

(1−𝑧)4
, 
𝑧7/2

(1−𝑧)4
 y 

𝑧2

(1−𝑧)4
 para obtener los potenciales efectivos del modelo NCMRYPs en simetrías 3D-RNCQS. Los 

nuevos niveles de energía son sensibles a los parámetros de no conmutatividad (η, λ, γ), las profundidades potenciales (β, 

A, V0) del modelo NCMRYPs, los números cuánticos (j, l/lp, s/sp, m/mp), además del número cuántico de acoplamiento 

espín-órbita arbitrario k, los números cuánticos radiales n y el parámetro de cribado δ, conocidos en la literatura. Se obtiene 

el límite no relativista y se consideran los sistemas compuestos, como moléculas formadas por N = 2 partículas de masas 

mn (n = 1, 2), en el marco de simetrías tridimensionales del espacio cuántico no relativista no conmutativo (3D-NRNCQS). 

Tras estudiar las soluciones relativistas y no relativistas del modelo NCMRYPs en las simetrías 3D-RNCQS y 3D-

NRNCQS, examinamos algunos casos importantes que consideramos útiles para el lector y el investigador. 

 

Palabras clave: Ecuación de Dirac; Ecuación de Schrödinger; Potencial de Manning-Rosen; Pseudoespín y simetría de 

espín; Interacción del tensor de Yukawa; Espacio no conmutativo; Método de desplazamiento de Bopp. 

 



Abdelmadjid Maireche 

Lat. Am. J. Phys. Educ. Vol. 19, No. 4, Dec., 2025 4304-2 http://www.lajpe.org 
 

I. INTRODUCTION  

 
In 1933, Manning and Rosen (see Eq. (3.1)) proposed a 

potential function for diatomic molecules known as the 

Manning-Rosen (MR) potential model [1] which is used in 

different fields such as atomic, condensed matter, particle, and 

nuclear physics. In addition, this potential is used to describe 

the vibrations of diatomic molecules HCl, CH, LiH, CO, NO, 

O2, I2, N2, H2, and Ar2 [2]. Wang et al. (2012), proposed a 

convenient form (see Eq. (3.2)) for the original expression of 

the MR potential function [3]. Wei and Dong carried out 

approximately analytical bound state solutions of the Dirac 

equation (DE) with the MR potential for arbitrary spin-orbit 

coupling quantum number k by taking a properly approximate 

expansion for the spin-orbit coupling term [4]. Chen et al; 

(2009) solved approximately the DE with the MR potential 

for the arbitrary spin-orbit quantum number k using the basic 

concept of the supersymmetric shape invariance formalism 

and the function analysis method [5]. Eshghi and Mehraban 

obtained analytically the approximate energy equation and the 

corresponding wave functions of the DE for the MR potential 

coupled with a Coulomb-like tensor under the condition of the 

pseudo-spin symmetry using the parametric generalization of 

the Nikiforov-Uvarov (NU) method [6]. Oktay and Sever 

obtained an approximate analytical solution of the DE for the 

Yukawa potential under the pseudospin symmetry condition 

using the asymptotic iteration method [7]. Aguda obtains the 

approximate analytical solutions of the DE for an improved 

expression of the Rosen-Morse potential energy model, 

including the Coulomb-like tensor under the condition of spin 

and pseudospin symmetry [8].  Jia et al. explored the 

analytical solutions of the DE with the spin symmetry for the 

improved MR potential energy model and presented the 

bound state energy equation and the corresponding upper and 

lower radial wave functions [9]. Yanar and Havare spin and 

pseudospin symmetry are obtained by solving the DE with 

centrifugal term Dirac spinors and energy relations with 

generalized MR potential using the NU method and also the 

Pekeris approximation to the centrifugal term [10]. Wei et al. 

(2008) studied approximately the bound state solutions of the 

Klein-Gordon equation with the MR potential [11]. Taskin 

[12] investigated approximately the bound state solutions of 

the DE with the MR potential within the framework of the 

spin symmetry and pseudo-spin symmetry concepts. 

Recently, Ahmadov et al. (2022) presented the bound state 

solutions of the DE with spin and pseudo-spin symmetries for 

the combined MR potential with Yukawa-like tensor 

interaction in the framework of supersymmetry quantum 

mechanics and NU methods [13]. It should be noted that there 

are other studies of MR that we mention [14, 15, 16, 17]. The 

objective of this work is to calculate the new relativistic and 

nonrelativistic energy eigenvalue for the combined MR and 

Yukawa tensor potentials using an unperturbed 

hypergeometric function with a centrifugal approximation 

factor within the framework of the extended symmetries of 

relativistic and non-relativistic quantum mechanics. For this, 

we develop a mathematical model using the unperturbed 

Dirac spinor to find the new energy eigenvalue. It is important 

to refer to previous studies that we have carried out in recent 

years related to MR potential, but in another context, we 

mention it. Very recently, we have studied the new 

generalized Schiöberg and MR potentials within the 

generalized tensor interactions in the framework of three-

dimensional extended QM symmetries [18]. In 2021, we 

investigated the bound state of deformed KGE and SE under 

the modified equal vector and scalar MR and class Yukawa 

potential (CYP) in relativistic and nonrelativistic extended 

QM symmetries [19]. In the same context deformed (KGE 

and SE), we carried out a study on, modified MR [20] and 

modified MR plus quadratic Yukawa potential [21] in 

addition to the modified MR and Yukawa potential [22].To 

the best of my knowledge, no researcher has addressed the 

combined MR and Yukawa tensor potentials in the 

symmetries of deformed Dirac theory 3D-RNCQS. I hope that 

through this study we will discover more investigations at the 

sub-atomic scale and achieve more scientific knowledge of 

elementary particles in the field of Nanoscales. We aimed to 

shed more light on combined MR and Yukawa tensor 

potentials within the framework of an extended space that 

contains large symmetries based on the new 

postulate [𝑞𝜇
(𝑠,ℎ,𝑖) ,∗ 𝑞𝜈

(𝑠,ℎ,𝑖)] ≠ 0and[𝜋𝜇
(𝑠,ℎ,𝑖) ,∗𝜋𝜈

(𝑠,ℎ,𝑖)] ≠ 0 in 

addition to the generalized postulate  [𝑞𝜇
(𝑠,ℎ,𝑖) ,∗𝜋𝜈

(𝑠,ℎ,𝑖)] ≠ 0 

(see below equations ). The wide interest of researchers in the 

field of noncommutativity came as a result of it being a strong 

candidate alternative to solve many of the problems that have 

emerged strongly such as quantum gravity, string theory, and 

the divergence problem of the standard model [22, 23, 24, 25, 

26, 27, 28, 29, 30, 31]. NC of space-space and NC of phase-

phase play an important role in changing the physical 

properties of a lot of quantum physical systems, and they have 

achieved interesting successes in recent years. The NC 

properties idea is not new but goes back decades and was 

suggested by Snyder [32, 33] in 1947, and its geometric 

analysis was introduced by Connes in 1991 and 1994 [34, 35]. 

Seiberg and Witten, extend earlier ideas about the appearance 

of NC geometry in string theory with a nonzero B-field and 

obtain a new version of gauge fields in noncommutative 

gauge theory [36]. Among the potential goals of NC 

deformation of space-space and phase-phase is the emergence 

of new quantum fluctuations capable of canceling the 

observed unwanted divergences or the infinities that appear to 

cause short-range effects in field theories that include 

gravitational theory [37]. The research reported in the present 

paper was motivated by the fact that the study of the new 

combined MR and Yukawa tensor potentials (NCMRYPs) in 

the 3D-RNCQS symmetries has not been reported in the 

available literature. In this work, the vector and scalar 

NCMRYPs model (𝑉𝑚𝑟(𝑑),𝑆𝑚𝑟(𝑑)) to be employed is 

defined as: 

 

{
𝑉𝑚𝑟
𝑠 (𝑑) = 𝑉𝑚𝑟(𝑟) −

𝜕𝑉𝑚𝑟(𝑟)

𝜕𝑟

𝐋𝚯

2𝑟
+ 𝑂(𝛩2),

𝑆𝑚𝑟
𝑠 (𝑑) = 𝑆𝑚𝑟(𝑟) −

𝜕𝑆𝑚𝑟(𝑟)

𝜕𝑟

𝐋𝚯

2𝑟
+ 𝑂(𝛩2),

                  (1) 

and 

{
𝑉𝑚𝑟
𝑝 (𝑑) = 𝑉𝑚𝑟(𝑟) −

𝜕𝑉𝑚𝑟(𝑟)

𝜕𝑟

𝐋𝐩𝚯

2𝑟
+ 𝑂(𝛩2),

𝑆𝑚𝑟
𝑝 (𝑑) = 𝑆𝑚𝑟(𝑟) −

𝜕𝑆𝑚𝑟(𝑟)

𝜕𝑟

𝐋𝐩𝚯

2𝑟
+ 𝑂(𝛩2),

               (2) 
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where (𝑉𝑚𝑟(𝑟), 𝑆𝑚𝑟(𝑟)) are the vector and scalar potentials 

according to the view of 3D-RQM known in the literature 

[13,17]: 

 

{
𝑉𝑚𝑟(𝑟) =

ℏ

2𝑀𝑏2
(
𝛽(𝛽−1) 𝑒𝑥𝑝(−4𝛿𝑟)

(1−𝑒𝑥𝑝(−2𝛿𝑟))2
−

𝐴𝑒𝑥𝑝(−2𝛿𝑟)

1−𝑒𝑥𝑝(−2𝛿𝑟)
) ,

𝑆𝑚𝑟(𝑟) =
ℏ

2𝑀𝑏2
(
𝛽(𝛽−1)𝑒𝑥𝑝(−4𝛿𝑟)

(1−𝑒𝑥𝑝(−2𝛿𝑟))2
−
𝐴𝑠 𝑒𝑥𝑝(−2𝛿𝑟)

1−𝑒𝑥𝑝(−2𝛿𝑟)
) ,

     (3.1) 

 

Or a convenient form for the original expression [2]: 

 

𝑉𝑚𝑟(𝑟) = 𝐷𝑒 (1 −
𝑒𝑥𝑝(𝛼𝑟𝑒)−1

𝑒𝑥𝑝(𝛼𝑟)−1
)
2

,                 (3.2) 

 

where 𝛿 =
1

2𝑏
 is the screening parameter while  𝐴/𝐴𝑠 and 𝛽 

are parameters associated with the height of the potential, 
(𝑑 and 𝑟) are the distance between the two particles in the 

deformation of Dirac theory symmetries and QM symmetries, 

respectively. The two couplings (𝐋𝚯 and 𝐋𝐩𝚯) are the scalar 

product of the usual components of the angular momentum 

operators 𝐋(𝐿𝑥, 𝐿𝑦, 𝐿𝑧)/𝐋𝐩(𝐿𝑝
𝑥 , 𝐿𝑝

𝑦
, 𝐿𝑝
𝑧 ) and the modified 

noncommutativity vector  𝚯(𝜃12, 𝜃23, 𝜃13)/  which present is 

the noncommutativity elements parameter. In the case of the 

NC-quantum group, the noncentral generators can be suitably 

realized as self-adjoint differential operators ( 𝑞𝜇
(𝑠,ℎ,𝑖)

, 𝜋𝜈
(𝑠,ℎ,𝑖)

) 

appear in three varieties the first one is the canonical_structure 

(CS), the second is Lie structure (LS) and the last corresponds 

to the quantum plane (QP) in the representations of 

Schrödinger, Heisenberg, and interactions pictures, obeying 

the following set of commutation relations (we have used the 

natural units ℏ = 𝑐 = 1) (see, e.g.; 

[38,39,40,41,42,43,44,45,46,47]): 

 

 

[𝑥𝜇
(𝑠,ℎ,𝑖), 𝑝𝜈

(𝑠,ℎ,𝑖)] = 𝑖ℏ𝛿𝜇𝜈⏟              

𝐼𝑛 𝑄𝑀_sy.

⇒ [𝑞𝜇
(𝑠,ℎ,𝑖), 𝜋𝜈

(𝑠,ℎ,𝑖)]
∗
= 𝑖ℏ𝑒𝑓𝑓𝛿𝜇𝜈⏟                  

𝐼𝑛 𝐷𝐷𝑇_sy.

 

(4.1) 

and 

[𝑥𝜇
(𝑠,ℎ,𝑖), 𝑥𝜈

(𝑠,ℎ,𝑖)] = 0 ⇒ [𝑞𝜇
(𝑠,ℎ,𝑖), 𝑞𝜈

(𝑠,ℎ,𝑖)]
∗
 

={

𝑖𝜃𝜇𝜈 : 𝜂𝜇𝜈 ∈ 𝐼𝐶 For CS,

𝑖𝑓𝜇𝜈
𝜂
𝑞𝜃
(𝑠,ℎ,𝑖) : 𝑓𝜇𝜈

𝜂
∈ 𝐼𝐶 For LS,

𝑖𝐶𝜇𝜈
𝜂𝛿
𝑞𝜃
(𝑠,ℎ,𝑖)𝑞𝜃

(𝑠,ℎ,𝑖): 𝐶𝜇𝜈
𝜂𝛿
∈ 𝐼𝐶 For QP.

(4.2) 

 

with 𝑞𝜇
(𝑠,ℎ,𝑖) = (𝑞𝜇

𝑠 , 𝑞𝜇
ℎ, 𝑞𝜇

𝑖 )and 𝜋𝜇
(𝑠,ℎ,𝑖) = (𝜋𝜇

𝑠, 𝜋𝜇
ℎ, 𝜋𝜇

𝑖 ) are the 

generalized coordinates and the corresponding generalizing 

coordinates in the 3D-RNCQS and 3D-NRNCQS symmetries 

while 𝐼𝐶 denotes the complex number field while 𝑥𝜇
(𝑠,ℎ,𝑖) =

(𝑥𝜇
𝑠, 𝑥𝜇

ℎ, 𝑥𝜇
𝑖 )  and  𝑝𝜇

(𝑠,ℎ,𝑖)
 = (𝑝𝜇

𝑠 ,𝑝𝜇
ℎ,𝑝𝜇

𝑖 ) are corresponding 

coordinates in the 3D-RQM and 3D-NRQM symmetries. 

Furthermore, the usual uncertainty relation corresponds to the 

LHS of Eq. (4.1) will be extended to become two uncertainties 

in the following formula in the new form symmetries as 

follows: 

|𝛥𝑥𝜇
(𝑠,ℎ,𝑖)𝛥𝑝𝜈

(𝑠,ℎ,𝑖)| ≥
ℏ𝛿𝜇𝜈

2
⇒ 

|𝛥𝑞𝜇
(𝑠,ℎ,𝑖)𝛥𝜋𝜈

(𝑠,ℎ,𝑖)| ≥
ℏ𝑒𝑓𝑓𝛿𝜇𝜈

2
,                   (5.1) 

and 

|𝛥𝑞𝜇
(𝑠,ℎ,𝑖)𝛥𝑞𝜈

(𝑠,ℎ,𝑖)| ≥ {

|𝜃𝜇𝜈|/2 For CS,

𝑓𝜇𝜈/2 For LS,

𝐶𝜇𝜈/2  For QP.

                  (5.2) 

 

Here 𝑓𝜇𝜈and 𝐶𝜇𝜈 are present the following average values, 

|∑ 𝑓𝜇𝜈
𝜂
𝑞𝜂
(𝑠,ℎ,𝑖)3

𝜂=1 | and |∑ 𝐶𝜇𝜈
𝜂𝛿
𝑞𝜂
(𝑠,ℎ,𝑖)𝑞𝛿

(𝑠,ℎ,𝑖)3
𝜂,𝛿 | respectively. 

The uncertainty relation in Eq. (5.1) is obtained as a result of 

the generalization of LHS Eq. (4.1) to RHS form while the 

second uncertainty relation in Eq. (5.2) is the result of the 

deformation of space-space that appears from RHS of 

Eq.(4.2) that is divided into three varieties. We extended the 

modified equal time noncommutative canonical commutation 

relations (METNCCCRs) to include the Heisenberg and 

interaction pictures in 3D-RNCQS and 3D-NRNCQS 

symmetries. Here  ℏ𝑒𝑓𝑓 ≅ ℏ is the effective Planck constant,  

𝜂𝜇𝜈 = 𝜀𝜇𝜈𝜃 (𝜃  is the non-commutative parameter and  𝜀𝜇𝜈 is 

just an antisymmetric number  𝜀𝜇𝜈 = −𝜀𝜈𝜇 = 1 with  𝜇 ≠ 𝜈  

and  𝜀𝜀𝜀 = 0) which is an infinitesimal parameter if compared 

to the energy values and elements of antisymmetric (3 × 3) 
real matrices and 𝛿𝜇𝜈 is the Kronecker symbol. The symbol ∗ 

denotes the Weyl-Moyal star product, which is generalized 

between two ordinary functions 𝑓(𝑥)𝑔(𝑥) to the new 

deformed form  𝑓(𝑞)𝑔(𝑞) is mapped onto the product of 

symbols of operators 𝑓(𝑥) ∗ 𝑔(𝑥), in the symmetries of 

deformation space-space symmetries, called the star-product 

determined by (see, e.g.; [48]): 

 

𝑓(𝑥) ∗ 𝑔(𝑥) =

{
 
 

 
 

𝑒𝑥𝑝(𝑖𝜀𝜇𝜈𝜃𝜕𝜇
𝑥𝜕𝜈

𝑥) (𝑓𝑔)(𝑥) For CS,

𝑒𝑥𝑝 (
𝑖

2
𝑥𝑛𝑐𝜇
(𝑠,ℎ,𝑖)𝑔𝑘(𝑖𝜕𝜇

𝑥, 𝑖𝜕𝜈
𝑥)) (𝑓𝑔)(𝑥) For LS,

[𝑖𝑞𝐺(𝑢,𝑣,𝜕𝜇
𝑢,𝜕𝜈

𝑣)𝑓(𝑢, 𝑣)𝑔(𝑢′, 𝑣′)]
𝑢′→𝑢

𝑣′→𝑣
 For QP.

