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Abstract 

Special functions play a fundamental role in physics and engineering. In this work, we employ Legendre 

functions to analyze Feynman’s disk paradox and demonstrate their utility in classical electrodynamics. The 

paradox concerns a non-conducting ring carrying a uniform charge distribution, placed in an external 

magnetic field. As the magnetic field is gradually reduced, the ring begins to rotate, seemingly violating 

angular momentum conservation. We show, however, that the electromagnetic field itself carries angular 

momentum. When the ring is stationary, this angular momentum is stored in the field; as the magnetic field 

decreases, it is transferred to the ring, ensuring that total angular momentum is conserved. This analysis not 

only resolves the paradox but also highlights the pedagogical and computational value of Legendre functions 

in electrodynamics 

 

Keywords: Legendre Functions, Feynman's Disk Paradox, Electromagnetic angular momentum. 

 

Resumen 
Las funciones especiales desempeñan un papel fundamental en la física y la ingeniería. En este trabajo, empleamos 

funciones de Legendre para analizar la paradoja del disco de Feynman y demostrar su utilidad en la electrodinámica 

clásica. La paradoja se refiere a un anillo no conductor con una distribución de carga uniforme, situado en un campo 

magnético externo. A medida que el campo magnético se reduce gradualmente, el anillo comienza a girar, 

aparentemente violando la conservación del momento angular. Sin embargo, demostramos que el propio campo 

electromagnético posee momento angular. Cuando el anillo está estacionario, este momento angular se almacena en el 

campo; a medida que el campo magnético disminuye, se transfiere al anillo, garantizando la conservación del momento 

angular total. Este análisis no solo resuelve la paradoja, sino que también destaca el valor pedagógico y computacional 

de las funciones de Legendre en electrodinámica. 

 

Palabras clave: Funciones de Legendre, Paradoja del Disco de Feynman, Momento angular electromagnético. 

 

 

 

I. INTRODUCTION 

 

Several methods have been proposed to resolve Feynman’s 

disk paradox. Ma and Chiang [1] calculated the angular 

momentum stored in the electromagnetic field using direct 

integration. Torres del Castillo [2] argued that conservation 

can be established by a careful definition of angular 

momentum without explicit field calculations. Pantazis and 

Perivolaropoulos [3] considered a more realistic system with 

finite solenoid and charged cylinder. In contrast, the present 

work employs a Legendre polynomial expansion of the 

potential, which provides a systematic and symmetry-based 

approach. 

The system studied in this work consists of a uniformly 

charged insulating ring of radius 𝑅 placed in the x-y plane, 

which generates an electric field, together with a point 

magnetic dipole located in the same plane, providing the 

magnetic field. As the magnetic field is gradually reduced, the 

ring begins to rotate, which at first seems to challenge 

conservation of angular momentum. We show that the  

 

 

electromagnetic field itself carries angular momentum, which 

is transferred to the ring as the field decreases, ensuring total 

angular momentum is conserved [4]. 

 

 

II. ELECTRIC POTENTIAL OF THE CHARGED 

RING 
 

We consider the charged ring of total charge Q located in the 

x-y plane. The electric potential at a point 𝑟 is given by [5]: 

 

Φ(𝑟) =
1

4𝜋𝜖0
∫

𝑑𝑞

|𝑟 − 𝑟′|
 , (1) 

 

where 𝜖0 denotes the vacuum permittivity (8.85 × 10−12 F/
m). 

We use the Legendre polynomial expansions [6]: 
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1

|𝑟 − 𝑟′|
=

{
 
 

 
 ∑𝑃𝑙(cos 𝛾)

𝑟′𝑙

𝑟𝑙+1 
  ,                   𝑟 > 𝑟′  

∞

𝑙=0

∑𝑃𝑙(cos 𝛾)
𝑟𝑙

𝑟′𝑙+1 
  ,                  𝑟 < 𝑟′   

∞

𝑙=0

(2) 

 

where 𝑃𝑙 are the Legendre polynomials and 𝛾 is the angle 

between 𝑟 and 𝑟′. 
      The addition theorem for spherical harmonics [6] allows 

us to expand the Legendre polynomials: 

 

𝑃𝑙(cos 𝛾) =
4𝜋

2𝑙 + 1
∑ 𝑌𝑙,𝑚(𝜃, 𝜑)𝑌𝑙,𝑚

∗ (𝜃′, 𝜑′)

𝑙

𝑚=−𝑙

, (3) 

 

where 𝑌𝑙,𝑚 are the spherical harmonics and the star denotes 

complex conjugation. 

