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Abstract 
We introduce an atomic model that avoids some of the worst dissonances. According to this model, the electron is not 

point-like but extended. The square of the wave function is interpreted as the density of a fluid, the electronium. On the 

basis of the electronium model suggestive pictures and animations of the atom can be generated. We shall see and 

discuss pictures of the various states of a hydrogen atom as well as animations of transitions from one stationary state 

to another. We also shall represent the internal movement of the electronium, that is responsible of the angular 

momentum and the magnetic moment of the atom. From the pictures we shall directly read properties of the various 

states and the various transitions by only using arguments of classical physics.  
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Resumen 
Se introduce un modelo atómico con el cual se evitan algunas de las más relevantes incoherencias que se presentan al 

estudiar los átomos de manera tradicional. En dicho modelo el electrón no se considera puntiforme sino extendido. El 

cuadrado de la función de onda se interpreta como la densidad de un fluido, llamado electronio. Basados en el concepto 

de electronio se pueden generar imágenes sugestivas y animaciones representativas del átomo. Se presentan y analizan 

las imágenes obtenidas para varios estados del átomo de hidrógeno, así como para transiciones de un estado 

estacionario a otro. También se representa el movimiento interno del electronio, que es responsable del momento 

angular y del momento magnético del átomo. De las imágenes se podrán inferir directamente las propiedades de 

diversos estados y transiciones, empleando únicamente argumentos de la Física clásica. 

 

Palabras clave: Modelo del átomo, transición electrónica.  

 

PACS: 01.40.gb, 03.65.-w                                                                                                                         ISSN 1870-9095 

 

 

I. PICTORIAL REPRESENTATION OF ATOMS 
 

The appearance of an object is determined by its shape, 

color, transparency and surface structure. An atom does not 

have some of these properties. So one might conclude that 

the atom has no appearance. But that would mean to throw 

out the baby with the bath water. Indeed, in other similar 

situation we do not hesitate to produce pictorial 

representation of invisible objects. Every physics text book 

contains pictures of electric and magnetic fields, 

temperature and pressure distributions, X-ray and electron 

beams. So we also can generate images of the atom, and 

that will be done in the following. 

The pictures that we will consider are graphic 

representations of the solutions of the Schrödinger 

equation. Various properties of the atom can directly be 

read from these pictures. One can “see” the atom’s shape, 

its angular momentum and its magnetism. One can deduce 

from the pictures, why in certain states the atom radiates 

strongly and in others only weakly or not at all. One also 

sees directly if the emitted radiation is linearly or circularly 

polarized. 

 

 

II. THE PROCEDURE 
 

We start from the Schrödinger equation for a single-electron 

system: 

 

  
 

By means of the wave function ψ(r, t), i.e. a solution of the 

Schrödinger equation, we define two quantities ρ and j: 

 

 
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                      (2) 

 

For a single-electron system the two functions ρ(r,t) and 

j(r,t) contain the same information as the wave function.  

Using the Schrödinger equation and the expressions (1) 

and (2) we obtain (see [1]):  

 

.                                 (3) 

 

This equation has the form of a continuity equation. 

Multiplying the quantities ρ and j with the electron charge 

e:  ρe = e · ρ, je = e · j, we can write Eq. (3) as: 

 

,                                (4) 

 
where ρe is the charge density and je the electric current 

density. Multiplying ρ and j with the electron mass m:  

ρm = m · ρ, jm = m · j, we obtain from (3):  

 

.                             (5) 

 

Here ρm is the mass density and jm the mass current density. 

Eq. (4) can be read as the continuity equation of electric 

charge and Eq. (5) as the continuity equation of the mass of 

the atomic shell. 

We recall the physical meaning of a continuity equation: 

When the electric charge in a given small region decreases, 

there must be an outflow of charge from this region. If the 

charge increases, there must be an inflow of charge. The 

same applies for the mass. Thus, a continuity equation 

states the conservation of an extensive quantity that is 

distributed in space.  