                (6) 

 

With 

𝑔𝜂(𝑘, 𝑝) = −𝑘𝜇𝑝𝜈𝑓𝑘
𝜈𝜈 +

1

6
𝑘𝜇𝑝𝜈(𝑝𝜂 − 𝑘𝜂)𝑓𝑙

𝜈𝜈𝑓𝑚
𝑙𝜂
+. .. 

 

 In the current paper, we apply the MASCCCRs in the 3D-

RNCQS and 3D-NRNCQS symmetries, which allows us to 

rewrite to the following simple form at the first order of 

noncommutativity parameter 𝜀𝜇𝜈𝜃 as follows [49, 50, 51, 52, 

53, 54, 55, 56, 57, 58]: 

 

(𝑓 ∗ 𝑔)(𝑥) = 𝑒𝑥𝑝(𝑖𝜀𝜇𝜈𝜃𝜕𝜇
𝑥𝜕𝜈

𝑥) (𝑓𝑔)(𝑥) ≈ (𝑓𝑔)(𝑥) −
𝑖𝜀𝜇𝜈𝜃

2
𝜕𝜇
𝑥𝑓𝜕𝜈

𝑥𝑔?𝑥𝜇=𝑥𝜈+ 𝑂(𝜃
2) .                     (7) 

 

The indices  𝜇, 𝜈 = 1,2,3  and  𝑂(𝜃2)  stand for the second 

and higher-order terms of the NC parameter. Physically, the 

second term in Eq. (7.1) presents the effects of space-space 

noncommutativity. The main aim of the paper is to investigate 

the (𝑘, 𝑙)-states solutions of deformed DE and deformed 

Schrödinger equation (DSE) with the NCMRYPs model in the 

symmetries of 3D-RNCQS and 3D-NRNCQS symmetries, 

within the frame of parametric Bopp's shift method. The 

present paper is organized as follows. The first section 

includes the scope and purpose of our investigation, while the 
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remaining parts of the paper are structured as follows. A 

review of the DE with the combined Manning-Rosen and 

Yukawa tensor potentials is presented in Sect. 2. Sect. 3 is 

devoted to studying the DDE by applying the usual well-

known Bopp's shift method and the like Greene-Aldrich 

approximation for the centrifugal term to obtain the effective 

potentials of the NCMRYPs model in 3D-RNCQS 

symmetries. Furthermore, via standard perturbation theory, 

we find the expectation values of some radial terms to 

calculate the corrected relativistic energy generated by the 

effect of the perturbed effective potentials 𝛴𝑝𝑒𝑟𝑡
𝑚𝑔 (𝑟) and  

𝛥𝑝𝑒𝑟𝑡
𝑚𝑔 (𝑟) of the NCMRYPs model, we derive the global 

corrected energy with the NCMYPs model. In the next 

section, we obtain the nonrelativistic limit and consider the 

composite systems such as molecules made of  𝑁 = 2  

particles of masses 𝑚𝑛(𝑛 = 1,2) in the frame of 3D-

NRNCQS symmetries are considered. Sect. 5 is reserved to 

study the relativistic and nonrelativistic special cases that can 

be generated from the NCMYPs model. Finally, the 

conclusion is given in Sec.6 

 

 

II. AN OVERVIEW OF DE UNDER COMBINED 

MANNING-ROSEN AND YUKAWA TENSOR 

POTENTIALS 
 

For a deeper understanding of the relativistic interactions of 

fermion particles that interacted with NCMYP's model in 

extended Dirac theory, it is useful to recall the eigenvalues 

and the corresponding eigenfunctions that influenced this 

system within the framework of relativistic quantum 

mechanics known in the literature. In this case, the system is 

governed by the basic equation: 

 

{
𝐻𝐷
𝑚𝑟𝛹𝑛𝑘(𝑟, 𝜃, 𝜙) = 𝐸𝑛𝑘𝛹𝑛𝑘(𝑟, 𝜃, 𝜙)

𝐻𝐷
𝑚𝑟 = 𝛼𝑝 + 𝛽(𝑀 + 𝑆𝑚𝑟(𝑟)) − 𝑖𝛽𝑑𝑈(𝑟) + 𝑉𝑚𝑟(𝑟),

      (8) 

 

here 𝐻𝐷
𝑚𝑟 is the Dirac Hamiltonian operator,  𝑀  is reduced 

rest mass,  𝒑 = −𝑖ℏ𝜵   is the momentum. The vector potential  

𝑉𝑚𝑟(𝑟) due to the four-vector linear momentum operator  𝐴𝜇( 

𝑉𝑚𝑟(𝑟), 𝐀 = 𝟎) and space-time scalar potential 𝑆𝑚𝑟(𝑟) due to 

the mass, 𝐸𝑛𝑘 is the relativistic eigenvalues, (𝑛, 𝑘)  
representing the principal and spin-orbit coupling terms, 

respectively. The tensor interaction 𝑈(𝑟) equal to  

(−𝑉0
𝑒𝑥𝑝(−𝛿𝑟)

𝑟
),  𝑉0  denotes the strength of the interaction and  

𝛿  is the screening parameter,  𝛼 = 𝑎𝑛𝑡𝑖_𝑑𝑖𝑎𝑔(𝜏𝑖 , 𝜏𝑖) ,  𝛽 =
𝑑𝑖𝑎𝑔(𝐼2×2, −𝐼2×2)  and  𝜏𝑖  are the usual Pauli matrices. Since 

the combined Manning-Rosen and Yukawa tensor potentials 

have spherical symmetry, the solutions of the known form  

𝛹𝑛𝑘(𝑟, 𝜃, 𝜙) = (

𝐹𝑛𝑘(𝑟)

𝑟
𝑌𝑗𝑚
𝑙 (𝜃, 𝜙)

𝑖
𝐺𝑛𝑘(𝑟)

𝑟
𝑌
𝑗𝑚𝑝

𝑙𝑝 (𝜃, 𝜙)
),  𝐹𝑛𝑘(𝑟) and  𝐺𝑛𝑘(𝑟) 

represent the upper and lower components of the Dirac 

spinors  𝛹𝑛𝑘(𝑟, 𝜃, 𝜙) while 𝑌𝑗𝑚
𝑙 (𝜃, 𝜙) and 𝑌

𝑗𝑚𝑝

𝑙𝑝 (𝜃, 𝜙) are the 

spin and pseudospin spherical harmonics and  (𝑚,𝑚𝑝)  are 

the projections on the z-axis. The upper and lower 

components  𝐹𝑛𝑘
𝑠 (𝑟)  and  𝐺𝑛𝑘

𝑝 (𝑟)  for spin symmetry and 

pseudospin symmetry satisfy the two uncoupled differential 

equations as below: 

 

(
𝑑2

𝑑𝑟2
− 𝑘(𝑘 + 1)𝑟−2 + 𝑈𝑒𝑓𝑓

𝑦𝑡−𝑠(𝑟) − (𝑀 + 𝐸𝑛𝑘
𝑠 − 𝛥𝑚𝑟

𝑝 (𝑟))

(𝑀 − 𝐸𝑛𝑘 + 𝛴𝑚𝑟
𝑠 (𝑟)) +

𝑑𝛥𝑚𝑟
𝑝 (𝑟)
𝑑𝑟

(
𝑑
𝑑𝑟
+
𝑘
𝑟
− 𝑈(𝑟))

𝑀 + 𝐸𝑛𝑘 − 𝛥𝑚𝑟
𝑝 (𝑟)

)𝐹𝑛𝑘
𝑠 (𝑟) = 0, (9)

 

 

and 

(
𝑑2

𝑑𝑟2
− 𝑘(𝑘 − 1)𝑟−2 + 𝑈𝑒𝑓𝑓

𝑦𝑡−𝑝(𝑟) − (𝑀 + 𝐸𝑛𝑘
𝑝
− 𝛥𝑚𝑟

𝑝 (𝑟))

(𝑀 − 𝐸𝑛𝑘 + 𝛴𝑚𝑟
𝑠 (𝑟)) +

𝑑𝛴𝑚𝑟
𝑠 (𝑟)
𝑑𝑟

(
𝑑
𝑑𝑟
−
𝑘
𝑟
+ 𝑈(𝑟))

𝑀 + 𝐸𝑛𝑘 + 𝛴𝑚𝑟
𝑠 (𝑟)

)𝐺𝑛𝑘
𝑝 (𝑟) = 0.

 

(10) 

Here 

𝑈𝑒𝑓𝑓
𝑦𝑡−𝑠/𝑝(𝑟) =

2𝑘𝑈(𝑟)

𝑟
∓
𝑑𝑈(𝑟)

𝑑𝑟
− 𝑈2(𝑟).              (11) 

 

That can be expressed analytically as, 

 

𝑈𝑒𝑓𝑓
𝑦𝑡−𝑠/𝑝(𝑟) = 𝐵∓

𝑒𝑥𝑝(−𝛿𝑟)

𝑟2
∓ 𝛿𝑉0

𝑒𝑥𝑝(−𝛿𝑟)

𝑟
 − 𝑉0

2 𝑒𝑥𝑝(−2𝛿𝑟)

𝑟2
, 

(12) 

with 𝐵∓ = (−2𝑘 ∓ 1)𝑉0  while  𝛴𝑚𝑟
𝑠 (𝑟) = 𝑉𝑚𝑟(𝑟) and 

𝛥𝑚𝑟
𝑝 (𝑟)  =  𝑉𝑚𝑟(𝑟)  are determined by: 

 

 

{
𝛴𝑚𝑟
𝑠 (𝑟) =

ℏ

2𝑀𝑏2
(
𝛽(𝛽−1)𝑒𝑥𝑝(−4𝛿𝑟)

(1−𝑒𝑥𝑝(−2𝛿𝑟))2
−

𝐴𝑒𝑥𝑝(−2𝛿𝑟)

1−𝑒𝑥𝑝(−2𝛿𝑟)
) ,

and 
𝑑𝛥𝑚𝑟

𝑝
(𝑟)

𝑑𝑟
= 0 ⇒ 𝛥𝑚𝑟

𝑝
= 𝐶𝑆𝐸  for spin sy.

     (13) 

 

and 

 

{
𝛥𝑚𝑟
𝑝 (𝑟) =

ℏ

2𝑀𝑏2
(
𝛽(𝛽−1) 𝑒𝑥𝑝(−4𝛿𝑟)

(1−𝑒𝑥𝑝(−2𝛿𝑟))2
−

𝐴𝑒𝑥𝑝(−2𝛿𝑟)

1−𝑒𝑥𝑝(−2𝛿𝑟)
) 

and 
𝑑𝛴𝑚𝑟

𝑠 (𝑟)

𝑑𝑟
= 0 ⇒ 𝛴𝑚𝑟

𝑠 = 𝐶𝑃𝑆 for p-spin sy.
    (14) 

 

We obtain the following second-order Schrödinger-like 

equation in 3D-RQM symmetries, respectively: 

 

[
𝑑2

𝑑𝑟2
− 𝑘(𝑘 + 1)𝑟−2 + 𝑈𝑒𝑓𝑓

𝑦𝑡−𝑠(𝑟) − 𝛬𝑛𝑘
𝑠 (𝑀 − 𝐸𝑛𝑘

𝑠 +

𝛴𝑚𝑟
𝑠 (𝑟))] 𝐹𝑛𝑘

𝑠 (𝑟) = 0                (15) 

and 

[
𝑑2

𝑑𝑟2
− 𝑘(𝑘 − 1)𝑟−2 + 𝑈𝑒𝑓𝑓

𝑦𝑡−𝑝(𝑟) − (𝑀 + 𝐸𝑛𝑘
𝑝
−

𝛥𝑚𝑟
𝑝 (𝑟))𝛬𝑛𝑘

𝑝
] 𝐺𝑛𝑘

𝑝 (𝑟) = 0               (16) 

 

with  𝑘(𝑘 − 1) and 𝑘(𝑘 + 1) are equals to 𝑙𝑝(𝑙𝑝 − 1) and 

𝑙(𝑙 + 1), respectively. The authors of refs.[13,17] using both 

the Nikiforov-Uvarov method and Greene-Aldrich 

approximation for the centrifugal term to obtain the 

expressions for the upper and lower components  𝐹𝑛𝑘
𝑠 (𝑟)  and  

𝐺𝑛𝑘
𝑝 (𝑟)  as hypergeometric polynomials  𝑃𝑛

(𝜈𝑛𝑘
1 /2,𝜁𝑛𝑘

1 )
(1 − 2𝑧)  

and  𝑃𝑛
(𝜈𝑝𝑛𝑘
1 /2,𝜁𝑝𝑛𝑘

1 )
(1 − 2𝑧)  in 3D-RQM symmetries as, 
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𝐹𝑛𝑘
𝑠 (𝑠) = 𝐶𝑛𝑘

𝑠 𝑠𝜈𝑛𝑘
1
(1 − 𝑧)(1+𝜁𝑛𝑘

1 )/2𝑃𝑛
(2𝜈𝑛𝑘

1 ,𝜁𝑛𝑘
1 )
(1 − 2𝑧),  (17) 

 

and 

𝐺𝑛𝑘
𝑝 (𝑠) = 𝐶𝑛𝑘

𝑝
𝑧𝜈𝑝𝑛𝑘

1
(1 − 𝑧)(1+𝜁𝑝𝑛𝑘

1 )/2𝑃𝑛
(2𝜈𝑝𝑛𝑘

1 ,𝜁𝑝𝑛𝑘
1 )

(1 − 2𝑧),      
(18) 

 

here  𝑧 = 𝑒𝑥𝑝(−2𝛿𝑟),  𝜈𝑛𝑘
1 ,  𝜁𝑛𝑘

1 ,  𝜈𝑝𝑛𝑘
1   and  𝜁𝑝𝑛𝑘

1   are given 

by: 

{
 
 
 

 
 
 𝜈𝑛𝑘

1 =
1

2𝛿
√𝑀2 − 𝐸𝑛𝑘

𝑠2 − 𝐶𝐸𝑆(𝑀 − 𝐸𝑛𝑘
𝑠 ),

𝜁𝑛𝑘
1 = √1 + 4𝑘(𝑘 + 1) + 𝛬𝑛𝑘

𝑠 /𝛿2,

𝜈𝑝𝑛𝑘
1 =

1

2𝛿
√𝑀2 − 𝐸𝑛𝑘

𝑝2
− 𝐶𝑃𝑆(𝑀 + 𝐸𝑛𝑘

𝑝𝑠
),

𝜁𝑝𝑛𝑘
1 = √1 + 4𝑘(𝑘 − 1) + 𝛬𝑛𝑘

𝑝
/𝛿2,

               (19) 

 

with 𝛬𝑛𝑘
𝑠 = 𝑀 + 𝐸𝑛𝑘

𝑠 − 𝐶𝑆𝐸,  𝛬𝑛𝑘
𝑝
= 𝑀 − 𝐸𝑛𝑘

𝑝
− 𝐶𝑃𝑆 while  

𝐶𝑛𝑘
𝑠  and  𝐶𝑛𝑘

𝑝
 are the normalization constants. For the spin 

symmetry and the p-spin symmetry, the equations of energy 

are given by [13,17]: 

 

𝑀2 − 𝐸𝑛𝑘
𝑠2 − 𝐶𝐸𝑆(𝑀 − 𝐸𝑛𝑘

𝑠 ) = 4𝛿2 

[

𝐴𝛬𝑛𝑘
𝑠

2𝑀
−𝑘(𝑘+1)−𝑛(𝑛+1)√

1

4
+𝑘(𝑘+1)+

𝛽(𝛽−1)𝛬𝑛𝑘
𝑠

2𝑀

2𝑛+1+2√
1

4
+𝑘(𝑘+1)+

𝐴𝛬𝑛𝑘
𝑠

2𝑀

]

2

,                (20) 

 

and 

𝑀2 − 𝐸𝑛𝑘
𝑝2
+ 𝐶𝑃𝑆(𝑀 + 𝐸𝑛𝑘

𝑝
) = 4𝛿2 

[
 
 
 𝐴𝛬𝑛𝑘

𝑝

2𝑀
−𝑘(𝑘−1)−𝑛(𝑛+1)√

1

4
+𝑘(𝑘−1)+

𝛽(𝛽−1)𝛬
𝑛𝑘
𝑝

2𝑀

2𝑛+1+2√
1

4
+𝑘(𝑘−1)+

𝛽(𝛽−1)𝛬
𝑛𝑘
𝑝

2𝑀 ]
 
 
 
2

 .          (21) 

 

Later, we will need another formula for each of the upper and 

lower components  𝐹𝑛𝑘
𝑠 (𝑧) and 𝐺𝑛𝑘

𝑝 (𝑧). We will use the 

transform expression of  𝑃𝑛
(𝑎𝑛,𝑏𝑛)(1 − 2𝑧) in the following 

form: 

 

𝑃𝑛
(𝑎𝑛,𝑏𝑛)(1 − 2𝑧) =

𝛤(𝑛+𝑎𝑛+1)

𝑛!𝛤(𝑎𝑛+1)
 2𝐹1(−𝑛, 𝑛 + 𝑎𝑛 + 𝑏𝑛 +

1; 1 + 𝑎𝑛, 𝑧).                                (22) 

 