 

 

A. Electric Potential Outside the Charged Ring (𝒓 > 𝒓′)   
 

We substitute Eq. (2) into the potential integral (Eq. (1)); then, 

by applying the addition theorem for spherical harmonics 

(Eq.(3)) and using 𝑑𝑞 = 𝜆𝑑𝑙 = 𝜆𝑅𝑑𝜑′ and 𝜃′ =
𝜋

2
 (since the 

ring lies in the x-y plane), we have: 

 

𝑑𝛷 =
1

4𝜋𝜖0
∑ ∑

4𝜋

2𝑙 + 1
𝑌𝑙,𝑚(𝜃, 𝜑)𝑌𝑙,𝑚

∗ (𝜃′, 𝜑′)
𝑟′
𝑙

𝑟𝑙+1 
𝜆𝑅𝑑𝜑′ 

𝑙

𝑚=−𝑙

∞

𝑙=0

. (4) 

 

Note that, during the integration, all terms vanish for all 𝑚 ≠
0, so only 𝑚 = 0 contributes. Consequently, the sum over 𝑚 

is removed. 

      For points outside the ring (𝑟 > 𝑅(, by integrating over the 

ring, we obtain: 

 

𝛷 =
𝑄

4𝜋𝜖0
∑

𝑅𝑙

𝑟𝑙+1 

∞

𝑙=0

𝑃𝑙(cos 𝜃)𝑃𝑙(0).     𝑟 > 𝑅   (5) 

       

It can be seen that, because the integration is carried out from 

0 to 2𝜋, 𝑟′ = 𝑅. 

 

 

B. Electric Potential Inside the Charged Ring (𝒓 < 𝒓′) 
 

For points inside the charged ring (𝑟 < 𝑅) we use the 

expansion from (2), substitute it into the potential integral, 

apply the addition theorem for spherical harmonics, and use 

𝑑𝑞 = 𝜆𝑑𝑙 = 𝜆𝑅𝑑𝜑′ ; then we have: 

 

𝑑𝛷 =
1

4𝜋𝜖0
∑ ∑

4𝜋

2𝑙 + 1
𝑌𝑙,𝑚(𝜃, 𝜑)𝑌𝑙,𝑚

∗ (𝜃′, 𝜑′)
𝑟𝑙

𝑟′𝑙+1 
𝜆𝑅𝑑𝜑′,

𝑙

𝑚=−𝑙

∞

𝑙=0

(6) 

 

by integrating over 𝜑′from 0 to 2𝜋 as in the previous section, 

and using 𝑟′ = 𝑅 , we obtain: 

 

𝛷 =
𝑄

4𝜋𝜖0
∑

𝑟𝑙

𝑅𝑙+1 

∞

𝑙=0

𝑃𝑙(cos 𝜃)𝑃𝑙(0)  .            𝑟 < 𝑅          (7) 

 

 

III. ELECTRIC FIELD OF THE CHARGED RING 
 

The electric field is obtained from the electric potential using 

[5] 

 

𝐸⃗⃗ = −∇⃗⃗⃗𝛷 =
𝜕𝛷

𝜕𝑟
𝑟̂ −

1

𝑟

𝜕𝛷

𝜕𝜃
𝜃̂ ,     (8) 

 

where the 𝜑 component vanishes due to azimuthal symmetry. 

      Using the results of Eqs. (5) and (7), we find the following 

components: 

 

  𝐸𝑟 =

{
 
 

 
 𝑄

4𝜋𝜖0
∑
(𝑙 + 1)𝑅𝑙

𝑟𝑙+2 

∞

𝑙=0

𝑃𝑙(cos 𝜃)𝑃𝑙(0),      𝑟 > 𝑅                

−
𝑄

4𝜋𝜖0
∑
𝑙𝑟𝑙−1

𝑅𝑙+1 

∞

𝑙=0

𝑃𝑙(cos 𝜃)𝑃𝑙(0)  ,        𝑟 < 𝑅                 

(9) 

𝐸𝜃 =

{
 
 

 
 −

𝑄

4𝜋𝜖0𝑟
∑

𝑅𝑙

𝑟𝑙+1

∞

𝑙=0

𝑃𝑙
1(cos 𝜃) 𝑃𝑙(0) ,        𝑟 > 𝑅               

−
𝑄

4𝜋𝜖0𝑟
∑

𝑟𝑙

𝑅𝑙+1 
𝑃𝑙
1(cos 𝜃)

∞

𝑙=0

𝑃𝑙(0) ,      𝑟 < 𝑅               

(10) 

 

where 𝑃𝑙 and 𝑃𝑙
1 are the Legendre polynomials and 

associated Legendre functions, respectively. 

