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Abstract 

We present numerical solutions of the Lane-Emden equation for selected polytropic indices using a fourth order Rnnge-

Kutta integrator with series expansion initial conditions. The method is validated against the analytical cases 𝑛 = 0 and 

𝑛 = 1, then applied to the astrophysically relevant indices 𝑛 = 1.5 and 𝑛 = 3. The computed first zeros are 𝜉1 ≈ 3.654 

(𝑛 = 1.5) and 𝜉1 ≈ 6.897 (𝑛 = 3), and the resulting density profiles show that increasing 𝑛 produces more extended, 

less centrally concentrated models. The 𝑛 = 3 polytropic model yields a solar radius of the correct order of magnitude, 

showing that even a simplified pressure–density relation can capture the essential structural scaling of real stars like the 

Sun. 
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Resumen 
Presentamos soluciones numéricas de la ecuación de Lane-Emden para índices politrópicos seleccionados utilizando 

un integrador Rnnge-Kutta de cuarto orden con condiciones iniciales de expansión en serie. El método se valida frente 

a los casos analíticos n = 0 y n = 1, y posteriormente se aplica a los índices astrofísicamente relevantes n = 1,5 y n = 3. 

Los primeros ceros calculados son ξ1 ≈ 3,654 (n = 1,5) y ξ1 ≈ 6,897 (n = 3), y los perfiles de densidad resultantes 

muestran que al aumentar n se obtienen modelos más extendidos y con menor concentración central. El modelo 

politrópico n = 3 proporciona un radio solar del orden de magnitud correcto, lo que demuestra que incluso una relación 

presión-densidad simplificada puede capturar la escala estructural esencial de estrellas reales como el Sol. 
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I. INTRODUCTION  
 

One of the most fundamental equations describing stellar 

structure is the Lane–Emden equation, which characterizes 

the dimensionless density profile of a spherically symmetric 

star in hydrostatic equilibrium with a pressure–density 

relation defined by a polytropic index [1, 2]. Hypothetical 

stellar models in which the pressure depends on the density 

in the form 

 

𝑃 = 𝐾𝜌
𝑛+1

𝑛  ,   (1) 

 

are known as polytropes, where 𝐾 is a constant and 𝑛 is the 

polytropic index [1]. 

    The starting point for deriving the Lane–Emden equation 

is the condition of hydrostatic equilibrium [1], 

 
𝑑𝑃

𝑑𝑟
= −𝐺

𝑑𝑀(𝑟)𝜌

𝑟2
 , (2) 

 

together with the mass continuity equation [1], 

 
𝑑𝑀

𝑑𝑟
= 4𝜋𝑟2𝜌 , (3) 

 

where 𝑃 is the pressure, 𝜌 is the density, 𝑀(𝑟) is the mass 

enclosed within radius 𝑟, and 𝐺 is the gravitational constant 

(6.67 × 10−11 m3. kg−1. s−2). 

    Assuming the polytropic relation above and introducing 

the dimensionless variables [1] 

 

𝜌 = 𝜌𝑐[𝐷𝑛(𝜉)]𝑛, (4) 

 

𝑟 = 𝜆𝑛𝜉 , (5) 

 

where 𝜌𝑐 is the central density, 𝐷𝑛 is the dimensionless 

density, 𝜉  is the dimensionless independent variable, and 𝜆𝑛 

is a characteristic length scale defined by [1] 

 

𝜆𝑛 = [(𝑛 + 1) (
𝐾𝜌𝑐

1−𝑛 𝑛⁄

4𝜋𝐺
)]

1 2⁄

. (6) 

 

The equations of stellar structure (Eqs.(2) and (3)) can be 

combined to yield the Lane–Emden equation [1]: 

 
1

𝜉2

𝑑

𝑑𝜉
[𝜉2

𝑑𝐷𝑛

𝑑𝜉
] + 𝐷𝑛

𝑛 = 0 . (7) 
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In this study, we numerically solve the Lane–Emden equation 

for selected values of the polytropic index 𝑛 and analyze the 

corresponding dimensionless density distributions 𝐷𝑛(𝜉). 
Analytical solutions exist only for 𝑛 = 0, 1, and 5 [1]; 

therefore, for other values of 𝑛, the equation must be solved 

numerically. The numerical solutions are obtained using a 

fourth-order Runge–Kutta method [3], and the resulting 

dimensionless density ratio 𝜌/𝜌𝑐 = 𝐷𝑛
𝑛 is plotted as a 

function of the dimensionless radius 𝜉 = 𝑟/𝜆𝑛. The results 

illustrate how the internal density structure and stellar radius 

depend on the polytropic index. 

 

 

 
II. NUMERICAL METHOD  

 

This section outlines the procedure for numerically solving 

the Lane–Emden equation (Eq. (7)). 