This allows us to reformulate them in terms of the generalized 

hypergeometric function  2𝐹1(−𝑛, 𝑛 + 2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 +

2𝜈𝑛𝑘
1 , 𝑧)  and   2𝐹1(−𝑛, 𝑛 + 2𝜈𝑝𝑛𝑘

1 + 𝜁𝑝𝑛𝑘
1 + 1; 1 + 2𝜈𝑝𝑛𝑘

1 , 𝑧)  

as follows:  

 

𝐹𝑛𝑘
𝑠 (𝑠) = 𝐶𝑛𝑘

𝑛𝑠𝑠𝜈𝑛𝑘
1
(1 − 𝑧)(1+𝜁𝑛𝑘

1 )/2 2𝐹1(−𝑛, 𝑛 + 2𝜈𝑛𝑘
1 +

𝜁𝑛𝑘
1 + 1; 1 + 2𝜈𝑛𝑘

1 , 𝑧),                                     (23) 

and 

 

𝐺𝑛𝑘
𝑝 (𝑠) = 𝐶𝑛𝑘

𝑛𝑝
𝑧𝜈𝑝𝑛𝑘

1
(1 − 𝑧)(1+𝜁𝑝𝑛𝑘

1 )/2 2𝐹1(−𝑛, 𝑛 + 2𝜈𝑝𝑛𝑘
1 +

𝜁𝑝𝑛𝑘
1 + 1; 1 + 2𝜈𝑝𝑛𝑘

1 , 𝑧),                           (24) 

 

here  𝐶𝑛𝑘
𝑛𝑠 = 𝐶𝑛𝑘

𝑠 𝛤(𝑛+2𝜈𝑛𝑘
1 +1)

𝑛!𝛤(2𝜈𝑛𝑘
1 +1)

 , 𝐶𝑛𝑘
𝑛𝑝
= 𝐶𝑛𝑘

𝑝 𝛤(𝑛+2𝜈𝑝𝑛𝑘
1 +1)

𝑛!𝛤(2𝜈𝑝𝑛𝑘
1 +1)

. The 

lower component 𝐺𝑛𝑘
𝑠 (𝑠) of spin symmetry and the upper 

component  𝐹𝑛𝑘
𝑝 (𝑠)  of p-spin symmetry are obtained as: 

 

{
 
 

 
 
𝐺𝑛𝑘
𝑠 (𝑧) =

(
𝑑

𝑑𝑟
+
𝑘

𝑟
−𝑈(𝑟))𝐹𝑛𝑘

𝑠 (𝑧)

𝑀+𝐸𝑛𝑘
𝑠 −𝐶𝑠

,

𝐹𝑛𝑘
𝑝 (𝑧) =

(
𝑑

𝑑𝑟
−
𝑘

𝑟
−𝑈(𝑟))𝐺𝑛𝑘

𝑝
(𝑧)

𝑀−𝐸𝑛𝑘
𝑝
+𝐶𝑝

.

                          (25) 

 

III. THE NEW SOLUTIONS OF DDE UNDER 

NCMRYPs IN 3D-RNCQS SYMMETRIES 
 

A. Review of Bopp's shift method 

 

Let us begin in this subsection by finding the DDE in the 

symmetries of deformation Dirac theory under the 

NCMRYPs. Our objective is achieved by applying the new 

principles that we have seen in the introduction (Eqs. (4) and 

(7)), summarized in the new relationships between 

MASCCCRs and the notion of the Weyl-Moyal star product. 

Thus, these data allow us to rewrite the usual Dirac equation 

in Eq. (8) in the 3D-RNCQS symmetries as follows: 

 

(
𝛼𝑝 + 𝛽(𝑀 + 𝑆𝑚𝑟(𝑟)) − 𝑖𝛼𝑑𝑈(𝑟)

−(𝐸𝑛𝑘 − 𝑉𝑚𝑟(𝑟))
) ∗ 𝛹𝑛𝑘(𝑟, 𝜃, 𝜙) = 0.  

(26) 

 

In 3D-RNCQS symmetries, the upper and lower components  

𝐹𝑛𝑘
𝑠 (𝑟) and 𝐺𝑛𝑘

𝑝 (𝑟) satisfying the following second-order 

differential equations: 

 

[

𝑑2

𝑑𝑟2
− 𝑘(𝑘 + 1)𝑟−2 + 𝑈𝑒𝑓𝑓

𝑦𝑡−𝑠(𝑟)

−𝛬𝑠(𝑀 − 𝐸𝑛𝑘
𝑠 + 𝛴𝑚𝑟

𝑠 (𝑟))
] ∗ 𝐹𝑛𝑘

𝑠 (𝑟) = 0,        (27) 

and 

 

[

𝑑2

𝑑𝑟2
− 𝑘(𝑘 − 1)𝑟−2 + 𝑈𝑒𝑓𝑓

𝑦𝑡−𝑝(𝑟)

− (𝑀 + 𝐸𝑛𝑘
𝑝
− 𝛥𝑚𝑟

𝑝 (𝑟))𝛬𝑝
] ∗ 𝐺𝑛𝑘

𝑝 (𝑟) = 0.       (28) 

 

There are two approaches to including non-commutativity in 

quantum field theory: The first method is represented by 

rewriting the various NC physical fields such as the spinor  

𝚿𝑛𝑙, KG operator 𝚽𝑛𝑙, antisymmetric bosonic tensor𝑭𝛼𝛽and 

tedrad fields 𝒆𝜇
𝑎 in terms of their corresponding fields  

(𝛹𝑛𝑙 , 𝛷𝑛𝑙 , 𝑒𝜇
𝑎, 𝐹𝛼𝛽 , . . . ) in the known quantum space in the 

literature, in proportion to the non-commutative parameters  

𝜣(𝜃12, 𝜃23, 𝜃13)/2, which is similar to the Taylor 

development [24,59,60,61,62,63,64] while the second method 

depends on reformulating the non-commutative operator 
(𝑞, 𝜋) with its view of the quantum operators (𝑞, 𝜋) known in 

the literature and the properties of space associated with the 

non-commutative parameters  𝚯(𝜃12, 𝜃23, 𝜃13)/2. It is normal 

for the physical results to be identical when using either of 

them. It is known to specialized researchers that Bopp had 
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proposed a new quantization rule  (𝑥, 𝑝) →(𝑞 = 𝑥 −
𝑖

2
𝜕𝑝, 𝜋 =

𝑝 +
𝑖

2
𝜕𝑥) instead of the usual correspondence (𝑥, 𝑝) → (𝑞 =

𝑥, 𝑞 = 𝑝 +
𝑖

2
𝜕𝑥)  which is called Bopp's shifts method (BSM) 

[64,65,66,67]. This quantization procedure is called Bopp 

quantization [68]. The Weyl-Moyal star product 𝑓(𝑥, 𝑝) ∗
𝑔(𝑥, 𝑝) induces BSM in the respect that it is replaced by  

𝑓(𝑥 −
𝑖

2
𝜕𝑝, 𝑝 +

𝑖

2
𝜕𝑥) ∗ 𝑔(𝑥, 𝑝) [69]. This, allows us to obtain 

 

{
 
 
 
 
 

 
 
 
 
 [𝑘

(𝑘 + 1)𝑟−2 + 𝑈𝑒𝑓𝑓
𝑦𝑡−𝑠(𝑟)] ∗ 𝐹𝑛𝑘

𝑠 (𝑟) =

[𝑘(𝑘 + 1)𝑑−2 + 𝑈𝑒𝑓𝑓
𝑦𝑡−𝑠(𝑑)]𝐹𝑛𝑘

𝑠 (𝑟),

(𝑀 − 𝐸𝑛𝑘
𝑠 + 𝛴𝑚𝑟

𝑠 (𝑟)) ∗ 𝐹𝑛𝑘
𝑠 (𝑟) =

(𝑀 − 𝐸𝑛𝑘
𝑠 + 𝛴𝑚𝑟

𝑠 (𝑑))𝐹𝑛𝑘
𝑠 (𝑟),

[𝑘(𝑘 − 1)𝑟−2 + 𝑈𝑒𝑓𝑓
𝑦𝑡−𝑝(𝑟)] ∗ 𝐺𝑛𝑘

𝑝 (𝑟) =

[𝑘(𝑘 − 1)𝑑−2 + 𝑈𝑒𝑓𝑓
𝑦𝑡−𝑝(𝑑)]𝐺𝑛𝑘

𝑝 (𝑟),

(𝑀 + 𝐸𝑛𝑘
𝑝
− 𝛥𝑚𝑟

𝑝 (𝑟)) ∗ 𝐺𝑛𝑘
𝑝 (𝑟) =

(𝑀 + 𝐸𝑛𝑘
𝑝
− 𝛥𝑚𝑟

𝑝 (𝑑)) ∗ 𝐺𝑛𝑘
𝑝 (𝑟).

 

 

The BSM has achieved great success when applied by 

specialized researchers to the four basic equations that 

correspond to the relativistic Schrödinger equation (see, 

e.g.;[70,71,72]) and the other three relativistic equations 

represented by the Klein-Gordon equation (see, 

e.g.;[73,74,75,76,77,78,79,80]), Dirac equation (see, 

e.g.;[81,82,83,84,85,86,87,88,89,90]) and the Duffin-

Kemmer-Petiau equation (see, e.g.;[90,91,92]). In addition to 

some recent related research (see, e.g.;[93,94,95, 96, 97,98]). 

 

It is worth motioning that the BSM permutes us to reduce Eqs. 

(27) and (28) to the simplest form: 

 

[

𝑑2

𝑑𝑟2
− 𝑘(𝑘 + 1)𝑑−2 + 𝑈𝑒𝑓𝑓

𝑦𝑡−𝑠(𝑑)

−𝛬𝑛𝑘
𝑠 (𝑀 − 𝐸𝑛𝑘

𝑠 + 𝛴𝑚𝑟
𝑠 (𝑑))

] 𝐹𝑛𝑘
𝑠 (𝑟) = 0,     (29) 

and 

[

𝑑2

𝑑𝑟2
− 𝑘(𝑘 − 1)𝑑−2 + 𝑈𝑒𝑓𝑓

𝑦𝑡−𝑝(𝑑)

− (𝑀 + 𝐸𝑛𝑘
𝑝
− 𝛥𝑚𝑟

𝑝 (𝑑))𝛬𝑛𝑘
𝑝

] 𝐺𝑛𝑘
𝑝 (𝑟) = 0.    (30) 

 

The modified algebraic structure of noncommutative 

covariant canonical commutation relations with the notion of 

the Weyl-Moyal star product in Eqs. (4) becomes new 

METNCCCRs with ordinary known products in literature as 

follows (see, e.g.; [64,65,66,67]): 

 

{
[𝑞𝜇
(𝑠,ℎ,𝑖), 𝜋𝜈

(𝑠,ℎ,𝑖)] = 𝑖ℏ𝑒𝑓𝑓𝛿𝜇𝜈 ,

[𝑞𝜇
(𝑠,ℎ,𝑖), 𝑞𝜈

(𝑠,ℎ,𝑖)] = 𝑖𝜂𝜇𝜈.
            (31) 

 

In the symmetries of 3D-RNCQS, the generalized positions 

and momentum coordinates  𝑞𝜇
(𝑠,ℎ,𝑖)

  and  𝜋𝜇
(𝑠,ℎ,𝑖)

  are defined 

as: 

{
𝑞𝜇
(𝑠,ℎ,𝑖) = 𝑥𝜇

(𝑠,ℎ,𝑖) − ∑
3

𝜈=1

𝑖𝜂𝜇𝜈

2
𝑝𝜈
(𝑠,ℎ,𝑖),

 𝜋𝜇
(𝑠,ℎ,𝑖) = 𝑝𝜇

(𝑠,ℎ,𝑖).

          (32) 

 

This allows us to find the operator 𝑑2 equal to [81, 82, 83, 84, 

85, 86, 87, 88, 89, 90]: 

 

𝑑2 = 𝑟2 − {
𝐿𝛩 for spin symmetry
𝐿𝑝𝛩 for p-spin symmetry

+ 𝑂(𝛩2),          (33) 

 

while the new operators 𝛴𝑚𝑟
𝑠 (𝑑), 𝑉𝑚𝑟

𝑝 (𝑑), 𝑈𝑒𝑓𝑓
𝑦𝑡−𝑠/𝑝(𝑑),  

𝑘(𝑘 + 1)𝑑−2 and 𝑘(𝑘 − 1)𝑑−2 in the 3D-RNCQS 

symmetries, are expressed as: 

 

{
 
 
 
 

 
 
 
 𝛴𝑚𝑟

𝑠 (𝑑) = 𝛴𝑚𝑟
𝑠 (𝑟) −

𝜕𝛴𝑚𝑟
𝑠 (𝑟)

𝜕𝑟

𝐋𝚯

2𝑟
+ 𝑂(𝛩2),

𝛥𝑚𝑟
𝑝 (𝑑) = 𝛥𝑚𝑟

𝑝 (𝑟) −
𝜕𝛥𝑚𝑟

𝑝 (𝑟)

𝜕𝑟

𝐋𝐩𝚯

2𝑟
+ 𝑂(𝛩2),

𝑈𝑒𝑓𝑓
𝑦𝑡−𝑠

= 𝑈𝑒𝑓𝑓
𝑦𝑡−𝑠(𝑟) −

𝜕𝑈𝑒𝑓𝑓
𝑦𝑡−𝑠(𝑟)

𝜕𝑟

𝐋𝚯

2𝑟
+ 𝑂(𝛩2),

𝑈𝑒𝑓𝑓
𝑦𝑡−𝑝(𝑑) = 𝑈𝑒𝑓𝑓

𝑦𝑡−𝑝(𝑟) −
𝜕𝑈𝑒𝑓𝑓

𝑦𝑡−𝑝(𝑟)

𝜕𝑟

𝐋𝐩𝚯

2𝑟
+ 𝑂(𝛩2),

𝑘(𝑘 + 1)𝑑−2 = 𝑘(𝑘 + 1)𝑟−2 + 𝑘(𝑘 + 1)𝑟−4𝐋𝚯 + 𝑂(𝛩2),

𝑘(𝑘 − 1)𝑑−2 = 𝑘(𝑘 − 1)𝑟−2 + 𝑘(𝑘 − 1)𝑟−4𝐋𝐩𝚯 + 𝑂(𝛩
2).

(34) 

 

Substituting Eqs. (34) into Eqs. (29) and (30), we find the 

following two like Shrodinger equations: 

 

[
𝑑2

𝑑𝑟2
−
𝑘(𝑘+1)

𝑟2
+ 𝑈𝑒𝑓𝑓

𝑦𝑡−𝑠(𝑟) − 𝛬𝑠(𝑀 − 𝐸𝑛𝑘
𝑠 + 𝛴𝑚𝑟

𝑠 (𝑟)) −

𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟)] 𝐹𝑛𝑘

𝑠 (𝑟) = 0,             (35) 

and 

[
𝑑2

𝑑𝑟2
−
𝑘(𝑘−1)

𝑟2
+ 𝑈𝑒𝑓𝑓

𝑦𝑡−𝑝(𝑟) − (𝑀 + 𝐸𝑛𝑘
𝑝
− 𝛥𝑚𝑟

𝑝 (𝑟)) 𝛬𝑝 −

𝛥𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟)] 𝐺𝑛𝑘

𝑝 (𝑟) = 0,              (36) 

with 

𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) = (−

𝜕𝑈𝑒𝑓𝑓
𝑦𝑡−𝑠

(𝑟)

𝜕𝑟

1

2𝑟
+
𝑘(𝑘+1)

𝑟4
−
𝜕𝛴𝑚𝑟

𝑠 (𝑟)(𝑟)

𝜕𝑟

𝛬𝑛𝑘
𝑠

2𝑟
)𝐋𝚯 ,   

(37) 

and 

𝛥𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) = (−

𝜕𝑈𝑒𝑓𝑓
𝑦𝑡−𝑝

(𝑟)

𝜕𝑟

1

2𝑟
+
𝑘(𝑘−1)

𝑟4
−
𝜕𝛥𝑚𝑟

𝑝
(𝑟)

𝜕𝑟

𝛬𝑛𝑘
𝑝

2𝑟
)𝐋𝐩𝚯.(38) 

 

By comparing (Eqs. (9) and (10)) and (Eqs. (35) and (36)), we 

observe two additive potentials 𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) and 𝛥𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟). 
Moreover, these terms are proportional to the infinitesimal 

noncommutativity parameter 𝛩. From a physical point of 

view, this means that these two spontaneously generated 

terms 𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) and  𝛥𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟) as a result, the topological 

properties of the deformation space-space can be considered 

very small compared to the fundamental terms 𝛴𝑚𝑟
𝑠 (𝑟) and 

𝛥𝑚𝑟
𝑝 (𝑟), respectively. A direct calculation gives  

𝜕𝛴𝑚𝑟
𝑠 (𝑟)

𝜕𝑟
  and  

𝜕𝑈𝑒𝑓𝑓
𝑦𝑡−𝑠/𝑝

(𝑟)

𝜕𝑟
 as follows: 

 
𝜕𝛴𝑚𝑟

𝑠 (𝑟)

𝜕𝑟
= −

2𝛿𝛽(𝛽 − 1)

𝑀𝑏2
𝑒𝑥𝑝(−4𝛿𝑟)

(1 − 𝑒𝑥𝑝(−2𝛿𝑟))2

+
2𝛽𝛿(𝛽 − 1)

2𝑀𝑏2
𝑒𝑥𝑝(−6𝛿𝑟)

(1 − 𝑒𝑥𝑝(−2𝛿𝑟))3
 

+
𝛿𝐴

𝑀𝑏2

𝑒𝑥𝑝(−2𝛿𝑟)