Eqs. (4) and (5) suggest to imagine the electron shell of 

the atom to consist of a material that is continuously 

distributed around the nucleus, and that is able to flow. In 

this model, an electron is a portion of this material with a 

certain mass, namely the electron mass, and a certain 

charge, the elementary charge. This model is as old as 

quantum mechanics itself. It has been proposed in 1926 by 

Schrödinger [2] and was shortly after worked out by 

Madelung [3]. The imaginary substance is sometimes called 

“Madelung fluid”. Instead of this somewhat unwieldy name 

we prefer for the use at school the shorter term 

“electronium”. 

We now shall consider how ρ and j behave for the 

various types of the solutions of the Schrödinger equation. 

The Schrödinger equation has special solutions of the form:  

 

  .                            (6) 

The corresponding states are called eigenstates (of the 

energy). They are numbered with the index k. To each of 

these solutions corresponds a particular value of the energy 

Ek, the energy eigenvalue. Note that in (6) the position and 

the time dependence are separated: The first factor uk(r) 

depends only on the position r, the second only on time.  

Every linear combination of eigenstate solutions also 

solves the Schrödinger equation:  

 

 
 

A state that is described by such a sum is called a 

superposition state.  

The eigenstates differ in one important feature from the 

superposition states. For eigenstates the density and the 

current density are independent of time. For superposition 

states ρ and j depend on time. Let us show that briefly. 

For an eigenstate the electronium density is: 

 

. 

 

Since the product of the exponential terms is equal to one, 

the time dependence vanishes. The calculation of the 

current density gives a similar result. Also the current 

density is constant in time (but not necessarily zero). 

Therefore the eigenstates are also called stationary states.  

We now consider a superposition state. In the simplest 

case, its wave function is the sum of two eigenstate 

functions: 

 

, 

 

with , and . 

 

Since the calculation of ρ is a somewhat complicated, we 

give here only the result. It is an expression of the form 

 

,          (7) 

 

with ω = (EA– EB)/ħ. 

It is seen that the density now depends on time. It 

consists of one term that depends only on the position and 

another one, that oscillates harmonically. Again, the same 

holds for the current density. The superposition states are 

therefore non-stationary. 

The images and animated graphics, that we discuss 

below, correspond to the hydrogen atom. They are 

representations of the electronium density and current 

density. For stationary states the resulting images are static, 

for non-stationary, we have generated animations. In print, 

an animation can only be represented as a series of single 

frames that are “stroboscopically” selected. More images 

and animations can be found on our website [4].   y k (r, t) = uk (r)e
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Regarding our notation: An energy eigenstate is 

characterized by three quantum numbers n, l and m. The 

indication (432) means n=4, l=3 and m=2. The electronic 

spin is not visualized in our images. In the various figures, 

the relation between the electronium density and the color 

is not necessarily the same. In the 3D images the displayed 

surface corresponds to 10% of the maximum density. 

 

 

 
 

FIGURE 1. Electronium density of the hydrogen atom in various 

states (nlm). The distributions have a cylindrical symmetry with a 

symmetry axis through the nucleus. 

 

 

III. PICTURES AND ANIMATED GRAPHICS 
 

A. Shape of an atom 

 

We consider the density distribution of the electronium in 

different stationary states, Fig. 1. Such images are largely 

known. They display what can be considered the shape of 

the atom in the various states. In some states, the atom is 

spherical; in others it has a lower symmetry. 

 

B. In a stationary state the atom does not radiate 

 

The current density is different from zero only for states 

with m ≠ 0. For the state with n = 3, l = 2, m = 1 the left part 

of Fig. 2 shows the electronium density, the right part 

shows the absolute value of the current density in a section 

through the nucleus. The current density vector is 

perpendicular to the drawing plane. Blue corresponds to a 

current that is flowing into the image plane, red means it is 

flowing out. The streamlines are circles whose centers lie 

on an axis through the nucleus. Fig. 3 shows a combination 

of density and current density: The flow is indicated by 

arrows. What can we learn from these pictures?  