      Thus, the electric field of the charged ring is expressed 

analytically in terms of Legendre functions, valid for both 

the inside and outside regions. 

 

 

IV. MAGNETIC FIELD OF THE DIPOLE 
 

The system consists of a charged ring in the x-y plane, and a 

point magnetic dipole located at its center. The dipole is 

assumed to be sufficiently small compared to the ring, so that 

the magnetic dipole approximation is valid. Its magnetic 

moment is aligned along the z axis (𝜇⃗ = 𝜇𝑧̂).    
      In spherical coordinates, the unit vector along z is 𝑧̂ =

cos 𝜃 𝑟̂ − sin 𝜃 𝜃̂ [5], hence: 

 

𝜇⃗ = 𝜇(cos 𝜃 𝑟̂ − sin 𝜃 𝜃̂).     (11) 

 

We use the standard expression for a magnetic dipole [5]: 

 

𝐵⃗⃗ =
𝜇0
4𝜋
[
−𝜇⃗ + 3(𝜇⃗. 𝑟̂)

𝑟3
] ,          (12) 

 

where 𝜇0 denotes the vacuum permeability (4𝜋 × 10−7 H/
m). 
      By substituting Eq. (11) into (12), the resulting magnetic 

field is [4]: 

 

𝐵⃗⃗ =
𝜇0𝜇

4𝜋
[
2 cos 𝜃 𝑟̂ + sin 𝜃 𝜃̂

𝑟3
] .   (13) 
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V.ANGULAR MOMENTUM OF THE ELECTRO-

MAGNETIC FIELD 

 
The electromagnetic momentum density is [5]: 

 

𝑃⃗⃗𝑣 = 𝜖0𝐸⃗⃗ × 𝐵⃗⃗  ,    (14) 
 

and the corresponding angular-momentum density is [5]: 

 

𝐿⃗⃗𝑣 = 𝑟 × 𝑃⃗⃗𝑣 .  (15)  
 

For the present geometry (the charged ring in the x-y plane 

and a point magnetic dipole at the ring center according to Eq. 

(11)), the electric and magnetic fields are azimuthally 

symmetric and have no 𝜑 components. Consequently, only 

the 𝜑̂ component of 𝑃⃗⃗𝑣 is nonzero: 

 

𝑃⃗⃗𝑣 = 𝜖0(𝐸𝑟𝐵𝜃 − 𝐸𝜃𝐵𝑟)𝜑̂  , (16) 

hence, 

 

𝐿⃗⃗𝑣 = −𝑟𝑃𝑣𝜃̂ = 𝑟𝜖0(𝐸𝜃𝐵𝑟 − 𝐸𝑟𝐵𝜃)𝜃̂ .  (17) 
 

We write 𝜃̂ in Cartesian components and integrate over 𝜑 

from 0 to 2𝜋, it shows that the components of the angular 

momentum is zero in x and y direction, therefore the total field 

angular momentum 𝐿𝑧 = 𝜖0 ∫ (𝑟 × (𝐸⃗⃗ × 𝐵⃗⃗)) . 𝑧̂ points along 

z, which is represented as follows: 

 

𝐿𝑧 = 2𝜋𝜖0∫ 𝑟
3𝑑𝑟∫(𝐸𝑟𝐵𝜃 − 𝐸𝜃𝐵𝑟)𝑠𝑖𝑛

2𝜃  𝑑𝜃

𝜋

0

∞

0

.    (18) 

 

We split the radial radial integral into the inner region (0 <
𝑟 < 𝑅) and the outer region (𝑟 > 𝑅(: 

  

𝐿𝑧 = 𝐿𝑧
(<) + 𝐿𝑧

(>)  ,    (19) 

where, 

 

𝐿𝑧
(<) = 2𝜋𝜖0∫𝑟

3𝑑𝑟∫(𝐸𝑟𝐵𝜃 − 𝐸𝜃𝐵𝑟)𝑠𝑖𝑛
2𝜃  𝑑𝜃

𝜋

0

𝑅

0

 ,     (20) 