1−𝑒𝑥𝑝(−2𝛿𝑟)
+

𝛿𝐴

𝑀𝑏2

𝑒𝑥𝑝(−4𝛿𝑟)

(1−𝑒𝑥𝑝(−2𝛿𝑟))2
 ,       (39) 

and 
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𝜕𝑈
𝑒𝑓𝑓

𝑦𝑡−
𝑠
𝑝

𝜕𝑟
= −𝛿(𝐵∓ ∓ 𝑉0)

𝑒𝑥𝑝(−𝛿𝑟)

𝑟2
− 2𝐵∓

𝑒𝑥𝑝(−𝛿𝑟)

𝑟3
∓

(−𝛿)𝛿𝑉0
𝑒𝑥𝑝(−𝛿𝑟)

𝑟
+ 2𝛿𝑉0

2 𝑒𝑥𝑝(−2𝛿𝑟)

𝑟2
+ 2𝑉0

2 𝑒𝑥𝑝(−2𝛿𝑟)

𝑟3
 .  (40) 

 

Substituting Eqs. (39) and (40) into Eqs. (37) and (38), we 

obtain spontaneously generated terms  𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟)  and  𝛥𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟) 
as follows: 

𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) = (𝛿(𝐵− − 𝑉0)

𝑒𝑥𝑝(−𝛿𝑟)

2𝑟3
+ 𝐵−

𝑒𝑥𝑝(−𝛿𝑟)

𝑟4
 

−𝛿2𝑉0
𝑒𝑥𝑝(−𝛿𝑟)

2𝑟2
− 𝛿𝑉0

2 𝑒𝑥𝑝(−2𝛿𝑟)

𝑟3
− 𝑉0

2 𝑒𝑥𝑝(−2𝛿𝑟)

𝑟4

+
𝛿𝛽(𝛽−1)𝛬𝑛𝑘

𝑠

𝑀𝑏2
𝑒𝑥𝑝(−4𝛿𝑟)

𝑟(1−𝑒𝑥𝑝(−2𝛿𝑟))2
−
𝛽𝛿(𝛽−1)𝛬𝑛𝑘

𝑠

2𝑀𝑏2
𝑒𝑥𝑝(−6𝛿𝑟)

𝑟(1−𝑒𝑥𝑝(−2𝛿𝑟))3

−
𝛿𝐴𝛬𝑛𝑘

𝑠

2𝑀𝑏2
𝑒𝑥𝑝(−2𝛿𝑟)

𝑟(1−𝑒𝑥𝑝(−2𝛿𝑟))
−
𝛿𝐴𝛬𝑛𝑘

𝑠

2𝑀𝑏2
𝑒𝑥𝑝(−4𝛿𝑟)

𝑟(1−𝑒𝑥𝑝(−2𝛿𝑟))2
+
𝑘(𝑘+1)

𝑟4
)𝐋𝚯 + 𝑂(𝛩2),

 

(41) 

and 

𝛥𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) = (𝛿(𝐵+ + 𝑉0)

𝑒𝑥𝑝(−𝛿𝑟)

2𝑟3
+ +𝐵+

𝑒𝑥𝑝(−𝛿𝑟)

𝑟4
+ 

+𝛿2𝑉0
𝑒𝑥𝑝(−𝛿𝑟)

2𝑟2
− 𝛿𝑉0

2 𝑒𝑥𝑝(−2𝛿𝑟)

𝑟3
− 𝑉0

2 𝑒𝑥𝑝(−2𝛿𝑟)

𝑟4

+
𝛿𝛽(𝛽−1)𝛬𝑛𝑘

𝑝

𝑀𝑏2
𝑒𝑥𝑝(−4𝛿𝑟)

𝑟(1−𝑒𝑥𝑝(−2𝛿𝑟))2
−
𝛿𝛽(𝛽−1)𝛬𝑛𝑘

𝑝

2𝑀𝑏2
𝑒𝑥𝑝(−6𝛿𝑟)

𝑟(1−𝑒𝑥𝑝(−2𝛿𝑟))3

−
𝛿𝐴𝛬𝑛𝑘

𝑝

2𝑀𝑏2
𝑒𝑥𝑝(−2𝛿𝑟)

𝑟(1−𝑒𝑥𝑝(−2𝛿𝑟))
−
𝛿𝐴𝛬𝑛𝑘

𝑝

2𝑀𝑏2
𝑒𝑥𝑝(−4𝛿𝑟)

𝑟(1−𝑒𝑥𝑝(−2𝛿𝑟))2
+
𝑘(𝑘−1)

𝑟4
)𝐋𝐩𝚯+ 𝑂(𝛩

2).

(42) 

For spin symmetry, we first consider Eq. (35), which contains 

the new combined Manning-Rosen and Yukawa tensor 

potentials in the deformation of Dirac theory symmetries. It 

can be solved exactly only for 𝑘 = 0 and  𝑘 = −1 in the 

absence of tensor interactions 𝑉0 = 0, since the two 

centrifugal terms (proportional to 𝑘(𝑘 + 1)𝑟−2 and 𝑘(𝑘 +
1)𝑟−4) vanish. In the case of arbitrary 𝑘, an appropriate 

approximation needs to be employed on the centrifugal terms. 

We apply the following new approximation which was 

applied by Greene and Aldrich [99]: 

 

1

𝑟2
≈

4𝛿2𝑒−2𝛿𝑟

(1−𝑒−2𝛿𝑟)
2 =

4𝛿2𝑧

(1−𝑧)2
⇔

1

𝑟
≈

2𝛿𝑒−𝛿𝑟

1−𝑒−2𝛿𝑟
=
2𝛿𝑧

1
2

1−𝑧
.       (43) 

 

For p-spin symmetry, we now consider Eq. (36) and will 

follow similar steps with the spin symmetry case in the 

deformation of Dirac theory symmetries. Same as before, Eq. 

(31) cannot be solved exactly for 𝑘 = 0  and  𝑘 = 1 without 

tensor interaction, since the two centrifugal terms 

(proportional to 𝑘(𝑘 − 1)𝑟−2 and 𝑘(𝑘 − 1)𝑟−4). Applying 

the approximations Eq. (43) to the centrifugal terms of Eqs. 

(41) and (42), the general form of the additive potentials 

𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑧) and 𝛥𝑚𝑟

𝑝𝑒𝑟𝑡(𝑧) will be as follows: 

 

𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑧) = (𝜒𝑛𝑘

1𝑠 𝑧2

(1−𝑧)3
+ 𝜒𝑛𝑘

2𝑠 𝑧5/2

(1−𝑧)4
+ 𝜒𝑛𝑘

3𝑠 𝑧3/2

(1−𝑧)2
+ 𝜒𝑛𝑘

4𝑠 𝑧5/2

(1−𝑧)3

+𝜒𝑛𝑘
5𝑠 𝑧3

(1−𝑧)4
+ 𝜒𝑛𝑘

6𝑠 𝑧7/2

(1−𝑧)4
+ 𝜒𝑛𝑘

7𝑠 𝑧2

(1−𝑧)4
)𝐋𝚯 + 𝑂(𝛩2),

(44) 

and 

𝛥𝑚𝑟
𝑝𝑒𝑟𝑡(𝑧) = (𝜒𝑛𝑘

1𝑝 𝑧2

(1−𝑧)3
+ 𝜒𝑛𝑘

2𝑝 𝑧5/2

(1−𝑧)4
+ 𝜒𝑛𝑘

3𝑝 𝑧3/2

(1−𝑧)2
+ 𝜒𝑛𝑘

4𝑝 𝑧5/2

(1−𝑧)3

+𝜒𝑛𝑘
5𝑝 𝑧3

(1−𝑧)4
+ 𝜒𝑛𝑘

6𝑝 𝑧7/2

(1−𝑧)4
+ 𝜒𝑛𝑘

7𝑝 𝑧2

(1−𝑧)4
)𝐋𝐩𝚯+ 𝑂(𝛩

2),

(45) 

with 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜒𝑛𝑘
1𝑠 = 4𝛿4(𝐵− − 𝑉0), 𝜒𝑛𝑘

1𝑝
= 4𝛿4(𝐵+ + 𝑉0)

𝜒𝑛𝑘
2𝑠 = 16𝛿4𝐵−, 𝛽𝑛𝑘

2𝑝
= 16𝛿4𝐵+,

𝜒𝑛𝑘
3𝑠 = −(2𝛿4𝑉0 +

𝛿2𝐴𝛬𝑛𝑘
𝑠

𝑀𝑏2
) , 𝜒𝑛𝑘

3𝑝
= 2𝛿4𝑉0 −

𝛿2𝐴𝛬𝑛𝑘
𝑝

𝑀𝑏2
,

𝜒𝑛𝑘
4𝑠 =

2𝛿2𝛽(𝛽−1)𝛬𝑛𝑘
𝑠

𝑀𝑏2
− 8𝛿4𝑉0

2 −
𝛿2𝐴𝛬𝑛𝑘

𝑠

𝑀𝑏2
,

𝜒𝑛𝑘
4𝑝
=
2𝛿2𝛽(𝛽−1)𝛬𝑛𝑘

𝑝

𝑀𝑏2
− 8𝛿4𝑉0

2 −
𝛿2𝐴𝛬𝑛𝑘

𝑝

𝑀𝑏2
,

𝜒𝑛𝑘
5𝑠 = 𝜒𝑛𝑘

5𝑝
= −16𝛿4𝑉0

2,

𝜒𝛽𝑛𝑘
6𝑠 = −

2𝛽𝛿2(𝛽−1)𝛬𝑛𝑘
𝑠

2𝑀𝑏2
, 𝜒𝑛𝑘

6𝑝
= −

2𝛽𝛿2(𝛽−1)𝛬𝑛𝑘
𝑝

2𝑀𝑏2
,

𝜒𝑛𝑘
7𝑠 = 16𝛿4𝑘(𝑘 + 1), 𝜒𝑛𝑘

7𝑝
= 16𝛿4𝑘(𝑘 − 1).

(46) 

 

Furthermore, using the unit step function (also known as the 

Heaviside step function  𝜃(𝑥)  or simply the theta function) to 

rewrite the global induced two potentials 𝛴𝑡_𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) and  

𝛥𝑡−𝑚𝑟
𝑝𝑒𝑟𝑡 (𝑟)  for spin and pseudospin symmetries corresponding 

to upper and lower components (𝐹𝑛𝑘
𝑠 (𝑠)  and  𝐺𝑛𝑘

𝑠 (𝑠) ) and ( 

𝐹𝑛𝑘
𝑝 (𝑠)  and 𝐺𝑛𝑘

𝑝 (𝑠)), respectively as:  

 

𝛴𝑡_𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) = 𝛴𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟)𝜃(|𝐸𝑛𝑐
𝑚𝑟−𝑠|) − 𝛴𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟)𝜃(−|𝐸𝑛𝑐
𝑚𝑟−𝑠|) 

= {
𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) for Uc of spin symmetry, 

−𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) for Lc of spin symmetry,

         (47) 

and 

 

𝛥𝑡_𝑚𝑟
𝑝𝑒𝑟𝑡 (𝑟) = 𝛥𝑡𝑠

𝑝𝑒𝑟𝑡(𝑟)𝜃(|𝐸𝑛𝑐
𝑚𝑟−𝑝

|) − 𝛥𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟)𝜃(−|𝐸𝑛𝑐

𝑚𝑟−𝑝
|) 

= {
𝛥𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) for Uc of p-pin symmetry ,

−𝛥𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) for Lc of p-spin symmetry. 

       (48) 

 

Where the step function  𝜃(𝑥)  is given by: 

 

𝜃(𝑥) = {
1 for 𝑥 ≥ 0,
0 otherwise

.                              (49) 

 

Notably, the results yielded by the Greene and Aldrich 

approximation, for small values  𝛿𝑟 << 1, are in good 

agreement with those obtained using other methods. We have 

replaced the terms  𝑘(𝑘 + 1)𝑟−4 and  𝑘(𝑘 − 1)𝑟−4 with the 

approximation in Eq. (37). The combined Manning-Rosen 

and Yukawa tensor potentials are extended by including new 

additive potentials  𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟)  and  𝛥𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟)  expressed to the 

radial terms  
𝑧2

(1−𝑧)3
,  

𝑧5/2

(1−𝑧)4
,  

𝑧3/2

(1−𝑧)2
,  

𝑧5/2

(1−𝑧)3
,  

𝑧3

(1−𝑧)4
,  

𝑧7/2

(1−𝑧)4
 and  

𝑧2

(1−𝑧)4
 to become the newly combined Manning-Rosen and 

Yukawa tensor potentials in 3D-RNCQS symmetries. The 

generated new two effective potentials 𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) and  𝛥𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟)  
are also proportional to the infinitesimal vector 𝚯. This allows 

us to consider the new additive parts of the effective potential  

𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) and 𝛥𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟) as perturbation potentials compared 

with the main potentials 𝛴𝑚𝑟
𝑠 (𝑟) and  𝛥𝑚𝑟

𝑝 (𝑟) which are also 

known with the parent potential operator in the symmetries of 

3D-RNCQS, that is, the two inequalities 𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) <<

𝛴𝑚𝑟
𝑠 (𝑟) and 𝛥𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟) << 𝛥𝑚𝑟
𝑝 (𝑟) have become achieved. 

That is all physical justifications for applying the time-

independent perturbation theory become satisfied to calculate 

the expectation values of previous radial terms. This allows 
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us to give a complete prescription for determining the energy 

level of the generalized  (𝑛, 𝑙, 𝑠, 𝑙𝑝, 𝑠𝑝, 𝑚,𝑚𝑝)
𝑡ℎ

 excited states. 

 

B. The expectation values under the NCMRYPs in the 3D-

RNCQS for spin symmetry 

 

In this subsection, we want to apply the perturbative theory, 

in the case of deformation Dirac theory symmetries, we find 

the expectation values 𝑀1(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 ≡ ⟨

𝑧2

(1−𝑧)3
⟩
(𝑛𝑙𝑚𝑠)

𝑠−𝑚𝑟

, 𝑀2(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 ≡

⟨
𝑧5/2

(1−𝑧)4
⟩
(𝑛𝑙𝑚𝑠)

𝑠−𝑚𝑟

, 𝑀3(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 ≡ ⟨

𝑧3/2

(1−𝑧)2
⟩
(𝑛𝑙𝑚𝑠)

𝑠−𝑚𝑟

, 𝑀4(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 ≡

⟨
𝑧5/2

(1−𝑧)3
⟩
(𝑛𝑙𝑚𝑠)

𝑠−𝑚𝑟

 , 𝑀5(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 ≡ ⟨

𝑧3

(1−𝑧)4
⟩
(𝑛𝑙𝑚𝑠)

𝑠−𝑚𝑟

, 𝑀6(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 ≡

⟨
𝑧7/2

(1−𝑧)4
⟩
(𝑛𝑙𝑚𝑠)

𝑠−𝑚𝑟

 and 𝑀7(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 ≡ ⟨

𝑧2

(1−𝑧)4
⟩
(𝑛𝑙𝑚𝑠)

𝑠−𝑚𝑟

 for the spin 

symmetry taking into account the unperturbed upper 

component 𝐹𝑛𝑘
𝑠 (𝑟) which we have seen previously in Eq. (23). 

Thus after straightforward calculations, we obtain the 

following results: 

 

𝑀1(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 𝐶𝑛𝑘

𝑛𝑠2 ∫
0

+∞

𝑧2𝜈𝑛𝑘
1 +2(1 − 𝑧)𝜁𝑛𝑘

1 −2 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑟,      (50.1) 

 

𝑀2(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 𝐶𝑛𝑘

𝑛𝑠2 ∫
0

+∞

𝑧2𝜈𝑛𝑘
1 +5/2(1 − 𝑧)𝜁𝑛𝑘

1 −3 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑟,       (50.2) 

 

𝑀3(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 𝐶𝑛𝑘

𝑛𝑠2 ∫
0

+∞

𝑧2𝜈𝑛𝑘
1 +3/2(1 − 𝑧)𝜁𝑛𝑘

1 −1 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑟,         (50.3) 

𝑀4(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 𝐶𝑛𝑘

𝑛𝑠2 ∫
0

+∞

𝑧2𝜈𝑛𝑘
1 +5/2(1 − 𝑧)𝜁𝑛𝑘

1 −2 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑟,          (50.4) 

 

𝑀5(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 𝐶𝑛𝑘

𝑛𝑠2 ∫
0

+∞

𝑧2𝜈𝑛𝑘
1 +3(1 − 𝑧)𝜁𝑛𝑘

1 −3 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑟,          (50.5) 

 

𝑀6(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 𝐶𝑛𝑘

𝑛𝑠2 ∫
0

+∞

𝑧2𝜈𝑛𝑘
1 +7/2(1 − 𝑧)𝜁𝑛𝑘

1 −3 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑟,          (50.6) 

 

and 

𝑀7(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 𝐶𝑛𝑘

𝑛𝑠2 ∫
0

+∞

𝑧2𝜈𝑛𝑘
1 +2(1 − 𝑧)𝜁𝑛𝑘

1 −3 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑟.            (50.7) 

 

We have used useful abbreviations ⟨𝑅⟩(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟  instead to 

average values ⟨𝑛, 𝑙, 𝑚|𝑅|𝑛, 𝑙, 𝑚⟩ to avoid the extra burden of 

writing equations. Furthermore, we have applied the property 

of the spherical harmonics, which has the form 

 

∫𝑌𝑙
𝑚(𝜃, 𝜙)𝑌𝑙′

𝑚′(𝜃, 𝜙) 𝑠𝑖𝑛(𝜃) 𝑑𝜃𝑑𝜙 = 𝛿𝑙𝑙′𝛿𝑚𝑚′. 
 