From the fact that both the charge distribution and the 

current distribution are constant in time, we conclude that 

the atom does not emit radiation. A charge distribution that 

is constant in time causes a static electric field and an 

electric current distribution that is constant in time causes a 

constant magnetic field. It is well-known that according to 

the Bohr model of the circulating particles a contradiction 

to electrodynamics would result, since the particles should 

emit radiation. Therefore, without further ado, one declares 

that electrodynamics is not valid in this case (Bohr’s first 

“postulate”). Such a postulate is not necessary when using 

the electronium model. On the contrary: The electronium 

model predicts that in a stationary state the atom does not 

radiate [5]. 

 

 

 
 

FIGURE 2. Density (a) and current density (b) in a cross section 

through the nucleus for the state (321). The distribution has a 

cylindrical symmetry. 

 

 

 
 

FIGURE 3. Density and current for the state (431). 

 

 

C. Angular momentum and magnetic moment 

 

We again consider the current density. In states with m ≠ 0 

we have a flow of electronium with circular streamlines. 

We therefore have a corresponding flow of mass and 

electric charge. The fact that we have a circular mass 

current implies that the system has angular momentum. The 

angular momentum can be calculated from the mass flow 

distribution. One finds the same value as that provided by 

solving the quantum mechanical eigenvalue equation. This 

is not surprising, since the current density distribution, from 

which our calculation departs, is based on the solution of 

the Schrödinger equation.  

Apart from a mass flow in the states with m ≠ 0 there is 

also a circular electric current. That means that the atom has 

a magnetic moment. This can be calculated from the current 

distribution.  

Thus, the pictures allow us to read directly the orbital 

angular momentum and the magnetic moment of the atom.  
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D. Electronic transitions 

 

We now shall discuss the non-stationary or superposition 

states. We restrict ourselves to the superposition of two 

states:  

 

.                   (8) 

 

In Section II we have seen that for such states the density 

and the current density oscillate with the angular frequency 

ω = (EA – EB)/ħ.  

We know that an oscillating charge and current 

distribution generally leads to the emission of an 

electromagnetic wave. Thereby, the atom loses energy, 

which means that it can not remain in the state, which we 

adopted as initial state. Instead it gradually goes into that of 

the two states which has lower energy. The part ψA(r, t), 

that corresponds to the higher energy decreases, that of 

ψB(r, t) increases. Therefore, for a non-stationary state the 

weight factors in Eq. (8) are time-dependent:  

 

. 

 

As a result, in the density of Eq. (7) also those terms are 

now time-dependent, which previously have not been: 

 

.      (9) 

 

However, the temporal change of the coefficients C0, C1 and 

C2 is slow, and it is not periodical. For a transition (210) → 

(100), for example, they describe how the “p-state lobes” 

steadily and smoothly transform into the “s-state sphere”. 

This slow deformation is modulated by a fast oscillation, 

which ensures that an electromagnetic wave is emitted. 

Thereby the atom loses energy.  

 

 

 
 

FIGURE 4. Superposition of states 210 and 100 with a percentage 

of 50% each. The charge density moves as in a dipole antenna. 

 

 

We now assume that at the beginning the atom is in an 

excited stationary state, i.e. cA = 1 and cB = 0. The transition 

to state B cannot begin without help. However, a weak 

perturbation is sufficient to initiate the transition. This 

perturbation can be due to collisions with other atoms, or to 

the fluctuations of the electromagnetic field in its ground 

state. This description of an electronic transition in which 

the electron is treated quantum-mechanically, whereas the 

radiation is treated classically, is called “semi-classical”. 

The energy loss per oscillation period due to radiation is 

extremely low. The transition (210) → (100) takes about 

10
-8

s, whereas the oscillation period is about 10
-15

s. Thus 

the transition of the electronium lasts for about 10
7
 

oscillation periods. During this interval of time, the 

percentage of ψA(r, t) decreases from 100% to 0% whereas 

that of ψB(r, t) increases from 0% to 100%. 

