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Abstract

We present numerical solutions of the Lane-Emden equation for selected polytropic indices using a fourth order Rnnge-
Kutta integrator with series expansion initial conditions. The method is validated against the analytical casesn = 0 and
n = 1, then applied to the astrophysically relevant indices n = 1.5 and n = 3. The computed first zeros are §; =~ 3.654
(n=1.5)and & = 6.897 (n = 3), and the resulting density profiles show that increasing n produces more extended,
less centrally concentrated models. The n = 3 polytropic model yields a solar radius of the correct order of magnitude,
showing that even a simplified pressure—density relation can capture the essential structural scaling of real stars like the
Sun.
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Resumen
Presentamos soluciones numéricas de la ecuacion de Lane-Emden para indices politrépicos seleccionados utilizando
un integrador Rnnge-Kutta de cuarto orden con condiciones iniciales de expansion en serie. EI método se valida frente
a los casos analiticosn =0y n =1, y posteriormente se aplica a los indices astrofisicamente relevantesn=15yn=3.
Los primeros ceros calculados son &1 ~ 3,654 (n = 1,5) y & =~ 6,897 (n = 3), y los perfiles de densidad resultantes
muestran que al aumentar n se obtienen modelos mas extendidos y con menor concentracion central. EI modelo
politrépico n = 3 proporciona un radio solar del orden de magnitud correcto, lo que demuestra que incluso una relacion

presion-densidad simplificada puede capturar la escala estructural esencial de estrellas reales como el Sol.

Palabras clave: Ecuacion de Lane-Emden, Politropos, Estructura estelar.

I. INTRODUCTION

One of the most fundamental equations describing stellar
structure is the Lane-Emden equation, which characterizes
the dimensionless density profile of a spherically symmetric
star in hydrostatic equilibrium with a pressure—density
relation defined by a polytropic index [1, 2]. Hypothetical
stellar models in which the pressure depends on the density
in the form

n+1

P=Kpn, (1)

are known as polytropes, where K is a constant and n is the
polytropic index [1].

The starting point for deriving the Lane—-Emden equation
is the condition of hydrostatic equilibrium [1],

dP dM(r
G (rp

E - T_z ] (2)
together with the mass continuity equation [1],
M
o = 4nr?p), 3)
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where P is the pressure, p is the density, M(r) is the mass
enclosed within radius r, and G is the gravitational constant
(6.67 x 10711 m3.kg=1.s72).

Assuming the polytropic relation above and introducing
the dimensionless variables [1]

p = pc[Dn (™, €))
r=M"¢, 5)
where p. is the central density, D,, is the dimensionless

density, ¢ is the dimensionless independent variable, and A,,
is a characteristic length scale defined by [1]

1-n/n 1/2
- ("“)(ic—c)l . (6)

The equations of stellar structure (Egs.(2) and (3)) can be
combined to yield the Lane—Emden equation [1]:
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In this study, we numerically solve the Lane—~Emden equation
for selected values of the polytropic index n and analyze the
corresponding dimensionless density distributions D, (&).
Analytical solutions exist only for n=0,1,and 5 [1];
therefore, for other values of n, the equation must be solved
numerically. The numerical solutions are obtained using a
fourth-order Runge—Kutta method [3], and the resulting
dimensionless density ratio p/p. = D} is plotted as a
function of the dimensionless radius ¢ = r/4,. The results
illustrate how the internal density structure and stellar radius
depend on the polytropic index.

I1. NUMERICAL METHOD

This section outlines the procedure for numerically solving
the Lane—Emden equation (Eq. (7)).

In order to solve a differential equation, we need
boundary and initial conditions. For this particular equation
(Eq.(7)), the boundary conditions are given by Egs. (8) and

(9) [1]:

D,(¢,) =0, (8
where &; specifies the surface of the star,
dD,
d—f =0 at E =0. (9)

This condition is derived from the combination of Egs. (1)
and (2) at the center of the star.
Additionally, in order for p. to represent the central
density of the star, it is also necessary that [1]
D,(0)=1. (10)
As has been mentioned before, in this study, the Lane-Emden
equation was solved numerically using the fourth-order
Runge-Kutta method.

To avoid the singularity at the stellar center (¢ = 0), the
integration starts from a small, finite value &,, which is set
equal to the step size h in the numerical implementation. At
&y, the initial values of D,, and dD,,/d¢ are approximated
from the series expansion as [4]:

Dn(§) =1 —%, (11)
an _ fo
TRy (12)

These expressions ensure that the physical boundary
conditions (Egs. (9) and (10)) are satisfied to first order,
providing accurate starting values for the numerical
integration. The numerical computations were performed in
Python. The integration was carried out up to the first zero of
D, (&), with a step size of h = 0.001 to ensure numerical
stability and accuracy.
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II1. RESULS AND DISCUSSION

In this section, the numerical solutions of the Lane—Emden
equation are presented. The results forn = 0 and n = 1 are
first compared with their analytical forms to validate the
numerical method, followed by the analysis of the solutions
for n = 1.5 and n = 3, which correspond to realistic stellar
models.

A. Code verification

Before applying the numerical method to the cases that
cannot be solved analytically, the code is first verified by
comparing the numerical results with the analytical solutions
of the Lane-Emden equation (Eq.(7)) forn =0 and n = 1,
for which the analytical solutions are available as follows [1]:

D =1-%, (13)
GEE (1)

Figure 1 shows a comparison between the numerical and
analytical solution for n = 0, while Figure 2 shows the
comparison for n = 1. Excellent agreement is observed in
both cases, confirming the reliability of the numerical method
and justifying its application to polytropic indices without
analytical solutions.