Introducing the change of variable 𝑧 =  𝑒𝑥𝑝(−2𝛿𝑟). This 

maps the region  0 ≤ 𝑟 < ∞  to  0 ≤ 𝑠 ≤ 1 and allows us to 

obtain 𝑟 = −1/2
𝑑𝑧

𝛿𝑧
 , and transform Eqs. (50, 𝑖 = 1,7) into 

the following form: 

 

𝑀1(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
∫
0

+1

𝑧2𝜈𝑛𝑘
1 +2−1(1 − 𝑧)𝜁𝑛𝑘

1 −2 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑧,               (51.1) 

 

𝑀2(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
∫
0

+1

𝑧2𝜈𝑛𝑘
1 +5/2−1(1 − 𝑧)𝜁𝑛𝑘

1 −3 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑧,            (51.2) 

 

𝑀3(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
∫
0

+1

𝑧2𝜈𝑛𝑘
1 +3/2−1(1 − 𝑧)𝜁𝑛𝑘

1 −1 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑧,           (51.3) 

 

𝑀4(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
∫
0

+1

𝑧2𝜈𝑛𝑘
1 +5/2−1(1 − 𝑧)𝜁𝑛𝑘

1 −2 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑧,           (51.4) 

 

𝑀5(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
∫
0

+1

𝑧2𝜈𝑛𝑘
1 +3−1(1 − 𝑧)𝜁𝑛𝑘

1 −3 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑧,            (51.5) 

 

𝑀6(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
∫
0

+1

𝑧2𝜈𝑛𝑘
1 +7/2−1(1 − 𝑧)𝜁𝑛𝑘

1 −3 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑧,            (51.6) 

and 

𝑀7(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
∫
0

+1

𝑧2𝜈𝑛𝑘
1 +2−1(1 − 𝑧)𝜁𝑛𝑘

1 −3 [2𝐹1(−𝑛, 𝑛 +

2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 + 1; 1 + 2𝜈𝑛𝑘
1 , 𝑧)]2𝑑𝑧 .             (51.7) 

 

We can evaluate the above integrals either in a recurrence way 

through the physical values of the principal quantum number 

(𝑛 = 0,1, . ..) and then generalize the result to the general 

(𝑛, 𝑙, 𝑠, 𝑙𝑝, 𝑠𝑝, 𝑚,𝑚𝑝)
𝑡ℎ

 excited state or we use the method 

proposed by Dong et al. [100] and applied by Zhang [101], to 

obtain the general excited state directly. We calculate the 

integrals in Eqs.  (43, 𝑖 = 1,7)  with the help of the special 

integral formula: 

 

∫

0

+1

𝑧𝛼−1(1 − 𝑧)𝛽[ 2𝐹1(−𝑛, 𝑛 + 𝛽 + 𝛼 − 2; 2𝛼 + 1, 𝑧), ]
2𝑑𝑧 

=𝑛 ! 𝛤(𝛼 + 1))𝛤(𝛽 + 1)∑
(−1)𝑞(𝑛+𝛼+𝛽)𝑞

(𝑞+𝛼)𝛤(𝑛−𝑞) !𝑞 !𝛤(𝑞+𝛼+𝛽+1)
𝑛
𝑞=0  

  3𝐹2(−𝑛, 𝑞 + 𝛼, 𝑛 + 𝛼 + 𝛽; 𝛼 + 1, 𝑞 + 𝛼 + 𝛽; 1),        (52) 

 

here 3𝐹2(𝑐1, 𝑐2, 𝜁; 𝑐3, 𝜏 + 𝜉; 1)  equal to ∑
(𝑐1)𝑛(𝑐2)𝑛(𝜉)𝑛

(𝑐3)𝑛 𝑛 !(𝜏+𝜉)
𝑛
𝑛=0 , 

the symbol (𝑛 + 𝛼 + 𝛽)𝑞 denotes the rising factorial or 

Pochhammer symbol  
𝛤(𝑛+𝛼+𝛽+𝑞)

𝛤(𝑛+𝛼+𝛽)
  while  𝛤(𝜉)  denoting the 

usual Gamma function. By identifying Eqs.(51, 𝑖 = 1,7)  
with the integrals in Eqs. (52), we obtain the following results: 

 
𝑀1(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 
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∑

𝑞=0

𝑛

 
𝛽𝑛𝑘
1  (−1)𝑞(𝑛 + 𝐾𝑛𝑘)𝑞

(𝑞 + 𝜈𝑛𝑘
1 + 2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘 + 1)

 

3𝐹2(−𝑛, 𝑞 + 2𝜈𝑛𝑘
1 + 2, 𝑛 + 𝐾𝑛𝑘 , 2𝜈𝑛𝑘

1 + 3; 𝑞 + 𝐾𝑛𝑘 + 1; 1), (53.1) 
 

𝑀2(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 

∑

𝑞=0

𝑛

 
𝛽𝑛𝑘
2 (−1)𝑞(𝑛 + 𝐾𝑛𝑘 − 1/2)𝑞

(𝑞 + 2𝜈𝑛𝑘
1 + 5/2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘 + 1/2)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑛𝑘
1 + 5/2, 𝑛 + 𝐾𝑛𝑘 − 1/2,2𝜈𝑛𝑘

1 + 7/2; 𝑞 + 𝐾𝑛𝑘 +
1/2; 1) ,          (53.2) 

 

𝑀3(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 

∑

𝑞=0

𝑛

 
𝛽𝑛𝑙
3 (−1)𝑞(𝑛 + 𝐾𝑛𝑘 + 1/2)𝑞

(𝑞 + 2𝜈𝑛𝑘
1 + 3/2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘 + 3/2)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑛𝑘
1 + 3/2, 𝑛 + 𝐾𝑛𝑘 + 1/2,2𝜈𝑛𝑘

1 + 5/2; 𝑞 + 𝐾𝑛𝑘 +
3/2; 1) ,              (53.3) 

𝑀4(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 

∑

𝑞=0

𝑛

 
𝛽𝑛𝑘
4 (−1)𝑞(𝑛 + 𝐾𝑛𝑘 + 1/2)𝑞

(𝑞 + 2𝜈𝑛𝑘
1 + 5/2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘 + 3/2)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑛𝑘
1 + 5/2, 𝑛 + 𝐾𝑛𝑘 + 1/2,2𝜈𝑛𝑘

1 + 7/2; 𝑞 + 𝐾𝑛𝑘 +
3/2; 1) ,                   (53.4) 

𝑀5(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 

∑

𝑞=0

𝑛

 
𝛽𝑛𝑘
5 (−1)𝑞(𝑛 + 𝐾𝑛𝑘)𝑞

(𝑞 + 2𝜈𝑛𝑘
1 + 3)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘 + 1)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑛𝑘
1 + 3, 𝑛 + 𝐾𝑛𝑘 , 2𝜈𝑛𝑘

1 + 4; 𝑞 + 𝐾𝑛𝑘
+ 1; 1),                                                            (53.5) 

𝑀6(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 

∑

𝑞=0

𝑛

 

𝛽𝑛𝑘
6 (−1)𝑞 (𝑛 + 𝐾𝑛𝑘 +

1
2)𝑞

(𝑞 + 2𝜈𝑛𝑘
1 +

7
2)
(𝑛 − 𝑞)! 𝑞! 𝛤 (𝑞 + 𝐾𝑛𝑘 +

1
2)

 

 3𝐹2 (−𝑛, 𝑞 + 2𝜈𝑛𝑘
1 +

7

2
, 𝑛 + 𝐾𝑛𝑘 +

1

2,2𝜈𝑛𝑘
1 +

9

2
; 𝑞 + 𝐾𝑛𝑘 +

1

2
; 1), 

(53.6) 
and 

𝑀7(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 = 

∑

𝑞=0

𝑛

 
𝛽𝑛𝑘
7 (−1)𝑞(𝑛 + 𝐾𝑛𝑘 − 1)𝑞

(𝑞 + 2𝜈𝑛𝑘
1 + 2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑛𝑘
1 + 2, 𝑛 + 𝐾𝑛𝑘 − 1,2𝜈𝑛𝑘

1 + 3; 𝑞 + 𝐾𝑛𝑘; 1), 
(53.7) 

with 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝐾𝑛𝑘 = 2𝜈𝑛𝑘
1 + 𝜁𝑛𝑘

1 ,

𝛽𝑛𝑘
1 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
𝑛! 𝛤(2𝜈𝑛𝑘

1 + 3)𝛤(𝜁𝑛𝑘
1 − 1),

𝛽𝑛𝑘
2 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
𝑛! 𝛤(2𝜈𝑛𝑘

1 + 7/2)𝛤(𝜁𝑛𝑘
1 − 2),

𝛽𝑛𝑘
3 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
𝑛! 𝛤(2𝜈𝑛𝑘

1 + 5/2)𝛤(𝜁𝑛𝑘
1 ),

𝛽𝑛𝑘
4 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
𝑛! 𝛤(2𝜈𝑛𝑘

1 + 7/2)𝛤(𝜁𝑛𝑘
1 − 1),

𝛽𝑛𝑘
5 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
𝑛! 𝛤(2𝜈𝑛𝑘

1 + 4)𝛤(𝜁𝑛𝑘
1 − 2),

𝛽𝑛𝑘
6 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
𝑛! 𝛤(2𝜈𝑛𝑘

1 + 9/2)𝛤(𝜁𝑛𝑘
1 − 2),

𝛽𝑛𝑘
7 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
𝑛! 𝛤(2𝜈𝑛𝑘

1 + 3)𝛤(𝜁𝑛𝑘
1 − 2).

           (54) 

and 

{
  
 

  
 (𝑛 + 𝐾𝑛𝑘)𝑞 =

𝛤(𝑛 + 𝐾𝑛𝑘 + 𝑞)

𝛤(𝑛 + 𝐾𝑛𝑘)
,

(𝑛 + 𝐾𝑛𝑘 ± 1/2)𝑞 =
𝛤(𝑛 + 𝐾𝑛𝑘 ± 1/2 + 𝑞)

𝛤(𝑛 + 𝐾𝑛𝑘 + 1/2)

(𝑛 + 𝐾𝑛𝑘 − 1)𝑞 =
𝛤(𝑛 + 𝐾𝑛𝑘 − 1 + 𝑞)

𝛤(𝑛 + 𝐾𝑛𝑘 − 1)
.

,           (55) 

 

C. The expectation values under the NCMRYPs in the 3D-

RNCQS for p-spin symmetry 

 

In this subsection, we want to apply the perturbative theory, 

in the case of deformation Dirac theory symmetries, we find 

the expectation values 𝑀
1(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
≡ ⟨

𝑧2

(1−𝑧)3
⟩
(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟

, 

𝑀
2(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
≡ ⟨

𝑧5/2

(1−𝑧)4
⟩
(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟

, 𝑀
3(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
≡

⟨
𝑧3/2

(1−𝑧)2
⟩
(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟

, 𝑀
4(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
≡ ⟨

𝑧5/2

(1−𝑧)3
⟩
(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟

, 

𝑀
5(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
≡ ⟨

𝑧3

(1−𝑧)4
⟩
(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟

, 𝑀
6(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
≡

⟨
𝑧7/2

(1−𝑧)4
⟩
(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟

 and 𝑀
7(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
≡ ⟨

𝑧2

(1−𝑧)4
⟩
(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟

  for p-

spin symmetry with tensor interaction taking into account the 

wave function which we have seen previously in Eq. (24). By 

examining the two expressions of the upper and lower 

components (𝐹𝑛𝑘
𝑠 (𝑟) and 𝐺𝑛𝑘

𝑝 (𝑟)) shown in Eqs. (23) and (24), 

we note that there is a possibility to move from the 

unperturbed upper component  𝐹𝑛𝑘
𝑠 (𝑟) to the other lower 

component  𝐺𝑛𝑘
𝑝 (𝑟) by making the following substitutions: 

 

𝐶𝑛𝑘
𝑛𝑠 ⇔ 𝐶𝑛𝑘

𝑛𝑝
, 𝜈𝑛𝑘
1 ⇔𝜈𝑝𝑛𝑘

1

and 𝜁𝑛𝑘
1 ⇔ 𝜁𝑝𝑛𝑘

1  .       (56) 

 

This allows us to obtain the expectation values for p-spin 

symmetry from Eqs. (45, 𝑖 = 1,7)  without re-calculation, as 

follows: 
𝑀
1(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
= 

 ∑

𝑞=0

𝑛

 
𝛽𝑛𝑘
𝑝1(−1)𝑞(𝑛 + 𝐾𝑛𝑘

𝑝
)
𝑞

(𝑞 + 𝜈𝑝𝑛𝑘
1 + 2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘

𝑝
+ 1)

  

3𝐹2(−𝑛, 𝑞 + 2𝜈𝑝𝑛𝑘
1 + 2, 𝑛 + 𝐾𝑛𝑘

𝑝
, 2𝜈𝑝𝑛𝑘

1 + 3; 𝑞 + 𝐾𝑛𝑘
𝑝

+ 1; 1),                                                    (57.1) 

𝑀
2(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
= 

∑

𝑞=0

𝑛

 
𝛽𝑛𝑘
𝑝2(−1)𝑞(𝑛 + 𝐾𝑛𝑘

𝑝
− 1/2)

𝑞

(𝑞 + 2𝜈𝑝𝑛𝑘
1 + 5/2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘

𝑝
+ 1/2)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑝𝑛𝑘
1 + 5/2, 𝑛 + 𝐾𝑛𝑘

𝑝
− 1/2,2𝜈𝑝𝑛𝑘

1 + 7/2; 𝑞 + 𝐾𝑛𝑘
𝑝

+ 1/2; 1),                                                     (57.2) 

 

𝑀
3(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
= 

∑

𝑞=0

𝑛

 
𝛽𝑛𝑘
𝑝3(−1)𝑞(𝑛 + 𝐾𝑛𝑘

𝑝
+ 1/2)

𝑞

(𝑞 + 2𝜈𝑝𝑛𝑘
1 + 3/2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘

𝑝
+ 3/2)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑝𝑛𝑘
1 + 3/2, 𝑛 + 𝐾𝑛𝑘

𝑝
+ 1/2,2𝜈𝑝𝑛𝑘

1 + 5/2; 𝑞 + 𝐾𝑛𝑘
𝑝

+ 3/2; 1),                                                      (57.3) 

𝑀
4(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
= 
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∑

𝑞=0

𝑛

 
𝛽𝑛𝑘
𝑝4(−1)𝑞(𝑛 + 𝐾𝑛𝑘

𝑝
+ 1/2)

𝑞

(𝑞 + 2𝜈𝑝𝑛𝑘
1 + 5/2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘

𝑝
+ 3/2)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑝𝑛𝑘
1 + 5/2, 𝑛 + 𝐾𝑛𝑘

𝑝
+ 1/2,2𝜈𝑝𝑛𝑘

1 + 7/2; 𝑞 + 𝐾𝑛𝑘
𝑝

+ 3/2; 1),                                                      (57.4) 

𝑀
5(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
= 

∑

𝑞=0

𝑛

 
𝛽𝑛𝑘
𝑝5(−1)𝑞(𝑛 + 𝐾𝑛𝑘

𝑝
)
𝑞

(𝑞 + 2𝜈𝑝𝑛𝑘
1 + 3)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘

𝑝
+ 1)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑝𝑛𝑘
1 + 3, 𝑛 + 𝐾𝑛𝑘

𝑝
, 2𝜈𝑝𝑛𝑘

1 + 4; 𝑞 + 𝐾𝑛𝑘
𝑝

+ 1; 1),                                                  (57.5) 

𝑀
6(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
= 

∑

𝑞=0

𝑛

 
𝛽𝑛𝑘
𝑝6(−1)𝑞(𝑛 + 𝐾𝑛𝑘

𝑝
+ 1/2)

𝑞

(𝑞 + 2𝜈𝑝𝑛𝑘
1 + 7/2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘

𝑝
+ 1/2)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑝𝑛𝑘
1 + 7/2, 𝑛 + 𝐾𝑛𝑘

𝑝
+ 1/2,2𝜈𝑝𝑛𝑘

1 + 9/2; 𝑞 + 𝐾𝑛𝑘
𝑝

+ 1/2; 1),                                                   (57.6) 

and 

𝑀
7(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
=∑

𝑞=0

𝑛

 
𝛽𝑛𝑘
𝑝7(−1)𝑞(𝑛 + 𝐾𝑛𝑘

𝑝
− 1)

𝑞

(𝑞 + 2𝜈𝑝𝑛𝑘
1 + 2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑘

𝑝
)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑝𝑛𝑘
1 + 2, 𝑛 + 𝐾𝑛𝑘

𝑝
− 1,2𝜈𝑝𝑛𝑘

1 + 3; 𝑞

+ 𝐾𝑛𝑘
𝑝
; 1),                                              (57.7) 

with 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝐾𝑛𝑘
𝑝
= 2𝜈𝑝𝑛𝑘

1 + 𝜁𝑝𝑛𝑘
1 ,

𝛽𝑛𝑘
𝑝1
=
𝐶𝑛𝑘
𝑛𝑝2

2𝛿
𝑛! 𝛤(2𝜈𝑝𝑛𝑘

1 + 3)𝛤(𝜁𝑝𝑛𝑘
1 − 1),

𝛽𝑛𝑘
𝑝2
=
𝐶𝑛𝑘
𝑛𝑝2

2𝛿
𝑛! 𝛤(2𝜈𝑝𝑛𝑘

1 + 7/2)𝛤(𝜁𝑝𝑛𝑘
1 − 2),

𝛽𝑛𝑘
𝑝3
=
𝐶𝑛𝑘
𝑛𝑝2

2𝛿
𝑛! 𝛤(2𝜈𝑝𝑛𝑘

1 + 5/2)𝛤(𝜁𝑝𝑛𝑘
1 ),

𝛽𝑛𝑘
𝑝4
=
𝐶𝑛𝑘
𝑛𝑝2

2𝛿
𝑛! 𝛤(2𝜈𝑝𝑛𝑘

1 + 7/2)𝛤(𝜁𝑝𝑛𝑘
1 − 1),

𝛽𝑛𝑘
𝑝5
=
𝐶𝑛𝑘
𝑛𝑝2

2𝛿
𝑛! 𝛤(2𝜈𝑝𝑛𝑘

1 + 4)𝛤(𝜁𝑝𝑛𝑘
1 − 2),

𝛽𝑛𝑘
𝑝6
=
𝐶𝑛𝑘
𝑛𝑝2

2𝛿
𝑛! 𝛤(2𝜈𝑝𝑛𝑘

1 + 9/2)𝛤 (𝜁𝑝𝑛𝑘
1 − 2) ,

𝛽𝑛𝑘
𝑝7
=
𝐶𝑛𝑘
𝑛𝑝2

2𝛿
𝑛! 𝛤(2𝜈𝑝𝑛𝑘

1 + 3)𝛤(𝜁𝑝𝑛𝑘
1 − 2).