 

𝐿𝑧
(>) = 2𝜋𝜖0∫ 𝑟

3𝑑𝑟∫(𝐸𝑟𝐵𝜃 − 𝐸𝜃𝐵𝑟)𝑠𝑖𝑛
2𝜃 𝑑𝜃

𝜋

0

∞

𝑅

.      (21) 

 

 

A. The inner contribution of the angular momentum 

 

The inner contribution of the angular momentum 𝐿𝑧
(<)

 is 

evaluated by defining: 

 

𝑎 = ∫ 𝑟3𝑑𝑟∫𝐸𝑟𝐵𝜃sin
2𝜃  𝑑𝜃

𝜋

0

,

𝑅

0

   (22) 

 

𝑏 = ∫ 𝑟3𝑑𝑟∫𝐸𝜃𝐵𝑟sin
2𝜃  𝑑𝜃

𝜋

0

 ,

𝑅

0

     (23) 

 

Hence 𝐿𝑧
(<) = 2𝜋𝜖0(𝑎 − 𝑏). We substitute electric and 

magnetic field components from Eqs. (9), (10), and (13) into 

Eqs. (22) and (23) and we have 

 

𝑎 = −
𝑄𝜇0𝜇
(4𝜋)2𝜖0

∑
𝑙𝑃𝑙(0)

𝑅𝑙+1 
∫𝑑𝑟

𝑅

0

𝑟𝑙−1
∞

𝑙=0

∫𝑃𝑙(𝑐𝑜𝑠𝜃) sin
3𝜃 𝑑𝜃

𝜋

0

,       (24) 

 

𝑏 = −
2𝑄𝜇0𝜇
(4𝜋)2𝜖0

∑
𝑃𝑙(0)

𝑅𝑙+1 
∫𝑑𝑟

𝑅

0

𝑟𝑙−1
∞

𝑙=0

∫𝑃𝑙
1(cos 𝜃) cos 𝜃 sin2𝜃 𝑑𝜃  ,

𝜋

0

(25) 

 

 

then we evaluate the angular integrals using the orthogonality 

relations for Legendre polynomials and associated Legendre 

functions (Eqs. (26) and (27)) [6]: 

 

∫𝑃𝑛(cos 𝜃)𝑃𝑚(cos 𝜃)

𝜋

0

 sin 𝜃 𝑑𝜃 =
2

2𝑛 + 1
𝛿𝑛,𝑚, (26) 

 

∫𝑃𝑙
𝑚(cos 𝜃)𝑃𝑙′

𝑚(cos 𝜃) sin 𝜃  𝑑𝜃 =
2

2𝑙 + 1

(𝑙 + 𝑚)!

(𝑙 − 𝑚)!
𝛿𝑙,𝑙′   .

𝜋

0

       (27) 

 

It should be emphasized that in Eq. (24), only 𝑙 = 0 and 𝑙 =
2 terms survive the angular integral and in Eq.(25) only 𝑙 =
2 terms survives. 

      After that, we perform the radial integrals and we have: 

 

𝑎 = −
2𝜇0𝑄𝜇

15(4𝜋)2𝜖0𝑅
 ,         (28) 

 

𝑏 = −
6𝜇0𝑄𝜇

15(4𝜋)2𝜖0𝑅
  , (29) 

 
note that in Eq.(24), the radial integral is zero for 𝑙 = 0 and 

therefore we only used 𝑙 = 2 for the result. 

By substituting Eqs.(28) and (29) into Eq.(20) we have: 

 

 

𝐿𝑧
(<) =

2

15

𝜇0𝑄𝜇

4𝜋𝑅
   .     (30) 

 

 

B. The outer contribution of the angular momentum 

 

Similarly, the outer contribution 𝐿𝑧
(>)

 is obtained by defining: 

 

  𝑐 = ∫ 𝑟3𝑑𝑟∫𝐸𝑟𝐵𝜃sin
2𝜃 𝑑𝜃

𝜋

0

∞

𝑅

,   (31) 

 

𝑑 = ∫ 𝑟3𝑑𝑟∫𝐸𝜃𝐵𝑟sin
2𝜃𝑑𝜃

𝜋

0

 ,

∞

𝑅

(32) 
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therefore 𝐿𝑧
(>) = 2𝜋𝜖0(𝑐 − 𝑑). By substituting electric and 

magnetic field components from Eqs. (9), (10), and (13) into 

Eqs.(31) and (32) we have: 

