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Abstract

Special functions play a fundamental role in physics and engineering. In this work, we employ Legendre
functions to analyze Feynman’s disk paradox and demonstrate their utility in classical electrodynamics. The
paradox concerns a non-conducting ring carrying a uniform charge distribution, placed in an external
magnetic field. As the magnetic field is gradually reduced, the ring begins to rotate, seemingly violating
angular momentum conservation. We show, however, that the electromagnetic field itself carries angular
momentum. When the ring is stationary, this angular momentum is stored in the field; as the magnetic field
decreases, it is transferred to the ring, ensuring that total angular momentum is conserved. This analysis not
only resolves the paradox but also highlights the pedagogical and computational value of Legendre functions
in electrodynamics
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Resumen

Las funciones especiales desempefian un papel fundamental en la fisica y la ingenieria. En este trabajo, empleamos
funciones de Legendre para analizar la paradoja del disco de Feynman y demostrar su utilidad en la electrodindmica
cléasica. La paradoja se refiere a un anillo no conductor con una distribucion de carga uniforme, situado en un campo
magnético externo. A medida que el campo magnético se reduce gradualmente, el anillo comienza a girar,
aparentemente violando la conservacion del momento angular. Sin embargo, demostramos que el propio campo
electromagnético posee momento angular. Cuando el anillo esta estacionario, este momento angular se almacena en el
campo; a medida que el campo magnético disminuye, se transfiere al anillo, garantizando la conservacion del momento
angular total. Este analisis no solo resuelve la paradoja, sino que también destaca el valor pedagdgico y computacional
de las funciones de Legendre en electrodindmica.

Palabras clave: Funciones de Legendre, Paradoja del Disco de Feynman, Momento angular electromagnético.

I. INTRODUCTION

Several methods have been proposed to resolve Feynman’s
disk paradox. Ma and Chiang [1] calculated the angular
momentum stored in the electromagnetic field using direct
integration. Torres del Castillo [2] argued that conservation
can be established by a careful definition of angular
momentum without explicit field calculations. Pantazis and
Perivolaropoulos [3] considered a more realistic system with
finite solenoid and charged cylinder. In contrast, the present
work employs a Legendre polynomial expansion of the
potential, which provides a systematic and symmetry-based
approach.

The system studied in this work consists of a uniformly
charged insulating ring of radius R placed in the x-y plane,
which generates an electric field, together with a point
magnetic dipole located in the same plane, providing the
magnetic field. As the magnetic field is gradually reduced, the
ring begins to rotate, which at first seems to challenge
conservation of angular momentum. We show that the
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electromagnetic field itself carries angular momentum, which
is transferred to the ring as the field decreases, ensuring total
angular momentum is conserved [4].

Il. ELECTRIC POTENTIAL OF THE CHARGED
RING

We consider the charged ring of total charge Q located in the
x-y plane. The electric potential at a point 7 is given by [5]:

1 d
OF) = — [ o (1)
dmey ) |7 — 7|

where €, denotes the vacuum permittivity (8.85 x 10712 F/

m).
We use the Legendre polynomial expansions [6]:
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ZPl(cosy) T r>7r
1
s 2
P (2)
ZPl(cosy)ﬁ , r<r’
rl
1=0

where P; are the Legendre polynomials and y is the angle
between 7 and 7*'.

The addition theorem for spherical harmonics [6] allows
us to expand the Legendre polynomials:

Z Vim(0,0)Vin (0,00, (3)

m=-1

Pi(cosy) = 21+1

where Y, ,,, are the spherical harmonics and the star denotes
complex conjugation.

A. Electric Potential Outside the Charged Ring (r > r’)

We substitute Eq. (2) into the potential integral (Eq. (1)); then,
by applying the addition theorem for spherical harmonics
(Eq.(3)) and using dq = Adl = ARd¢' and 6’ = g (since the
ring lies in the x-y plane), we have:

o l
4-1'[60 ZO Z

Note that, during the integration, all terms vanish for all m #
0, so only m = 0 contributes. Consequently, the sum over m
is removed.

For points outside the ring (r > R), by integrating over the
ring, we obtain:

2’
.
=Yim(6,0)Yin (6, ¢) o ARy’ . (4)

Q N R
® = MEOZ ——P(cosO)P,(0). T>R (5
=0

It can be seen that, because the integration is carried out from
Oto 2w, r' =R.

B. Electric Potential Inside the Charged Ring (r < r’)
For points inside the charged ring (r < R) we use the
expansion from (2), substitute it into the potential integral,

apply the addition theorem for spherical harmonics, and use
dq = Adl = ARd¢' ; then we have:

o l
4-7'[60 Zo Z

by integrating over ¢'from 0 to 2r as in the previous section,
and using r’ = R , we obtain:

l
r
Yl,m (0, (p)yljﬂm(gl' (P’) mle(P’: (6)
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Z e  P(cosOP(0) . r<R %)

41‘[6

III. ELECTRIC FIELD OF THE CHARGED RING

The electric field is obtained from the electric potential using

[5]
E=-Vb=—7p—-—080, (8)

where the ¢ component vanishes due to azimuthal symmetry.
Using the results of Egs. (5) and (7), we find the following
components:

Q U+ DR
47'[60 £ rl+2 Pl(COS H)PI(O); r>R
e ) ©
" 4re, Z RI+1 PZ(COS 0)pP0), r<R

(_Q

Amegr ri+t
=0

e rz e Pl (cos 0) Pi(0),

where P, and P! are the Legendre polynomials and
associated Legendre functions, respectively.