      In order to solve a differential equation, we need 

boundary and initial conditions. For this particular equation 

(Eq.(7)), the boundary conditions are given by Eqs. (8) and 

(9) [1]: 

 

𝐷𝑛(𝜉1) = 0 , (8) 

 

where 𝜉1 specifies the surface of the star, 

 
𝑑𝐷𝑛

𝑑𝜉
= 0  𝑎𝑡 𝜉 = 0 . (9) 

 

This condition is derived from the combination of Eqs. (1) 

and (2) at the center of the star. 

      Additionally, in order for 𝜌𝑐 to represent the central 

density of the star, it is also necessary that [1] 

 

𝐷𝑛(0) = 1 . (10) 

 

As has been mentioned before, in this study, the Lane-Emden 

equation was solved numerically using the fourth-order 

Runge-Kutta method. 

    To avoid the singularity at the stellar center (𝜉 = 0), the 

integration starts from a small, finite value 𝜉0, which is set 

equal to the step size ℎ in the numerical implementation. At 

𝜉0, the initial values of 𝐷𝑛 and 𝑑𝐷𝑛/𝑑𝜉 are approximated 

from the series expansion as [4]: 

 

𝐷𝑛(𝜉0) = 1 −
 𝜉0

2

6
 , (11) 

 
𝑑𝐷𝑛

𝑑𝜉
= −

𝜉0

3
. (12) 

 

These expressions ensure that the physical boundary 

conditions (Eqs. (9) and (10)) are satisfied to first order, 

providing accurate starting values for the numerical 

integration. The numerical computations were performed in 

Python. The integration was carried out up to the first zero of 

𝐷𝑛(𝜉), with a step size of ℎ = 0.001 to ensure numerical 

stability and accuracy. 

III. RESULS AND DISCUSSION 

 

In this section, the numerical solutions of the Lane–Emden 

equation are presented. The results for 𝑛 = 0 and 𝑛 = 1 are 

first compared with their analytical forms to validate the 

numerical method, followed by the analysis of the solutions 

for 𝑛 = 1.5 and 𝑛 = 3, which correspond to realistic stellar 

models.  

 

 

A. Code verification 

 

Before applying the numerical method to the cases that 

cannot be solved analytically, the code is first verified by 

comparing the numerical results with the analytical solutions 

of the Lane-Emden equation (Eq.(7)) for 𝑛 = 0 and 𝑛 = 1, 

for which the analytical solutions are available as follows [1]: 

 

𝐷0(𝜉) = 1 −
𝜉2

6
 , (13) 

 

𝐷1(𝜉) =
sin 𝜉

𝜉
.  (14) 

 

Figure 1 shows a comparison between the numerical and 

analytical solution for 𝑛 = 0, while Figure 2 shows the 

comparison for 𝑛 = 1. Excellent agreement is observed in 

both cases, confirming the reliability of the numerical method 

and justifying its application to polytropic indices without 

analytical solutions. 

 

 

 

 
FIGURE 1. Comparison of analytical and numerical solutions for 

𝑛 = 0. 
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FIGURE 2. Comparison of analytical and numerical solutions for 

𝑛 = 1. 

 

 

B. Density profiles for n = 1.5 and n = 3 

 

The Lane–Emden equation has been solved numerically for 

two representative polytropic indices, 𝑛 = 1.5 and 𝑛 = 3, 

corresponding to distinct stellar configurations. The 𝑛 = 1.5 

polytrope characterizes stars supported by non-relativistic 

degenerate electron pressure, such as white dwarfs—

extremely compact remnants in their final evolutionary stage. 

In contrast, the 𝑛 = 3  polytrope represents stars in radiative 

equilibrium, where radiation pressure balances gas pressure 

and gravity, a condition typical of massive main-sequence or 

radiation-dominated stars [1]. 

    The first zeros of the numerical solutions, which specify 

the stellar surface, are summarized in Table I. The results 

indicate that the 𝑛 = 1.5 polytrope corresponds to a more 

compact configuration, while the 𝑛 = 3 case exhibits a more 

extended stellar structure. 

 

 
TABLE I. Dimensionless radii (𝜉1) corresponding to the first zeros 

of the Lane–Emden function for 𝑛 = 1.5 and 𝑛 = 3.  

 
Polytropic index (𝑛) 𝜉1 

1.5 3.654 

3 6.897 

 

 

Figure 3 illustrates the variation of dimensionless density 

𝜌/𝜌𝑐 = 𝐷𝑛
𝑛 as a function of the dimensionless radius 𝜉 =

𝑟/𝜆𝑛 for both values of 𝑛 (𝑛 = 1.5 and 𝑛 = 3). In both cases, 

the density decreases monotonically with increasing 𝜉. The 

point where 𝐷𝑛(𝜉) first reaches zero, denoted 𝜉1, defines the 

surface of the star, since beyond this point the density would 

become negative and thus physically meaningless. 