(58) 

and 

{
 
 

 
 (𝑛 + 𝐾𝑛𝑘

𝑝
)
𝑞
=
𝛤(𝑛+𝐾𝑛𝑘

𝑝
+𝑞)

𝛤(𝑛+𝐾𝑛𝑘
𝑝
)
,

(𝑛 + 𝐾𝑛𝑘
𝑝
± 1/2)

𝑞
=
𝛤(𝑛+𝐾𝑛𝑘

𝑝
±1/2+𝑞)

𝛤(𝑛+𝐾𝑛𝑘
𝑝
+1/2)

(𝑛 + 𝐾𝑛𝑘
𝑝
− 1)

𝑞
=
𝛤(𝑛+𝐾𝑛𝑘

𝑝
−1+𝑞)

𝛤(𝑛+𝐾𝑛𝑘
𝑝
−1)

.

,           (59) 

 

 

D. New energy for NCMRYPs in 3D-RNCQS symmetries 

 

The main objective underlined in this subsection is to find the 

contribution resulting from topological properties based on 

our strategy which we have successfully applied in previous 

works and which we try to develop in every new work. We 

can say that the global relativistic energy in the perspective of 

3D-RNCQS symmetries produced with NCMRYPs model as 

a result of a major contribution to relativistic energy known in 

the literature under the combined Manning-Rosen and 

Yukawa tensor potentials model in usual Dirac theory and 

which we paved for through a quick look for the spin(p-spin)-

symmetry in Eqs. (20) and (21), while the new contribution is 

produced from the topological properties under space-space 

deformation, which can be evaluated through several 

contributions, we will address three of them. The first one is 

generated from the effect of the perturbed spin-orbit effective 

potentials  𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟)  and  𝛥𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟) corresponds to spin 

symmetry and pseudospin symmetry. These perturbed 

effective potentials are obtained by replacing the coupling of 

the angular momentum (𝐿 and 𝐿𝑝) operators and the NC 

vector 𝚯  with the new equivalent couplings ( 𝛩𝐋S  and  

𝛩𝐋𝐩𝐒𝐩) for spin and p-spin-symmetry, respectively(with 

𝛩2 = 𝛩12
2 + 𝛩23

2 + 𝛩13
2  ). This degree of freedom comes 

considering that the infinitesimal NC vector 𝚯 is arbitrary. We 

have oriented the two spin-𝑠  and spin-𝑠𝑝 of the fermionic 

particles to become parallels to the vector 𝚯 which interacted 

with new combined Manning-Rosen and Yukawa tensor 

potentials. Additionally, we substitute the previous new spin-

orbit couplings with the corresponding new physical form 

(𝛩/2)𝐆2and (𝛩/2)𝐆𝑝
2 , with  𝐆𝟐 = 𝐉𝟐 − 𝐋𝟐 − 𝐒𝟐  and  𝐆𝐩

𝟐 =

𝐉𝟐 − 𝐋𝐩
𝟐 − 𝐒𝐩

𝟐  for a spin (p-spin)-symmetry, respectively. It is 

well known that the operators (𝐇𝐫𝐧𝐜
𝐦𝐫 ,  𝐉𝟐,  𝐋𝟐,  𝐒𝟐  and  𝐉𝐳) form 

a complete set of conserved physics quantities, the 

eigenvalues of the operators  𝐺2  and  𝐺𝑝
2  are equal to the 

values: 

𝐹(𝑗, 𝑙, 𝑠) =
[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)]

2 
, 

  for  |𝑙 − 𝑠| ≤ 𝑗 ≤   |𝑙 + 𝑠| 
and 

 

𝐹(𝑗, 𝑙𝑝, 𝑠𝑝) =
[𝑗(𝑗 + 1) − 𝑙𝑝(𝑙𝑝 − 1) − 𝑠𝑝(𝑠𝑝 + 1)]

2
, 

 for |𝑙𝑝 − 𝑠𝑝| ≤ 𝑗 ≤   |𝑙𝑝 + 𝑠𝑝| 

  

that corresponding to the spin and p-spin-symmetry, 

respectively. Consequently, the partially corrected energies 

𝛥𝐸𝑚𝑟
𝑠𝑜−𝑠(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0, 𝜂, 𝑗, 𝑙, 𝑠) ≡ 𝛥𝐸𝑚𝑟

𝑠𝑜−𝑠 and 

𝛥𝐸𝑚𝑟
𝑠𝑜−𝑝

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0, 𝜂, 𝑗, 𝑙𝑝, 𝑠) ≡ 𝛥𝐸𝑚𝑟
𝑠𝑜−𝑝

 due to the 

perturbed effective potentials 𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟) and 𝛥𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟) produced 

for the (𝑛, 𝑙, 𝑠, 𝑙𝑝, 𝑠𝑝)
𝑡ℎ

 excited state, in 3D-RNCQS 

symmetries, as follows: 

 

{
𝛥𝐸𝑚𝑟

𝑠𝑜−𝑠 = 𝛩𝐹(𝑗, 𝑙, 𝑠)⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚𝑟 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0),

𝛥𝐸𝑚𝑟
𝑠𝑜−𝑝

= 𝛩𝐹(𝑗, 𝑙𝑝, 𝑠𝑝)⟨𝑋𝑝⟩(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)
𝑚𝑟

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0).
  (60) 

 

The global two expectation values ⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚𝑟 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0)  

and  ⟨𝑋𝑝⟩(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)
𝑚𝑟

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) for a spin(p-spin)-

symmetry, respectively are determined from the following 

expressions: 

{
 
 

 
 ⟨𝑋⟩(𝑛𝑙𝑚𝑠)

𝑚𝑟 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) =∑

7

𝜇=1

𝛽𝑛𝑘
𝜇𝑠
𝑀𝜇(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 ,

⟨𝑋𝑝⟩(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)
𝑚𝑟

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) =∑

7

𝜇=1

𝛽𝑛𝑘
𝜇𝑝
𝑀
𝜇(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
,

(61) 
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where  𝛽𝑛𝑘
𝜇𝑠

  and  𝛽𝑛𝑘
𝜇𝑝
(𝜇 = 1,7)  are determined from Eqs. (46) 

while  𝑀𝜇(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟   and  𝑀

𝜇(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
  are determined from Eqs. 

(53, 𝑖 = 1,7) and Eqs. (57, 𝑖 = 1,7), respectively. The second 

main part is obtained from the magnetic effect of the 

perturbative effective potentials  𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟)  and  𝛥𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟)  
under the NCMRYPs model in 3D-RNCQS symmetries. 

These effective potentials are achieved when we replace both 

(𝐋𝚯  and  𝐋𝐩𝚯) by ( 𝜆ℵ𝐿𝑧  and  𝜆ℵ𝐿𝑧
𝑝
 ), respectively, and  𝛩12 

by  𝜆ℵ, here ( ℵ and  𝜆) are present the intensity of the 

magnetic field induced by the effect of the deformation of 

space-space geometry and a new infinitesimal 

noncommutativity parameter, so that the physical unit of the 

original noncommutativity parameter  𝛩12 (length)2  is the 

same unit of  𝜆ℵ , we have also need to apply  

⟨𝑛′, 𝑙′, 𝑚′|𝐿𝑧|𝑛, 𝑙, 𝑚⟩ = 𝑚𝛿𝑚′𝑚𝛿𝑙′𝑙𝛿𝑛′𝑛  and  

⟨𝑛′, 𝑙𝑝
′ , 𝑚𝑝

′ |𝐿𝑧
𝑝
|𝑛, 𝑙𝑝, 𝑚𝑝⟩ = 𝑚𝑝𝛿𝑚𝑝′ 𝑚𝑝𝛿𝑙𝑝′ 𝑙𝑝𝛿𝑛′𝑛(−𝑙𝑝

′ ≤ 𝑚𝑝
′ ≤

𝑙𝑝 and −𝑙 ≤ 𝑚 ≤  𝑙) for spin(p-spin)-symmetry, respectively. 

All of these data allow for the discovery of the new energy 

shift  𝛥𝐸𝑚𝑟
𝑚𝑔−𝑠

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0, 𝜆, 𝑗, 𝑙, 𝑚)≡ 𝛥𝐸𝑚𝑟
𝑚𝑔−𝑠

 and  

𝛥𝐸𝑚𝑟
𝑚𝑔−𝑝

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0, 𝜆, 𝑗, 𝑙,𝑚𝑝)≡ 𝛥𝐸𝑚𝑟
𝑚𝑔−𝑝

  due to the 

perturbed Zeeman effect created by the influence of the 

NCMRYPs model for the  (𝑛, 𝑙, 𝑠, 𝑙𝑝, 𝑠𝑝, 𝑚,𝑚𝑝)
𝑡ℎ

  excited 

state in 3D-RNCQS symmetries as follows: 

 

{
𝛥𝐸𝑚𝑟

𝑚𝑔−𝑠
= 𝜆ℵ⟨𝑋⟩(𝑛𝑙𝑚𝑠)

𝑚𝑟 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0)𝑚,

𝛥𝐸𝑚𝑟
𝑚𝑔−𝑝

= 𝜆ℵ⟨𝑋𝑝⟩(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)
𝑚𝑟

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0)𝑚𝑝.
        (62) 

 

After we completed the self-energy additions resulting from 

the self-deformation generated by perturbed (spin/p-spin)-

orbit interactions and the new modified Zeeman effect. We 

are now in the process of reviewing another addition that is 

no less important than the previous ones under the NCMRYPs 

model in 3D-RNCQS symmetries. This new physical 

phenomenon is generated automatically from the effect of 

perturbed effective potentials  𝛴𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟)  and  𝛥𝑚𝑟

𝑝𝑒𝑟𝑡(𝑟)  which 

we have seen in Eqs. (44) and (45). We consider the fermionic 

particles undergoing rotation with angular velocity 𝛚. The 

features of this subjective phenomenon are determined by 

replacing the arbitrary vector  𝚯  with  𝛾𝛚 . Allowing us to 

replace the two couplings (𝐋𝚯  and  𝐋𝐩𝚯) with ( 𝛾𝐋𝛚  and  

𝐋𝐩𝛚 ), respectively, as follows: 

 

(
𝐋
𝐋𝐩
)𝚯 → 𝛾 (

𝐋 𝛚 for spin-sy
𝐋𝐩𝛚 for p-spin-sy

).              (63) 

 

Here, we consider  𝛾 is just an infinitesimal real proportional 

constant. We can express the effective potentials  𝛴𝑝𝑒𝑟𝑡
𝑚𝑟−𝑟𝑜𝑡(𝑧) 

and  𝛥𝑝𝑒𝑟𝑡
𝑚𝑟−𝑟𝑜𝑡(𝑧)  which induced the rotational movements of 

the fermionic particles as follows: 

𝛴𝑝𝑒𝑟𝑡
𝑚𝑟−𝑟𝑜𝑡(𝑧) = 𝛾(𝜒𝑛𝑘

1𝑠
𝑧2

(1 − 𝑧)3
+ 𝜒𝑛𝑘

2𝑠
𝑧
5
2

(1 − 𝑧)4
+ 

 

+𝜒𝑛𝑘
3𝑠

𝑧3/2

(1 − 𝑧)2
+ 𝜒𝑛𝑘

4𝑠
𝑧5/2

(1 − 𝑧)3
+ 𝜒𝑛𝑘

5𝑠
𝑧3

(1 − 𝑧)4

+𝜒𝑛𝑘
6𝑠

𝑧7/2

(1 − 𝑧)4
+ 𝜒𝑛𝑘

7𝑠
𝑧2

(1 − 𝑧)4
)𝑳𝝎 + 𝑂(𝛩2), (64.1)

 

and 

𝛥𝑝𝑒𝑟𝑡
𝑚𝑟−𝑟𝑜𝑡(𝑧) = 𝛾(𝜒𝑛𝑘

1𝑝 𝑧2

(1 − 𝑧)3
+ 𝜒𝑛𝑘

2𝑝 𝑧5/2

(1 − 𝑧)4
+ 

+𝜒𝑛𝑘
3𝑝 𝑧3/2

(1 − 𝑧)2
+ 𝜒𝑛𝑘

4𝑝 𝑧5/2

(1 − 𝑧)3
+ 𝜒𝑛𝑘

5𝑝 𝑧3

(1 − 𝑧)4
+

+𝜒𝑛𝑘
6𝑝 𝑧7/2

(1 − 𝑧)4
+ 𝜒𝑛𝑘

7𝑝 𝑧2

(1 − 𝑧)4
)𝐋𝐩𝛚+ 𝑂(𝛩

2). (64.2)

 

  

To simplify the calculations without changing the physical 

content, by applying the same principle that we examined a 

short while ago, we choose the rotational velocity  𝛚  parallel 

to the (𝑂𝑧) axis  (𝛚 = 𝜔𝑒𝑧). Thus, the above equation can be 

reduced to its simplified form as 

𝛾

(

 
 
 
 (∑

7

𝜇=1

𝛽𝑛𝑘
𝜇𝑠
𝑀𝜇(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 )𝐋𝛚

(∑

7

𝜇=1

𝛽𝑛𝑘
𝜇𝑝
𝑀
𝜇(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
)𝐋𝐩𝛚

)

 
 
 
 

 

= 𝛾𝜔

(

 
 
 
 (∑

7

𝜇=1

𝛽𝑛𝑘
𝜇𝑠
𝑀𝜇(𝑛𝑙𝑚𝑠)
𝑠−𝑚𝑟 )𝐿𝑧

(∑

7

𝜇=1

𝛽𝑛𝑘
𝜇𝑝
𝑀
𝜇(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑝−𝑚𝑟
)𝐿𝑧

𝑝

)

 
 
 
 

 .         (65) 

All of this data permuted us to produce the corrected energies  

𝛥𝐸𝑚𝑟
𝑟𝑜𝑡−𝑠 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0, 𝛾, 𝑚 ) and  

𝛥𝐸𝑚𝑟
𝑟𝑜𝑡−𝑝

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0,𝛾,𝑚𝑝) due to the perturbed effective 

potentials  𝛴𝑝𝑒𝑟𝑡
𝑚𝑟−𝑟𝑜𝑡(𝑧)  and  𝛥𝑝𝑒𝑟𝑡

𝑚𝑟−𝑟𝑜𝑡(𝑧)  which are generated 

automatically by the influence of the new combined Manning-

Rosen and Yukawa tensor potentials for the  (𝑛, 𝑙, 𝑙𝑝, 𝑚,𝑚𝑝)
𝑡ℎ

  

excited state in 3D-RNCQS symmetries as follows: 

 

(
𝛥𝐸𝑚𝑟

𝑟𝑜𝑡−𝑠

𝛥𝐸𝑚𝑟
𝑟𝑜𝑡−𝑝) = 𝛾𝜔(

⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚𝑟 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0)𝑚

⟨𝑋𝑝⟩(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)
𝑚𝑟

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0)𝑚𝑝
) . (66) 

 

It is worth noting that the authors of reference [102] studied 

rotating isotropic and anisotropic harmonically confined 

ultra-cold Fermi gas in a two and three-dimensional space at 

zero temperature, but in this study, the rotational term was 

added to the Hamiltonian operator, in contrast to our case, 

where in our recent study, the two rotation operators  

𝛴𝑝𝑒𝑟𝑡
𝑚𝑟−𝑟𝑜𝑡(𝑧)𝐋𝛚  and  𝛥𝑝𝑒𝑟𝑡

𝑚𝑟−𝑟𝑜𝑡(𝑧)𝐋𝐩𝛚 automatically appear 

due to the augmented symmetries resulting from the 

deformation of space-space under the new combined 

Manning-Rosen and Yukawa tensor potentials. For fermionic 

particles with spin-1/2, the eigenvalues of the operators  𝐆2  

and  𝐆𝑝
2 are equal to the values: 
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{
 
 

 
 

𝐹(𝑗, 𝑙, 𝑠) =
[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) −

3
4
]

2
,

𝐹(𝑗, 𝑙𝑝, 𝑠𝑝) = [𝑗(𝑗 + 1) − 𝑙𝑝(𝑙𝑝 − 1) −
3

4
] /2.