 

𝑐 =
𝑄𝜇0𝜇
(4𝜋)2𝜖0

∑(𝑙 + 1)𝑅𝑙𝑃𝑙(0)∫
𝑑𝑟

𝑟𝑙+2

∞

𝑅

∞

𝑙=0

∫𝑃𝑙(𝑐𝑜𝑠𝜃) sin
3𝜃 𝑑𝜃

𝜋

0

 , (33) 

 

𝑑 = −
2𝑄𝜇0𝜇
(4𝜋)2𝜖0

∑𝑃𝑙(0)𝑅
𝑙 ∫

𝑑𝑟

𝑟𝑙+2 

∞

𝑅

∞

𝑙=0

∫𝑃𝑙
1(cos 𝜃) cos 𝜃 sin2𝜃 𝑑𝜃  ,   

𝜋

0

(34) 

 

by evaluating the integrals in Eqs. (33) and (34), similar to the 

previous subsection, we obtain: 

 

𝑐 =
22𝑄𝜇0𝜇

15(4𝜋)2𝜖0𝑅
 ,     (35) 

 

𝑑 = −
4𝑄𝜇0𝜇

15(4𝜋)2𝜖0𝑅
 ,     (36) 

 
by substituting Eqs. (35) and (36) into (21) we have: 

 

𝐿𝑧
(>) =

13

15

𝜇0𝑄𝜇

4𝜋𝑅
 .     (37) 

 

 

C. The total angular momentum 

 

By adding 𝐿𝑧
(<)

  from Eq. (30) and 𝐿𝑧
(>)

 from Eq. (37), we can 

have the total angular momentum of the electromagnetic field: 

 

𝐿𝑧 =
2

15

𝜇0𝑄𝜇

4𝜋𝑅
+
13

15

𝜇0𝑄𝜇

4𝜋𝑅
=
𝜇0𝑄𝜇

4𝜋𝑅
   .    (38) 

 

 

VI. MECHANICAL ANGULAR MOMENTUM OF 

THE CHARGED RING 
 

In this section, we reduce the magnetic dipole moment and, 

consequently, the magnetic field, and evaluate the mechanical 

angular momentum transferred to the charged ring as the 

magnetic field vanishes. To this end, we first calculate the 

magnetic flux passing through the ring. By using Faraday’s 

law of induction, we  obtain the induced electric field due to 

the time-varying magnetic field. This induced field produces 

a torque on the charged ring, from which the transferred 

mechanical angular momentum is determined. 

 

 

A. Magnetic Flux Through the Ring 

 

The magnetic flux through the ring is expressed as [5]: 

 

𝛷𝐵 = ∫ 𝐵⃗⃗ . 𝑑𝐴 = ∫𝐵𝑧 𝑑𝐴 = 2𝜋∫𝐵𝑧

𝑅

0

𝑟𝑑𝑟   . (39) 

 

Here, 𝑑𝐴 is the surface element of the ring. Since the ring lies 

in the x-y plane, the normal vector is along the z axis. From 

the spherical representation of the dipole magnetic field (Eq. 

(13)), the z component is given by [4]: 

 

𝐵𝑧 = cos𝜃𝐵𝑟 − sin𝜃𝐵𝜃 =
𝜇0𝜇

4𝜋𝑟3
(3cos2𝜃 − 1)  ,      (40) 

 

using the Legendre polynomial relation 𝑃2(cos𝜃) =
1

2
(3cos2𝜃 − 1) [6], Eq. (40) can be written as: 

 

𝐵𝑧 =
𝜇0𝜇

2𝜋

𝑃2(cosθ)

𝑟3
 .      (41) 

 

Since the ring lies in the plane 𝜃 =
𝜋

2
, we have 𝑃2(0) = −

1

2
. 

Substituting into Eq. (39) yields: 

 

𝛷𝐵 = −
𝜇0𝜇

2
∫
𝑑𝑟

𝑟2

𝑅

0

  .     (42) 

 

The integral in Eq. (43) diverges as 𝑟 → 0, which is the 

consequence of approximating the source as a point dipole 

located at the origin. To overcome this difficulty, we note that 

the total magnetic flux of a dipole through an infinite plane is 

zero. Thus, the flux through the inner region can be obtained 

as the negative of the flux through the exterior region [4]: 

 

∫ 𝐵𝑧

∞

𝑅

(2𝜋𝑟)𝑑𝑟 = −∫𝐵𝑧

𝑅

0

(2𝜋𝑟)𝑑𝑟 ,      (43) 

 

evaluating the left-hand side gives by substituting 𝐵𝑧 from Eq. 