Thus, the electric field of the charged ring is expressed
analytically in terms of Legendre functions, valid for both
the inside and outside regions.

P, (cos ) P,(0), r>R

|
<
Il

(10)
<R

<

IV. MAGNETIC FIELD OF THE DIPOLE

The system consists of a charged ring in the x-y plane, and a
point magnetic dipole located at its center. The dipole is
assumed to be sufficiently small compared to the ring, so that
the magnetic dipole approximation is valid. Its magnetic
moment is aligned along the z axis (& = u?2).

In spherical coordinates, the unit vector along z is Z =
cos A # — sin @ 8 [5], hence:

fi =u(cos@# —sind ). (11)

We use the standard expression for a magnetic dipole [5]:

B = 12
4 r3 (12)

Ho [ fi + 3(i. r)]
where u, denotes the vacuum permeability (47 x 107 H/
m).

By substituting Eq. (11) into (12), the resulting magnetic
field is [4]:

BE=

2cos@t +sinf b
Holt ] . (13)

s r3
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V.ANGULAR MOMENTUM OF THE ELECTRO-
MAGNETIC FIELD

The electromagnetic momentum density is [5]:
P, =¢€,E XE, (14)

and the corresponding angular-momentum density is [5]:

X
o

L,= (15)

For the present geometry (the charged ring in the x-y plane
and a point magnetic dipole at the ring center according to Eq.
(11)), the electric and magnetic fields are azimuthally
symmetric and have no ¢ components. Consequently, only
the ¢ component of 13; is nonzero:

B, = €,(E,By — EgB,)¢ , (16)
hence,

L,=-rP,0 = re,(EgB, — E,By)8.. a7

We write 8 in Cartesian components and integrate over ¢
from 0 to 2m, it shows that the components of the angular
momentum is zero in x and y direction, therefore the total field

angular momentum L, = ¢, [ (F x (E x E))z points along
z, which is represented as follows:

0 s
e, f F3dr f (E.By — EgB,)sin?0 do.  (18)
0 0

We split the radial radial integral into the inner region (0 <
r < R) and the outer region (r > R):

L,=19+1, (19)

where,

R ™
L = 27e, f r3drf(Eng — EyB,)sin?6 do, (20)
0 0
P ™
12 = Zneof r3drf(Eng — E¢B,)sin%6 dé. 21
R 0

A. The inner contribution of the angular momentum

The inner contribution of the angular momentum L(Z<) is
evaluated by defining:

R b4
= fr3drfEngsin20 do, (22)
0 0
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b‘
o\x

s
r3drngBrsin29 do , (23)
0

Hence L(<) = 2meg(a —b). We substitute electric and
magnetic fleId components from Egs. (9), (10), and (13) into
Egs. (22) and (23) and we have

© R T

f drri-t f P,(cos8) sin®6 db, (24)

=0 0 0

2Quop X0 Pi(0) f "

~ e, 2, R fPl(cos 0) cos 6 sin?6 d6 , (25)

then we evaluate the angular integrals using the orthogonality
relations for Legendre polynomials and associated Legendre
functions (Egs. (26) and (27)) [6]:

T

fpn(COS B)Pm(COS 9) sinfdf = szn,m, (26)
0
[ 2 (I+m)
+m
m m —_ ,
fPl (cos )P} (cos ) sin6 db = T = m)'(S” . 27)

0

It should be emphasized that in Eq. (24),onlyl =0and [ =
2 terms survive the angular integral and in Eq.(25) only | =
2 terms survives.

After that, we perform the radial integrals and we have:

_ 2p0Qu

4T T15(m)%,R " (28)
_ 61 Qu

b= 15(4m)%eoR (29)

note that in Eq.(24), the radial integral is zero for [ = 0 and
therefore we only used [ = 2 for the result.
By substituting Egs.(28) and (29) into Eq.(20) we have:

L(<) _ iMoQM

z 15 4mR (30)

B. The outer contribution of the angular momentum

Similarly, the outer contribution LS is obtained by defining:

(o)
c=fr3dr
R

oo T
d= f r3drf EgB,sin’0d@ , (32)
R 0

E,Bysin?0 do, (31)