(67) 

 

The possible values of   {𝑗} that corresponding spin-1/2 can 

be taken ( 𝑙 ± 1/2  and  𝑙𝑝 ± 1/2)  for spin symmetry and 

pseudospin symmetry, this allows us to reformulate Eq. (67) 

as follows: 

𝐹(𝑗 = 𝑙 ± 1/2, 𝑠 = 1/2)

=
1

2
{

𝑙   Up polarity:  𝑗 = 𝑙 + 1/2,

−(𝑙 + 1) Down polarity: 𝑗 =  𝑙 − 1/2.
                  (68) 

 

and 

𝐹(𝑗 = 𝑙𝑝 ± 1/2, 𝑠𝑝 = 1/2)

=
1

2
{

𝑙𝑝   Up polarity:  𝑗 = 𝑙𝑝 + 1/2,

−(𝑙𝑝 + 1) Down polarity: 𝑗 =  𝑙𝑝 − 1/2.
              (69) 

 

 

The global relativistic energy 

𝐸𝑛𝑐
𝑚𝑟−𝑠(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0, 𝜂, 𝜆, 𝛾, 𝑗, 𝑙, 𝑠,𝑚) and𝐸𝑛𝑐

𝑚𝑟−𝑝
  

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0, 𝜂, 𝜆, 𝛾, 𝑗, 𝑙𝑝, s, 𝑚𝑝) for the case of spin-1/2 with 

new combined Manning-Rosen and Yukawa tensor 

potentials, in the framework of 3D-RNCQS symmetries, 

corresponding to the generalized (𝑛, 𝑙, 𝑠, 𝑙𝑝, 𝑠𝑝, 𝑚,𝑚𝑝)
𝑡ℎ

  

excited with Up polarity (Up) with 𝑗 = 𝑙 + 1/2  and down 

polarity (Dp) with   𝑗 =   𝑙 − 1/2  as 

 

𝐸𝑛𝑐
𝑚𝑟−𝑠(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0, 𝜃, 𝜆, 𝛾, 𝑗, 𝑙, 𝑠,𝑚)

= 𝐸𝑛𝑘
𝑠 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0), +⟨𝑋⟩(𝑛𝑙𝑚𝑠)

𝑚𝑟 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) [(𝜆ℵ

+ 𝛾𝜔)𝑚 +
𝜃

2
{

𝑙   for Up  with 𝑗 = 𝑙 +
1

2

−(𝑙 + 1) for Dp with  𝑗 =  𝑙 −
1

2

] . (70) 

 

and 

𝐸𝑛𝑐
𝑚𝑟−𝑝

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0, 𝜃, 𝜆, 𝛾, 𝑗, 𝑙𝑝, 𝑠𝑝, 𝑚𝑝)

= 𝐸𝑛𝑘
𝑝 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0)

+ ⟨𝑋𝑝⟩(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)
𝑚𝑟

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) 

[(𝜆ℵ+ 𝛾𝜔)𝑚𝑝 +
𝜃

2
{

𝑙𝑝   for Up  with  𝑗 = 𝑙𝑝 +
1

2

−(𝑙𝑝 + 1) for Dp with 𝑗 =  𝑙𝑝 −
1

2

] 

(71) 
Where  𝐸𝑛𝑘

𝑠   and  𝐸𝑛𝑘
𝑝

  are usual relativistic energies under 

combined Manning-Rosen and Yukawa tensor potentials 

obtained from equations of energy in Eqs.(20) and (21). We 

can now generalize our obtained energies  𝐸𝑔−𝑛𝑐
𝑚𝑟−𝑠  and  𝐸𝑔−𝑛𝑐

𝑚𝑟−𝑝
  

under the new combined Manning-Rosen and Yukawa tensor 

potentials which are produced with the globally induced two 

potentials  𝛴𝑡_𝑚𝑟
𝑝𝑒𝑟𝑡(𝑟)  and  𝛥𝑡−𝑚𝑟

𝑝𝑒𝑟𝑡 (𝑟)  for spin and pseudospin 

symmetries corresponding to the upper and lower components 

( 𝐹𝑛𝑘
𝑠 (𝑠)  and  𝐺𝑛𝑘

𝑠 (𝑠) ) and ( 𝐹𝑛𝑘
𝑝 (𝑠)  and  𝐺𝑛𝑘

𝑝 (𝑠)), respectively 

as:  

 

𝐸𝑔−𝑛𝑐
𝑚𝑟−𝑠 = 𝐸𝑛𝑐

𝑚𝑟−𝑠𝜃(|𝐸𝑛𝑐
𝑚𝑟−𝑠|) − 𝐸𝑛𝑐

𝑚𝑟−𝑠𝜃(−|𝐸𝑛𝑐
𝑚𝑟−𝑠|) 

= {
𝐸𝑛𝑐
𝑚𝑟−𝑠 for Uc of spin symmetry 

−𝐸𝑛𝑐
𝑚𝑟−𝑠 for Lc of spin symmetry 

    (72) 

and 

 

𝐸𝑔−𝑛𝑐
𝑚𝑟−𝑝

= 𝐸𝑛𝑐
𝑚𝑟−𝑝

𝜃(|𝐸𝑛𝑐
𝑚𝑟−𝑝

|) − 𝐸𝑛𝑐
𝑚𝑟−𝑝

𝜃(−|𝐸𝑛𝑐
𝑚𝑟−𝑝

|) 

= {
𝐸𝑛𝑐
𝑚𝑟−𝑝

 for UC of p-pin symmetry 

−𝐸𝑛𝑐
𝑚𝑟−𝑝

 for Lc of p-pin symmetry
(73) 

 

I. IV. THE NEW COMBINED 

MANNING-ROSEN AND YUKAWA 

TENSOR INTERACTION IN 3D-

NRNCQS SYMMETRIES 
 

In order to study and analyze the nonrelativistic limit, in three-

dimensional nonrelativistic noncommutative quantum 

mechanics (3D-3D-NRNCQS) symmetries of the new 

combined Manning-Rosen potential, two steps must be 

applied, the first step corresponds to the nonrelativistic limit, 

in usual nonrelativistic quantum energy. This is done by 

applying the following steps, we replace: 

 
(𝐶𝐸𝑆, 𝐶𝑃𝑆, 𝑉0) → (0,0,0), 𝐸𝑛𝑘

𝑠 +𝑀 → 2𝜇, 𝐸𝑛𝑘
𝑠 −𝑀 →

𝐸𝑛𝑙
𝑛𝑟 , 𝑘(𝑘 + 1) → 𝑙(𝑙 + 1). 

 

This allows us to obtain the nonrelativistic energy levels as: 

 

𝐸𝑛𝑙
𝑛𝑟 = −

1

2𝜇
[𝛿

2𝛿2𝐴−𝑙(𝑙+1)−𝑛(𝑛+1)𝛬(𝑙,𝛽,𝛿)

𝑛+
1

2
+𝛬(𝑙,𝛽,𝛿)

]

2

.          (74) 

 

Here 𝛬(𝑙, 𝛽, 𝛿) equal to √
1

4
+ 𝑙(𝑙 + 1) − 2𝛿2𝛽(𝛽 − 1). Now, 

the second step corresponds to the transformation of the 

relativistic coefficients 𝜒𝑛𝑘
𝜇𝑠
(𝜇 = 1,7) under the previous 

correspondence to the new nonrelativistic coefficients 

𝜀𝑛𝑙
𝜇
(𝜇 = 1,7) of the nonrelativistic expectations values are 

given by: 

{
 
 
 

 
 
 
𝜀𝑛𝑙
1 = 𝜀𝑛𝑙

2 = 𝜀𝑛𝑙
5 = 0, 

𝜀𝑛𝑙
3 = −

2𝛿2𝐴

𝑏2
, 

𝜀𝑛𝑙
4 =

4𝛿2𝛽(𝛽−1)

𝑏2
−
2𝛿2𝐴

𝑏2

𝜀𝑛𝑙
6 = −

2𝛽𝛿2(𝛽−1)𝛬

𝑏2
, 

𝜀𝑛𝑙
7 = 16𝛿4𝑙(𝑙 + 1).

                        (75) 

 

Allows us to reexport the relativistic expectation values  
⟨𝑋⟩(𝑛𝑙𝑚𝑠)

𝑚𝑟 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0 ) of spin symmetry in Eq. (61) from the 

corresponding nonrelativistic expectation values  
⟨𝑋⟩(𝑛𝑙𝑚𝑠)

𝑚𝑟−𝑛𝑟(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0)  as: 

⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚𝑟−𝑛𝑟(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) = ∑

7

𝜇=3
𝜀𝑛𝑙
𝜇
𝑀𝜇(𝑛𝑙𝑚𝑠)
𝑛𝑟−𝑚𝑟 (76) 

with 

 

𝑀3(𝑛𝑙𝑚𝑠)
𝑛𝑟−𝑚𝑟 = 
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∑

𝑞=0

𝑛

 
𝛽𝑛𝑙
𝑛𝑟3(−1)𝑞(𝑛 + 𝐾𝑛𝑙

𝑛𝑟 + 1/2)𝑞
(𝑞 + 2𝜈𝑛𝑙

𝑛𝑟1 + 3/2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑙
𝑛𝑟 + 3/2)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑛𝑙
𝑛𝑟1 + 3/2, 𝑛 + 𝐾𝑛𝑙

𝑛𝑟 + 1/2,2𝜈𝑛𝑙
𝑛𝑟1 +

5/2; 𝑞 + 𝐾𝑛𝑙
𝑛𝑟 + 3/2; 1),  (77.1) 

 

𝑀4(𝑛𝑙𝑚𝑠)
𝑛𝑟−𝑚𝑟 = 

∑

𝑞=0

𝑛

 
𝛽𝑛𝑙
𝑛𝑟4(−1)𝑞(𝑛 + 𝐾𝑛𝑙

𝑛𝑟 + 1/2)𝑞
(𝑞 + 2𝜈𝑛𝑙

𝑛𝑟1 + 5/2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑙
𝑛𝑟 + 3/2)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑛𝑙
𝑛𝑟1 + 5/2, 𝑛 + 𝐾𝑛𝑙

𝑛𝑟 + 1/2,2𝜈𝑛𝑙
𝑛𝑟1 +

7/2; 𝑞 + 𝐾𝑛𝑙
𝑛𝑟 + 3/2; 1),  (77.2) 

 

𝑀6(𝑛𝑙𝑚𝑠)
𝑛𝑟−𝑚𝑟 = 

∑

𝑞=0

𝑛

 
𝛽𝑛𝑙
𝑛𝑟6(−1)𝑞(𝑛 + 𝐾𝑛𝑙

𝑛𝑟 + 1/2)𝑞
(𝑞 + 2𝜈𝑛𝑙

𝑛𝑟1 + 7/2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑙
𝑛𝑟 + 1/2)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑛𝑙
𝑛𝑟1 + 7/2, 𝑛 + 𝐾𝑛𝑙

𝑛𝑟 + 1/2,2𝜈𝑛𝑙
𝑛𝑟1 +

9/2; 𝑞 + 𝐾𝑛𝑙
𝑛𝑟 + 1/2; 1),  (77.3) 

and 

 

𝑀7(𝑛𝑙𝑚𝑠)
𝑛𝑟−𝑚𝑟 = 

∑

𝑞=0

𝑛

 
𝛽𝑛𝑙
𝑛𝑟7(−1)𝑞(𝑛 + 𝐾𝑛𝑙

𝑛𝑟 − 1)𝑞
(𝑞 + 2𝜈𝑛𝑙

𝑛𝑟1 + 2)(𝑛 − 𝑞)! 𝑞! 𝛤(𝑞 + 𝐾𝑛𝑙
𝑛𝑟)

 

 3𝐹2(−𝑛, 𝑞 + 2𝜈𝑛𝑙
𝑛𝑟1 + 2, 𝑛 + 𝐾𝑛𝑙

𝑛𝑟 − 1,2𝜈𝑛𝑙
𝑛𝑟1 + 3; 𝑞 +

𝐾𝑛𝑙
𝑛𝑟; 1),  (77.4) 

 

with 

{
 
 
 
 

 
 
 
 

𝐾𝑛𝑙
𝑛𝑟 = 2𝜈𝑛𝑙

𝑛𝑟1 + 𝜁𝑛𝑙
𝑛𝑙1,

𝛽𝑛𝑙
𝑛𝑟3 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
𝑛! 𝛤(𝜈𝑛𝑙

𝑛𝑟1 + 5/2)𝛤(𝜁𝑛𝑙
𝑛𝑙1),

𝛽𝑛𝑙
𝑛𝑟4 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
𝑛! 𝛤(2𝜈𝑛𝑙

𝑛𝑟1 + 7/2)𝛤(𝜁𝑛𝑙
𝑛𝑙1 − 1),

𝛽𝑛𝑙
𝑛𝑟6 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
𝑛! 𝛤(2𝜈𝑛𝑙

𝑛𝑟1 + 9/2)𝛤(𝜁𝑛𝑙
𝑛𝑙1 − 2),

𝛽𝑛𝑙
𝑛𝑟7 =

𝐶𝑛𝑘
𝑛𝑠2

2𝛿
𝑛! 𝛤(2𝜈𝑛𝑙

𝑛𝑟1 + 3)𝛤(𝜁𝑛𝑙
𝑛𝑙1 − 2).

(78) 

and 

{
(𝑛 + 𝐾𝑛𝑙

𝑛𝑟 + 1/2)𝑞 =
𝛤(𝑛+𝐾𝑛𝑙

𝑛𝑟+1/2+𝑞)

𝛤(𝑛+𝐾𝑛𝑙
𝑛𝑟+1/2)

,

(𝑛 + 𝐾𝑛𝑙
𝑛𝑟 − 1)𝑞 =

𝛤(𝑛+𝐾𝑛𝑙
𝑛𝑟−1+𝑞)

𝛤(𝑛+𝐾𝑛𝑙
𝑛𝑟−1−1)

.
             (79) 

 

This permuted expressing the nonrelativistic correction 

energy  𝛥𝐸𝑛𝑐−𝑛𝑟
𝑚𝑟 (𝑛, 𝛿, 𝑉0, 𝐴, 𝜂, 𝜆, 𝛾, 𝑗, 𝑙, 𝑠,𝑚) produced by the 

new combined Manning-Rosen and Yukawa tensor potentials 

as 

 

𝛥𝐸𝑛𝑐−𝑛𝑟
𝑚𝑟 (𝑛, 𝛿, 𝑉0, 𝐴, 𝜂, 𝜆, 𝛾, 𝑗, 𝑙, 𝑠,𝑚)

= ⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚𝑟−𝑛𝑟(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0)(𝜆ℵ+ 𝛾𝜔)𝑚 

+⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚𝑟−𝑛𝑟(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0)

𝜃

2
{

𝑙   Up :  𝑗 = 𝑙 + 1/2,

−(𝑙 + 1)  Dp: 𝑗 =  𝑙 − 1/2.
(80) 

 

The global nonrelativistic energy  

𝐸𝑛𝑐−𝑛𝑟
𝑚𝑟 (𝑛, 𝛿, 𝑉0, 𝐴, 𝜃, 𝜆, 𝛾, 𝑗, 𝑙, 𝑠,𝑚)  produced with the new 

Manning-Rosen potential in 3D-NRNCQS symmetries as a 

result the topological properties of the deformation space-

space is the sum of usual energy  𝐸𝑛𝑙
𝑚𝑟  in Eq. (74) under 

combined Manning-Rosen and Yukawa tensor potentials in 

3D-NRNCQS symmetries and the obtained correction  

𝛥𝐸𝑛𝑐−𝑛𝑟
𝑚𝑟 ( 𝑛, 𝛿, 𝑉0, 𝐴, 𝜃, 𝜆, 𝛾, 𝑗, 𝑙, 𝑠,𝑚 ) in Eq. (80) as follows: 

 

𝐸𝑛𝑐−𝑛𝑟
𝑚𝑟 (𝑛, 𝛿, 𝑉0, 𝐴, 𝜃, 𝜆, 𝛾, 𝑗, 𝑙, 𝑠,𝑚)

= −
1

2𝜇
[𝛿
2𝛿2𝐴 − 𝑙(𝑙 + 1) − 𝑛(𝑛 + 1)𝛬(𝑙, 𝛽, 𝛿)

𝑛 +
1
2
+ 𝛬(𝑙, 𝛽, 𝛿)

]

2

 

+⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚𝑟−𝑛𝑟(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) [(𝜆ℵ+ 𝛾𝜔)𝑚 +

𝜃

2
{

𝑙   Up:  𝑗 = 𝑙 + 1/2

−(𝑙 + 1) Dp: 𝑗 =  𝑙 − 1/2
].(81) 

 

Now, considering composite systems such as molecules made 

of  𝑁 = 2  particles of masses  𝑚𝑛(𝑛 = 1,2 ) in the frame of 

NC algebra, it is worth taking into account the features of the 

descriptions of the systems in the nonrelativistic case, it was 

obtained those composite systems with different masses are 

described with different NC parameters [48, 49, 50]: 

 

[𝑞𝜇
(𝑠,ℎ,𝑖), 𝑞𝜈

(𝑠,ℎ,𝑖)]
∗
= 𝑖𝜃𝜇𝜈

𝑐 ,                              (82) 

 

where the noncommutativity parameter  𝜃𝜇𝜈
𝑐   is determined 

from: 

𝜃𝜇𝜈
𝑐 = ∑

2

𝑛=1
𝜇𝑛
2𝛿𝜇𝜈

(𝑛),                                 (83) 