Fig. 4 shows a sequence of frames from a video of a 

superposition state, that is composed of the states (210) and 

(100), 50% each. The pictures cover one oscillation period.  

The entire 10
7
 oscillation periods can not be represented 

as an animation. If in the animation we stretch the 

oscillation period to one second, then the whole transition 

would need about half a year.  

To make the whole transition visible in a reasonable 

time, we have applied a “stroboscopic” method: The 

animation consists of snapshots of the transition that are 

made in large and regular time intervals. The instants of the 

snapshots are chosen in such a way that the oscillation 

phase of two consecutive frames increases only little. In 

this way the impression of a slow oscillation results. Fig. 5 

shows a few frames of the transition (210) → (100).  

 

 

 
 

FIGURE 5. Transition from 210 to 100. 

 

 

It can be seen that the charge oscillates similarly as that of a 

macroscopic dipole antenna. An oscillation has such a 

dipole character only if Δl = ±1. Such transitions are called 

dipole transitions. For a dipole transition, the atom radiates 

strongly, and that means that the transition proceeds 

rapidly. Dipole transitions are said to be allowed. 

 

E. Slow transitions 

 

How fast a transition is, i.e. how quickly the coefficients cA 

and cB change, depends on how strongly electromagnetic 

radiation is emitted. The intensity of emission depends on 

the spatial distribution and temporal variation of the charge 

density and the current density. With a little practice one 

can judge from an animation whether the transition 

proceeds quickly, slowly or not at all. (It is understood that 

the duration of the animation is not a measure for the 

duration of the transition, since we have chosen the 

stroboscopic sampling rate arbitrarily). 

If Δl is equal to ±2, the oscillation has quadrupole 

character, and that can also be seen in the animation. The 

atom radiates only weakly - just as a macroscopic 
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quadrupole antenna (i.e., two adjacent dipole antennas 

oscillating in phase opposition) would do. Quadrupole 

transitions are said to be forbidden.  

 

 

 
 

FIGURE 6. Quadrupole transition from 520 to 400. 

 

 

An interesting superposition state is one, in which for both 

contributing states we have l = 0. The charge distribution 

oscillates, but it always retains its spherical symmetry. 

Therefore, it can not emit at all. A transition can not take 

place. 

 

F. Polarization of the radiation 

 

If the quantum number m is the same in the initial and final 

state (and Δl= ±1), the electronium executes a reciprocating 

movement. It radiates like a dipole antenna, and therefore 

emits linearly polarized light. This is the case for the dipole 

transitions that we have considered previously.  

If the quantum number m of the participating states 

differs by one, i.e. if Δm = ±1, the charge distribution 

makes a kind of circular motion. As a consequence, the 

atom emits a circularly polarized wave. Fig. 6 shows some 

frames of such a transition. The two small sub-images on 

the left side of each image show the non-periodic and the 

periodic component of the density, see Eq. (9). In the 

periodic component red means positive charge (i.e., a 

positive deviation from the overall negative charge) and 

blue negative charge. It is seen that the rapid, harmonic 

movement is similar to that of a rotating dipole.  

 

 

IV. CONCLUSIONS 
 

With the help of the wave function of a single electron 

system two variables ρ and j can be defined. They are 

related by an equation that can be read as a continuity 

equation. This suggests to interpret these quantities as a 

density and the current density of the electric charge and 

the mass of a substance that is distributed in space. From 

the distribution of this “electronium” and from the change 

in time, several properties of the atom can be predicted 

correctly by only applying well-known laws of classical 

physics. 

1. Since the charge density and the electric current 

density are stationary, an atom does not radiate when in an 

energy eigenstate. Bohr’s first postulate is not needed.  

2. From the mass current and charge current distribution 

follow the correct values of the orbital angular momentum 

and the magnetic moment.  

3. From the way a charge distribution of a superposition 

state is oscillating, one can deduce whether the atom emits 

strongly or weakly or not at all (whether a transition is 

allowed or forbidden).  

4. From the oscillation of the charge distribution the 

polarization of the radiation can be inferred. 
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