(41) by using 𝜃 =
𝜋

2
: 

 

∫ 𝐵𝑧

∞

𝑅

(2𝜋𝑟)𝑑𝑟 = −
𝜇0𝜇

2𝑅
 .      (44) 

 

Therefore, the magnetic flux through the ring is: 

 

𝛷𝐵 =
𝜇0𝜇

2𝑅
 .     (45) 

 

 

B. Mechanical Angular Momentum of the Ring 

 

The reduction of the magnetic dipole moment induces an 

electric field according to Faraday’s law Eq.(46) [5], 

 

∮ 𝐸⃗⃗. 𝑑𝑙 = −
𝑑𝛷𝐵
𝑑𝑡
 .      (46) 

 
 Since the induced field is azimuthal: 

 

𝐸𝜑(2𝜋𝑟) = −
𝜇0
2𝑅

𝑑𝜇

𝑑𝑡
→ 𝐸𝜑 = −

𝜇0
4𝜋𝑅2

𝑑𝜇

𝑑𝑡
 . (47) 

 

This induced field exerts a force on the charged ring [5]: 
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𝐹⃗ = 𝑄𝐸⃗⃗ = −
𝜇0𝑄

4𝜋𝑅2
𝑑𝜇

𝑑𝑡
𝜑̂ ,    (48) 

 

which produces a torque as follows [5]: 

 

𝜏 = 𝑟 × 𝐹⃗
𝑟=𝑅𝑟̂
⇒   𝜏 =

𝜇0𝑄

4𝜋𝑅

𝑑𝜇

𝑑𝑡
𝜃̂   ,   (49) 

 

note that 𝜃̂ is the unit vector in the spherical coordinates [5]: 

 

𝜃̂ = cos𝜃cos𝜑𝑥̂ + cos𝜃sin𝜑𝑦̂ − sin𝜃𝑧̂  , (50) 
 

since the ring is located in the x-y plane 𝜃 =
𝜋

2
 , therefore from 

Eqs. (49) and (50) we have: 

 

𝜏 = −
𝜇0𝑄

4𝜋𝑅

𝑑𝜇

𝑑𝑡
𝑧̂   .    (51) 

 

The mechanical angular momentum transferred to the ring is 

obtained from [4]: 

 

𝜏 =
𝑑𝐿⃗⃗𝑚𝑒𝑐ℎ
𝑑𝑡

→ 𝐿⃗⃗𝑚𝑒𝑐ℎ = ∫ 𝜏

𝑡𝑓

𝑡𝑖

𝑑𝑡 = −
𝜇0𝑄

4𝜋𝑅
∫𝑑𝜇

0

𝜇

𝑧̂    ,        (52) 

 

which yields: 

𝐿𝑚𝑒𝑐ℎ,𝑧 =
𝜇0𝑄𝜇

4𝜋𝑅
 .   (53) 

 

It should be noted that the reduction of the magnetic field must 

occur sufficiently slowly so that the system remains within the 

quasi-magnetostatic regime and radiation effects can be 

neglected. 

 

 

Ⅶ. CONCLUSION 

 
In this work, we calculated the electromagnetic field 

generated by a charged, non-conducting ring and a point 

magnetic dipole, and from this we obtained the angular 

momentum of the electromagnetic field (Eq. (38)). By 

gradually reducing the magnetic dipole moment, we 

demonstrated that the charged ring starts to rotate. The 

mechanical angular momentum acquired by the ring after the 

dipole moment vanishes (Eq. (53)) is exactly equal to the 

angular momentum of the electromagnetic field given in Eq. 

(38), namely 
𝜇0𝑄𝜇

4𝜋𝑅
. 

      This indicates that there is no inconsistency: the apparent 

violation of angular momentum conservation is resolved once 

the angular momentum stored in the electromagnetic field is 

properly taken into account. Furthermore, when 𝜇 = 0, the 

magnetic field vanishes according to Eq. (13), and therefore 

the electromagnetic angular momentum also becomes zero. 

This confirms that the entire angular momentum is transferred 

to the ring. 
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