Lane-Emden solution: n=0
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FIGURE 1. Comparison of analytical and numerical solutions for

n=0.
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Lane-Emden solution: n=1
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FIGURE 2. Comparison of analytical and numerical solutions for

n=1.
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B. Density profilesforn=15and n=3

The Lane—Emden equation has been solved numerically for
two representative polytropic indices, n = 1.5 and n = 3,
corresponding to distinct stellar configurations. The n = 1.5
polytrope characterizes stars supported by non-relativistic
degenerate electron pressure, such as white dwarfs—
extremely compact remnants in their final evolutionary stage.
In contrast, the n = 3 polytrope represents stars in radiative
equilibrium, where radiation pressure balances gas pressure
and gravity, a condition typical of massive main-sequence or
radiation-dominated stars [1].

The first zeros of the numerical solutions, which specify
the stellar surface, are summarized in Table I. The results
indicate that the n = 1.5 polytrope corresponds to a more
compact configuration, while the n = 3 case exhibits a more
extended stellar structure.

TABLE I. Dimensionless radii (¢;) corresponding to the first zeros
of the Lane—Emden function forn = 1.5 and n = 3.

Polytropic index (n) &
15 3.654
3 6.897

Figure 3 illustrates the variation of dimensionless density
p/p:. = D} as a function of the dimensionless radius ¢ =
r /A, for both values of n (n = 1.5 and n = 3). In both cases,
the density decreases monotonically with increasing . The
point where D,, (&) first reaches zero, denoted &;, defines the
surface of the star, since beyond this point the density would
become negative and thus physically meaningless.
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Lane-Emden Solutions forn=1.5andn=3
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FIGURE 3. Dimensionless density p/p. =D} versus

dimensionless radius ¢ = r/A, forn =1.5andn =3

As shown in Figure 3, the n = 1.5 density profile declines
more steeply and reaches zero at a smaller &, indicating a
compact star with a centrally concentrated mass. However,
the n = 3 profile decreases more gradually and extends
farther out, representing a radiation-dominated star with a
more diffuse structure.

IV. DIMENSIONAL ESTIMATE FOR THE SUN
AND COMPARISON WITH OBSERVATIONS

To illustrate how the dimensionless Lane—Emden solution
can be converted into a physical stellar radius, we use the n =
3 result together with estimates of the solar central pressure
and density.

Starting from Eq. (1) and inserting n = 3 for the Sun [5]
and using P, =2.34x 10%Pa [1] and p, = 1.5 x 10°
kg/m3 [6] for the center of the Sun, we have:

K =294 x 10° mkg /3572 (15)

Afterwards, A,, is calculated from Eq. (6) using p., n = 3,
and the value of K from Eq. (15), yielding:

A3 =7.05 % 10* km. (16)

Subsequently, substituting calculated A; from Eq. (16) and
using &; from Table | for n = 3 in Eq. (5) gives the radius
of the Sun as:

Rs = 4.87 x 10° km . (17)
This estimate is of the correct order of magnitude when
compared with the observed solar radius Rg = 6.95 X
10° km [1]. The two-hundred-thousand-kilometre difference

is expected given the highly simplified nature of the
polytropic model and the approximations used to obtain K.
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V. LIMITATIONS OF THE POLYTROPIC
MODEL

The difference between the polytropic estimate and the
observed solar radius arises from several well-known
limitations and approximations:

A. Model assumptions

A single polytropic index n assumes a single power-law
relation P = Kp™*1/™ (Eq. (1)) throughout the star. Real stars
(including the Sun) are not perfectly polytropic: the inner
radiative zone and the outer convective envelope are better
represented by different effective indices [4] and by non-
polytropic physics.

B. Equation of state simplification

For the Sun we approximated P. using an ideal-gas relation
in order to obtain K. In reality the equation of state varies
with depth (partial ionization, radiation pressure, degeneracy
in compact objects) [1], so a single K cannot capture the full
stratification.

C. Neglected physics

The polytropic Lane-Emden model omits important
ingredients: detailed energy generation (nuclear reactions),
opacity variations, convective transport, and compositional
gradients. These processes affect the pressure and
temperature profiles and therefore the mapping between p,,
K, and the global radius.

D. Sensitivity to input values

The computed R depends sensitively on the adopted P, and
pc- Small relative uncertainties in those central values
produce larger relative changes in K and 4,, because of the
power-law dependences.

VI. CONCLUSIONS

In this study, the Lane—Emden equation was numerically
solved for several values of the polytropic index using a
fourth-order Runge—Kutta method to investigate the internal
structure of polytropic stellar models. The numerical
solutions were first validated against analytical cases forn =
0 and n =1, showing excellent agreement. For the
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physically relevant indices n=15 and n=3,
corresponding respectively to non-relativistic degenerate
stars and radiation-dominated stars, the resulting
dimensionless density profiles revealed distinct structural
behaviors: the n = 1.5 polytrope exhibits a compact,
centrally concentrated configuration, whereas increasing the
polytropic index to n = 3 produces a more extended and less
centrally condensed stellar model. This general trend reflects
the fact that higher polytropic indices correspond to stars with
weaker central concentration and broader density
distributions.

Applying the n = 3 polytropic model to the Sun yielded
a stellar radius of the correct order of magnitude compared
with the observed value, confirming the usefulness of the
Lane—-Emden approach as an approximate but insightful tool
for modeling stellar interiors. The discrepancies between the
model and the actual solar parameters arise from simplifying
assumptions in the polytropic equation of state and the
neglect of detailed radiative, convective, and compositional
effects. Overall, the results demonstrate that the Lane—Emden
framework provides a valuable foundation for understanding
how the polytropic index governs stellar structure and serves
as a baseline for more realistic stellar evolution models.
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