 

 

 
FIGURE 3. Dimensionless density 𝜌/𝜌𝑐 = 𝐷𝑛

𝑛 versus 

dimensionless radius 𝜉 = 𝑟/𝜆𝑛 for 𝑛 = 1.5 and 𝑛 = 3 

 

 

As shown in Figure 3, the 𝑛 = 1.5 density profile declines 

more steeply and reaches zero at a smaller 𝜉1, indicating a 

compact star with a centrally concentrated mass. However, 

the 𝑛 = 3 profile decreases more gradually and extends 

farther out, representing a radiation-dominated star with a 

more diffuse structure. 

 

 

 

IV. DIMENSIONAL ESTIMATE FOR THE SUN 

AND COMPARISON WITH OBSERVATIONS  
 

To illustrate how the dimensionless Lane–Emden solution 

can be converted into a physical stellar radius, we use the 𝑛 =
3 result together with estimates of the solar central pressure 

and density. 

     Starting from Eq. (1) and inserting 𝑛 = 3 for the Sun [5] 

and using 𝑃𝑐 = 2.34 × 1016 Pa [1] and 𝜌𝑐 = 1.5 × 105 

kg/m3 [6] for the center of the Sun, we have: 

 

𝐾 = 2.94 × 109 m3kg
−1

3⁄ s−2. (15) 

 

Afterwards, 𝜆𝑛 is calculated from Eq. (6) using 𝜌𝑐, 𝑛 = 3, 

and the value of 𝐾 from Eq. (15), yielding: 

 

𝜆3 = 7.05 × 104 km . (16) 

 

Subsequently, substituting calculated 𝜆3 from Eq. (16) and  

using 𝜉1 from Table I for 𝑛 = 3 in Eq. (5) gives the radius 
of the Sun as: 
 

𝑅𝑆 = 4.87 × 105 km . (17) 
 
This estimate is of the correct order of magnitude when 

compared with the observed solar radius 𝑅⊙ = 6.95 ×

105 km [1]. The two-hundred-thousand-kilometre difference 

is expected given the highly simplified nature of the 

polytropic model and the approximations used to obtain 𝐾. 
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V. LIMITATIONS OF THE POLYTROPIC 

MODEL 
 
The difference between the polytropic estimate and the 

observed solar radius arises from several well-known 

limitations and approximations: 

 

 

A. Model assumptions 

 

A single polytropic index 𝑛 assumes a single power-law 

relation 𝑃 = 𝐾𝜌𝑛+1/𝑛 (Eq. (1)) throughout the star. Real stars 

(including the Sun) are not perfectly polytropic: the inner 

radiative zone and the outer convective envelope are better 

represented by different effective índices [4] and by non-

polytropic physics. 

 

 

B. Equation of state simplification 

 

For the Sun we approximated 𝑃𝑐 using an ideal-gas relation 

in order to obtain 𝐾. In reality the equation of state varies 

with depth (partial ionization, radiation pressure, degeneracy 

in compact objects) [1], so a single 𝐾 cannot capture the full 

stratification. 

 

 

C. Neglected physics 

 

The polytropic Lane–Emden model omits important 

ingredients: detailed energy generation (nuclear reactions), 

opacity variations, convective transport, and compositional 

gradients. These processes affect the pressure and 

temperature profiles and therefore the mapping between 𝜌𝑐, 

𝐾, and the global radius. 

 

D. Sensitivity to input values 

 

The computed 𝑅 depends sensitively on the adopted 𝑃𝑐 and 

𝜌𝑐. Small relative uncertainties in those central values 

produce larger relative changes in 𝐾 and 𝜆𝑛 because of the 

power-law dependences. 

 

 

VI. CONCLUSIONS  
 

In this study, the Lane–Emden equation was numerically 

solved for several values of the polytropic index using a 

fourth-order Runge–Kutta method to investigate the internal 

structure of polytropic stellar models. The numerical 

solutions were first validated against analytical cases for 𝑛 =
0 and 𝑛 = 1, showing excellent agreement. For the 

physically relevant indices 𝑛 = 1.5 and 𝑛 = 3, 

corresponding respectively to non-relativistic degenerate 

stars and radiation-dominated stars, the resulting 

dimensionless density profiles revealed distinct structural 

behaviors: the 𝑛 = 1.5 polytrope exhibits a compact, 

centrally concentrated configuration, whereas increasing the 

polytropic index to 𝑛 = 3 produces a more extended and less 

centrally condensed stellar model. This general trend reflects 

the fact that higher polytropic indices correspond to stars with 

weaker central concentration and broader density 

distributions. 

      Applying the 𝑛 = 3 polytropic model to the Sun yielded 

a stellar radius of the correct order of magnitude compared 

with the observed value, confirming the usefulness of the 

Lane–Emden approach as an approximate but insightful tool 

for modeling stellar interiors. The discrepancies between the 

model and the actual solar parameters arise from simplifying 

assumptions in the polytropic equation of state and the 

neglect of detailed radiative, convective, and compositional 

effects. Overall, the results demonstrate that the Lane–Emden 

framework provides a valuable foundation for understanding 

how the polytropic index governs stellar structure and serves 

as a baseline for more realistic stellar evolution models. 
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