OS:\
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therefore L(Z>) = 2mey(c — d). By substituting electric and
magnetic field components from Egs. (9), (10), and (13) into
Egs.(31) and (32) we have:

oo o T
d
c= (f:)ozlz Z(l + 1)R'P,(0) f rl%f P,(cosB) sin36 d6 , (33)
010 R 0
2Quolt < (dr [ .
=— P,(0)R! f —f P}(cos8) cos B sin?0do , (34)
2 l 1+2 1
(4m)2%¢, L J r ;

by evaluating the integrals in Egs. (33) and (34), similar to the
previous subsection, we obtain:

22
o= 22Quop , (35)
15(4m)%€yR
4Quou

d=——22%
15(4m)2e,R

(36)

by substituting Egs. (35) and (36) into (21) we have:

) _ 13pQu

Z 715 4nR - (7

C. The total angular momentum

By adding L$® from Eq. (30) and L from Eq. (37), we can
have the total angular momentum of the electromagnetic field:

_ 2 pmoQu  131Qu _ poQu
15 4nR 15 4nR 4R

L, (38)

VI. MECHANICAL ANGULAR MOMENTUM OF
THE CHARGED RING

In this section, we reduce the magnetic dipole moment and,
consequently, the magnetic field, and evaluate the mechanical
angular momentum transferred to the charged ring as the
magnetic field vanishes. To this end, we first calculate the
magnetic flux passing through the ring. By using Faraday’s
law of induction, we obtain the induced electric field due to
the time-varying magnetic field. This induced field produces
a torque on the charged ring, from which the transferred
mechanical angular momentum is determined.

A. Magnetic Flux Through the Ring

The magnetic flux through the ring is expressed as [5]:
R
d)B:fﬁ.d,cY:fBsz:zﬂfBzrdr . (39)
0

Here, dA is the surface element of the ring. Since the ring lies
in the x-y plane, the normal vector is along the z axis. From
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the spherical representation of the dipole magnetic field (Eq.
(13)), the z component is given by [4]:

Hol
5 (3cos?0 - 1) , (40)

B, = cosfOB, —sinfBy = yp—

using the Legendre polynomial relation P,(cosf) =
%(SCOSZH — 1) [6], Eg. (40) can be written as:

P, (cosB
g = Mokt Py(cos6)

27 2 13 (41)
Since the ring lies in the plane 6 = g we have P,(0) = —%.
Substituting into Eqg. (39) yields:
R
by = —% f g . (42)

0

The integral in Eq. (43) diverges as r — 0, which is the
consequence of approximating the source as a point dipole
located at the origin. To overcome this difficulty, we note that
the total magnetic flux of a dipole through an infinite plane is
zero. Thus, the flux through the inner region can be obtained
as the negative of the flux through the exterior region [4]:

oo R
f B, 2nr)dr = — f B, 2mr)dr, (43)
R 0

evaluating the left-hand side gives by substituting B, from Eq.
(41) by using 8 = =

2

[ee]

_ _ Mot
fBZ Qnar)dr = TR (44)
R

Therefore, the magnetic flux through the ring is:

_ tot

Oy = (45)

B. Mechanical Angular Momentum of the Ring

The reduction of the magnetic dipole moment induces an
electric field according to Faraday’s law EQ.(46) [5],

- -> d(pB
ng.dl——W. (46)

Since the induced field is azimuthal:

d d
E,(2nr) = s S o e

S e 47
2Rdt "¢~ T amRZdr (47)

This induced field exerts a force on the charged ring [5]:
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5 o pQ du
which produces a torque as follows [5]:
PSP i HoQ du
=PXF=—=1=—-— 4
ter AR dt ' (49)

note that @ is the unit vector in the spherical coordinates [5]:
6 = cosfcospX + cosfsingy — sinh2 , (50)

since the ring is located in the x-y plane 6 = % , therefore from
Egs. (49) and (50) we have:

L k@ du
" 4nR dt

‘.]

GD

The mechanical angular momentum transferred to the ring is
obtained from [4]:

ty

> dzmech 7 _ HoQ N
T= dt = Linech = j = 47‘[Rjd z ., (52)
ti
which yields:
HoQu
Lmech,z = m . (53)

It should be noted that the reduction of the magnetic field must
occur sufficiently slowly so that the system remains within the
quasi-magnetostatic regime and radiation effects can be
neglected.

VII. CONCLUSION

In this work, we calculated the electromagnetic field
generated by a charged, non-conducting ring and a point
magnetic dipole, and from this we obtained the angular
momentum of the electromagnetic field (Eg. (38)). By
gradually reducing the magnetic dipole moment, we
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demonstrated that the charged ring starts to rotate. The
mechanical angular momentum acquired by the ring after the
dipole moment vanishes (Eq. (53)) is exactly equal to the
angular momentum of the electromagnetic field given in Eq.

(38), namely “><- = "Q”

This mdlcates that there is no inconsistency: the apparent
violation of angular momentum conservation is resolved once
the angular momentum stored in the electromagnetic field is
properly taken into account. Furthermore, when p = 0, the
magnetic field vanishes according to Eq. (13), and therefore
the electromagnetic angular momentum also becomes zero.
This confirms that the entire angular momentum is transferred
to the ring.
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