 

with  𝜇1 =
𝜇1

𝜇1+𝜇2
  and  𝜇2 =

𝜇2

𝜇1+𝜇2
 , and  𝛿𝜇𝜈

(𝑛)
  is the parameter 

of non-commutativity, corresponding to the mass particle of 

mass  𝜇𝑛 . Note that in the case of a physical system composed 

of two identical particles  𝜇1 = 𝜇2  such as the diatomic O2, 

I2, N2, H2, and Ar2 molecules under the effect of the new 

Manning-Rosen potential, the parameter  𝛿𝜇𝜈
(𝑛) = 𝛿𝜇𝜈. Thus, 

the three parameters  𝜂, 𝜆, and 𝛾 which appear in Eq. (81) are 

changed to become as follows: 

 

𝛯𝑐2 = (∑
2

𝑛=1
𝜇𝑛
2𝛯12

(𝑛))
2

+ (∑
2

𝑛=1
𝜇𝑛
2𝛯23

(𝑛))
2

+ (∑
2

𝑛=1
𝜇𝑛
2𝛯13

(𝑛))
2

,   

(84) 

with  𝛯𝑐 = (𝜃𝑐 , 𝜆𝑐 , 𝛾𝑐). As mentioned above, in the case of a 

system of two particles with the same mass  𝜇1 = 𝜇2, we have  

𝜂𝜇𝜈
(𝑛) = 𝜂𝜇𝜈, 𝜆𝜇𝜈

(𝑛) = 𝜆𝜇𝜈 and  𝛾𝜇𝜈
(𝑛) = 𝛾𝜇𝜈. Finally, we can 

generalize our obtained nonrelativistic total energy  

𝐸𝑛𝑐−𝑛𝑟
𝑠 (𝑛, 𝛿, 𝜂, 𝐴, 𝜂𝑐, 𝜆𝑐 , 𝛾𝑐 , 𝑗, 𝑙, 𝑠,𝑚) under the new 

Manning-Rosen potential considering that composite systems 

with different masses are described with different NC 

parameters for the HCl, CH, LiH, CO, and NO diatomic 

molecules as: 

𝐸𝑛𝑐−𝑛𝑟
𝑚𝑟 = −

1

2𝜇
[𝛿
2𝛿2𝐴 − 𝑙(𝑙 + 1) − 𝑛(𝑛 + 1)𝛬(𝑙, 𝛽, 𝛿)

𝑛 +
1
2
+ 𝛬(𝑙, 𝛽, 𝛿)

]

2

 

+⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚𝑟−𝑛𝑟 [(𝜆𝑐ℵ+ 𝛾𝑐𝜔)𝑚 +

𝜃𝑐

2
{

𝑙   Up  𝑗 = 𝑙 + 1/2

−(𝑙 + 1) Dp: 𝑗 =  𝑙 − 1/2
].                     (85) 
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V. STUDY OF IMPORTANT RELATIVISTIC 

AND NON-RELATIVISTIC CASES IN THE 

CONTEXT OF 3D-NRNCQS SYMMETRIES 
 

In this section, we are about to examine some particular cases 

regarding the new relativistic bound state energy eigenvalues 

in Eqs. (70) and (71) and the nonrelativistic bound state 

energy eigenvalues in Eq. (81). We could derive some 

particular potentials, useful for other physical systems, by 

adjusting relevant parameters of the NCMRYPs model in 3D-

RNCQS and 3D-NRNCQS symmetries, such as the new s-

wave cases and both the new Dirac and Schrödinger-

Manning-Rosen problems in 3D-RNCQS and 3D-NRNCQS 

symmetries. 

 

A. New s-wave under deformed (Dirac-Schrödinger) 

equations with NCMRYPs model and Manning-Rosen 

problem 

 

If we consider 𝑙 = 0  and 𝑙𝑝 = 0( 𝑘 = −1 and  𝑘 = +1 for 

spin and p-spin symmetry, respectively), we obtain directly 

the s-wave. The new corresponding relativistic energy 

eigenvalue equations in 3D-RNCQS symmetries reduce to: 

 

𝐸𝑛𝑐
𝑚𝑟−𝑠(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0, 𝜃, 𝜆, 𝛾, 𝑗, 𝑙 = 0, 𝑠,𝑚)

= 𝐸𝑛(−1)
𝑠 + ⟨𝑋⟩(𝑛0𝑚𝑠)

𝑚𝑟 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) 

[(𝜆ℵ+ 𝛾𝜔)𝑚 +
𝜃

2
{
0   for Up  with 𝑗 = 1/2
−1 for Dp with  𝑗 = −1/2

],       (86) 

 

and 

 

𝐸𝑛𝑐
𝑚𝑟−𝑝

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0, 𝜃, 𝜆, 𝛾, 𝑗, 𝑙𝑝 = 0, 𝑠𝑝, 𝑚𝑝)

= 𝐸𝑛1
𝑝
+ ⟨𝑋𝑝⟩(𝑛0𝑚𝑝𝑠𝑝)

𝑚𝑟
(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) 

[(𝜆ℵ+ 𝛾𝜔)𝑚𝑝 +
𝜃

2
{
0   for Up  with  𝑗 = 1/2
−1 for Dp with 𝑗 =  1/2

],     (87) 

 

with  𝐸𝑛(−1)
𝑠  and  𝐸𝑛1

𝑝
  are given by[13]: 

 

𝑀2 − 𝐸𝑛,−1
𝑠2 − 𝐶𝐸𝑆(𝑀 − 𝐸𝑛,−1

𝑠 ) =

4𝛿2 [

𝐴(𝑀+𝐸𝑛,−1
𝑠 −𝐶𝑆𝐸)

2𝑀
−𝑛(𝑛+1)𝛬−1

𝑠

2𝑛+1+2𝛬−1
𝑠 ]

2

,             (88) 

and 

𝑀2 − 𝐸𝑛1
𝑝2
+ 𝐶𝑃𝑆(𝑀 + 𝐸𝑛1

𝑝
) = 4𝛿2 [

𝐴(𝑀−𝐸𝑛1
𝑝
−𝐶𝑃𝑆)

2𝑀
−𝑛(𝑛+1)𝛬1

𝑠

2𝑛+1+2𝛬1
𝑠 ]

2

.        

(89) 

 

While the new corresponding nonrelativistic energy 

eigenvalue in Eq. (81) reduces to: 

 

𝐸𝑛𝑐−𝑛𝑟
𝑚𝑟 (𝑛, 𝛿, 𝑉0, 𝐴, 𝜃, 𝜆, 𝛾, 𝑗, 𝑙 = 0, 𝑠,𝑚)

= −
1

2𝜇
[𝛿
2𝛿2𝐴 − 𝑛(𝑛 + 1)𝛬(0, 𝛽, 𝛿)

𝑛 +
1
2
+ 𝛬(0, 𝛽, 𝛿)

]

2

 

+⟨𝑋⟩(𝑛0𝑚𝑠)
𝑚𝑟−𝑛𝑟(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) [(𝜆ℵ+ 𝛾𝜔)𝑚 +

𝜃

2
{
0   Up:  𝑗 =

1

2

∓1 Dp: 𝑗 =  −
1

2

].  (90) 

 

Here 𝛬−1
𝑠 , 𝛬1

𝑠 and 𝛬(0, 𝛽, 𝛿) are equals to 

√1
4
+
𝛽(𝛽−1)(𝑀+𝐸𝑛,−1

𝑠 −𝐶𝑆𝐸)

2𝑀
, √1

4
+
𝛽(𝛽−1)(𝑀−𝐸𝑛1

𝑝
−𝐶𝑃𝑆)

2𝑀
 and  

√
1

4
− 2𝛿2𝛽(𝛽 − 1) respectively. The new expectations 

values ⟨𝑋⟩(𝑛0𝑚𝑠)
𝑚𝑟 , ⟨𝑋𝑝⟩(𝑛0𝑚𝑝𝑠𝑝)

𝑚𝑟
 and  ⟨𝑋⟩(𝑛0𝑚𝑠)

𝑚𝑟−𝑛𝑟(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0)  

are determined from: 

 

{
 
 

 
 

⟨𝑋⟩(𝑛0𝑚𝑠)
𝑚𝑟 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) = 𝑙𝑖𝑚

𝑙→0
⟨𝑋⟩(𝑛𝑙𝑚𝑠)

𝑚𝑟 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0),

⟨𝑋𝑝⟩(𝑛0𝑚𝑝𝑠𝑝)
𝑚𝑟

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) = 𝑙𝑖𝑚
𝑙𝑝→0

⟨𝑋𝑝⟩(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)
𝑚𝑟

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0)

⟨𝑋⟩(𝑛0𝑚𝑠)
𝑚𝑟−𝑛𝑟(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0) = 𝑙𝑖𝑚

𝑙→0
⟨𝑋⟩(𝑛𝑙𝑚𝑠)

𝑚𝑟−𝑛𝑟(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0).

, 

(91) 
 

B. Deformed (Dirac-Schrödinger) new Manning-Rosen 

problems: 

 

If we consider 𝑉0 = 0, our studied potential turns to the new 

Manning-Rosen potential, and the new energy eigenvalue, in 

3D-RNCQS symmetries, for the spin and p-spin symmetry 

becomes as: 

𝐸𝑛𝑐
𝑚−𝑠(𝑛, 𝛿, 𝛽, 𝐴, 𝜃, 𝜆, 𝛾, 𝑗, 𝑙, 𝑠,𝑚)

= 𝐸𝑛𝑘
𝑚𝑠 + ⟨𝑋⟩(𝑛𝑙𝑚𝑠)

𝑚 (𝑛, 𝛿, 𝛽, 𝐴) 

[(𝜆ℵ+ 𝛾𝜔)𝑚 +
𝜃

2
{

𝑙   for Up  with 𝑗 = 𝑙 +
1

2

−(𝑙 + 1) for Dp with  𝑗 =  𝑙 −
1

2

], 

(92) 
and 

𝐸𝑛𝑐
𝑚−𝑝

(𝑛, 𝛿, 𝛽, 𝐴, 𝜃, 𝜆, 𝛾, 𝑗, 𝑙𝑝, 𝑠𝑝, 𝑚𝑝)

= 𝐸𝑛𝑘
𝑚𝑝
+ ⟨𝑋𝑝⟩(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑚
(𝑛, 𝛿, 𝛽, 𝐴) 

[(𝜆ℵ+ 𝛾𝜔)𝑚𝑝 +
𝜃

2
{

𝑙𝑝   for Up  with  𝑗 = 𝑙𝑝 +
1

2

−(𝑙𝑝 + 1) for Dp with 𝑗 =  𝑙𝑝 −
1

2

], 

(93) 
 

with  𝐸𝑛𝑘
𝑚𝑠 and 𝐸𝑛𝑘

𝑚𝑝
  are given by [13]: 

 

 
𝑀2 − 𝐸𝑛𝑘

𝑚𝑠2 − 𝐶𝐸𝑆(𝑀 − 𝐸𝑛𝑘
𝑚𝑠) = 4𝛿2 

[
 
 
 𝐴𝛬𝑛𝑘

𝑚𝑠

2𝑀 − 𝑘(𝑘 + 1) − 𝑛(𝑛 + 1)√
1
4 + 𝑘

(𝑘 + 1) +
𝛽(𝛽 − 1)𝛬𝑛𝑘

𝑚𝑠

2𝑀

2𝑛 + 1 + 2√
1
4 + 𝑘

(𝑘 + 1) +
𝐴𝛬𝑛𝑘

𝑚𝑠

2𝑀 ]
 
 
 
2

 

(94) 
and 

 

𝑀2 − 𝐸𝑛𝑘
𝑚𝑝2

+ 𝐶𝑃𝑆(𝑀 + 𝐸𝑛𝑘
𝑚𝑝
) = 4𝛿2 
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[
 
 
 
 
 𝐴𝛬𝑛𝑘

𝑚𝑝

2𝑀 − 𝑘(𝑘 − 1) − 𝑛(𝑛 + 1)√
1
4 + 𝑘

(𝑘 − 1) +
𝛽(𝛽 − 1)𝛬𝑛𝑘

𝑚𝑝

2𝑀

2𝑛 + 1 + 2√
1
4 + 𝑘

(𝑘 − 1) +
𝛽(𝛽 − 1)𝛬𝑛𝑘

𝑚𝑝

2𝑀 ]
 
 
 
 
 
2

 

(95) 
 

While the new corresponding nonrelativistic energy 

eigenvalue in Eq. (81) reduces to: 

 

𝐸𝑛𝑐−𝑛𝑟
𝑚 = −

1

2𝜇
[𝛿
2𝛿2𝐴 − 𝑙(𝑙 + 1) − 𝑛(𝑛 + 1)𝛬(𝑙, 𝛽, 𝛿)

𝑛 +
1
2
+ 𝛬(𝑙, 𝛽, 𝛿)

]

2

 

+⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚−𝑛𝑟 [(𝜆ℵ+ 𝛾𝜔)𝑚 +

𝜃

2
{

𝑙   Up  𝑗 = 𝑙 +
1

2

−(𝑙 + 1) Dp: 𝑗 =  𝑙 −
1

2

], 

                                                                                         (96) 
here 𝛬𝑛𝑘

𝑚𝑠 and 𝛬𝑛𝑘
𝑚𝑝

 are equals to  (𝑀 + 𝐸𝑛𝑘
𝑚𝑠 − 𝐶𝑆𝐸) and 

(𝑀 − 𝐸𝑛𝑘
𝑝
− 𝐶𝑃𝑆)  respectively. The new expectations values 

⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚 (𝑛, 𝛿, 𝛽, 𝐴), ⟨𝑋𝑝⟩(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)

𝑚𝑟
(𝑛, 𝛿, 𝛽, 𝐴) and 

⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚𝑟−𝑛𝑟(𝑛, 𝛿, 𝛽, 𝐴) are determined from: 

 

{
 
 

 
 

⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚 (𝑛, 𝛿, 𝛽, 𝐴) = 𝑙𝑖𝑚

𝑉0→0
⟨𝑋⟩(𝑛𝑙𝑚𝑠)

𝑚𝑟 (𝑛, 𝛿, 𝛽, 𝐴, 𝑉0),

⟨𝑋𝑝⟩(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)
𝑚𝑟

(𝑛, 𝛿, 𝛽, 𝐴) = 𝑙𝑖𝑚
𝑉0→0

⟨𝑋𝑝⟩(𝑛𝑙𝑝𝑚𝑝𝑠𝑝)
𝑚𝑟

(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0),

⟨𝑋⟩(𝑛𝑙𝑚𝑠)
𝑚𝑟−𝑛𝑟(𝑛, 𝛿, 𝛽, 𝐴) = 𝑙𝑖𝑚

𝑉0→0
⟨𝑋⟩(𝑛𝑙𝑚𝑠)

𝑚𝑟−𝑛𝑟(𝑛, 𝛿, 𝛽, 𝐴, 𝑉0).

 

(97) 
It is crucial to highlight that using perturbation theory to find 

second-order corrections under the new combined MR and 

Yukawa tensor potentials is ineffective because we have only 

used first-order corrections of infinitesimal parameters 
(𝜃, 𝜆, 𝛾). Therefore, all the energetic corrections resulting 

from the deformation of space-space are of the first order of  
(𝜃, 𝜆, 𝛾)  according to the postulates we adopted in our current 

research in Eqs. (4.2) and (7), this is one of the most important 

new results of this research. Worthwhile it is better to mention 

that for the three- simultaneous limits  (𝜃, 𝜆, 𝛾) → (0,0,0) , we 

recover the equations of energy for the spin symmetry and the 

p-spin symmetry, under the combined Manning-Rosen and 

Yukawa tensor potentials which are treated in Refs. [13, 17]. 

Through our theoretical study of the new MR potential 

including Yukawa-like tensor interactions in 3D-RNCQS 

symmetries based on the study of researchers, (Ahmadov et 

al. and Ortakaya et al.) who clearly showed that shown that 

tensor interaction removes the degeneracy between two states 

in the pseudospin and spin doublets in usual 3D-RNCQS and 

3D-NRNCQS symmetries, and through our current study, we 

found that the effect of deformation of space-space on energy 

is proportional to three infinitesimal parameters (𝜃, 𝜆, 𝛾). This 

means that the new energy is slightly offset from its 

counterpart in the literature. This confirms the conclusion 

reached by the researchers in Refs. [13, 17] remains valid and 

confirmed in our current research. 

 

 

 

 

VI. SUMMARY AND CONCLUSIONS 
 

In this paper, we have obtained the new approximate solutions 

of the deformed Dirac equation in three-dimensional 

relativistic noncommutative quantum mechanics, for the new 

Manning-Rosen potential including a tensor Yukawa 

interaction within the framework of pseudospin and spin 

symmetry limits. Bopp's shift and perturbation theory 

methods were used to solve the deformed Dirac equation 

analytically. We have obtained the global energy eigenvalues 

in terms of the quantum numbers  (𝑗, 𝑘, 𝑙/𝑙𝑝, 𝑠/𝑠𝑝, 𝑚/𝑚𝑝), the 

potential depths (𝛽, 𝐴, 𝑉0) of the studied potentials, the range 

of the potentials 𝛿, and noncommutativity parameters  
(𝜃, 𝜆, 𝛾). We have analyzed the nonrelativistic solutions of the 

Manning-Rosen potential. Furthermore, we have applied our 

results to the composite systems such as diatomic molecules 

HCl, CH, LiH, CO, NO, O2, I2, N2, H2, and Ar2. By altering 

parameters (𝛽, 𝐴, 𝑉0), we have obtained specific potentials 

which is helpful for other physical systems such as the s-wave 

of the new combined Manning-Rosen and Yukawa tensor 

potentials and the new Manning-Rosen problem in 3D-

RNCQS and 3D-NRNCQS symmetries. It is worth 

mentioning that, in all cases, to make the three simultaneous 

limits (𝜃, 𝜆, 𝛾) → (0,0,0), the ordinary physical quantities are 

recovered in Refs. [13, 17]. 
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