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Abstract 
Hall Effect can be used to determine the signs of current carriers in metals and semiconductors. It is well known that 
when electrons are current carriers, the Hall coefficient is negative, i.e. RH<0; when holes are current carriers, the Hall 
coefficient is positive, i.e. RH>0. However, puzzling arises regarding that in both scenarios; the essential moving 
particles are electrons. Therefore, there should not have any different effect in theory. We discuss the details about 
two situations and point out that both quantum and classical mechanics give same current direction under external 
electric field. However, under the influence of external magnetic field, because the mass of electrons is negative at 
valence band, electrons move to the opposite direction of its Lorentz force, which behave like a positive charge and 
give positive RH. 
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Resumen 
El Efecto Hall se puede utilizar para determinar los signos de los portadores de corriente en metales y semiconductores. 
Es bien sabido que cuando los electrones son portadores de corriente, el coeficiente de Hall es negativo, es decir, RH 
<0, cuando los agujeros son portadores de corriente, el coeficiente de Hall es positivo, es decir, RH > 0. Sin embargo, el 
desconcierto surge al considerar que en ambos escenarios; las partículas que esencialmente se mueven son electrones. 
Por lo tanto, no debería tener ningún efecto diferente en la teoría. Se discuten los detalles de las dos situaciones y se 
señala que tanto la mecánica clásica y la cuántica dan la misma dirección de la corriente bajo el campo eléctrico 
externo. Sin embargo, bajo la influencia del campo magnético externo, ya que la masa de los electrones es negativa en 
la banda de valencia, los electrones se mueven hacia la dirección opuesta de su fuerza de Lorentz, que se comporta 
como una carga positiva y da RH positivo. 
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I. INTRODUCTION  
 
Hall Effect can be used to determine the signs of current 
carriers in metals and semiconductors. Hall coefficient is 
defined as: 
 

            RH=Ey/(jxH),                               (1) 
 
where Ey, jx, and H are electric field, electric current 
density, and magnetic field strength (shown in Fig. 1). If 
RH<0, then it indicates that the Ey is along –y direction, and 
electric current carriers are negative particles (essentially 
they are electrons); if RH>0, however, it indicates that Ey is 
along y direction, and electric current carriers are positive 
particles, which are called holes 

By applying Drude model  [1], we can write RH as 
 

                           
1 ,HR

nec
= −                                   (2) 

 
 
FIGURE 1. Schematic of Hall effect experiment. Usually the 
electric carriers are believed to be electrons. The electrons move 
against the external electric field and therefore, Lorentz force 
make them move toward downside. The resultant electric field is 
along –y direction resulting in negative Hall coefficient. 
 
where n, e, c are electric charge density, electron charge 
(positive here, as negative sign has been taken care of), 
and speed of light (the cgs system is used for 
convenience). The other version of Eq. (2) is RHnec=-1. 
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Suppose that those values are measured in the experiment, 
their multiplication can be compared with -1. In Table I we 
show some experimental values. 
 
TABLE I. Experimental values of -1/( RHnec) of some elements. 
 

Metal Number of valence 

electrons 

-1/( RHnec) 

Li 1 0.8 

Na 1 1.2 

Be 2 -0.2 

Mg 2 -0.4 

In 3 -0.3 

Al 3 -0.3 

 
Table I shows that RHnec is not -1. This is not a big 
surprise since in Drude Model we regard electrons in the 
crystal as free electrons. This is not true due to the 
interactions between electrons and atoms. However, the 
most surprising fact is that some metals such as Be, Mg, 
In, and Al have positive RHnec values. Positive RHnec 
values indicate that electric field Ey is along the y 
direction, and electric carriers are positive. General 

explanation for such a phenomenon is that the electric 
carriers are holes rather than electrons, and the holes can 
be regarded as positive particles. The second thought, 
however, will raise a question: hole itself doesn’t move; 
under the influence of the external electromagnetic field, it 
is electrons that move instead of holes. Therefore, Hall 
coefficient should always be negative. How do we explain 
this paradox? 

It is impossible to reconcile this problem in the frame 
of classical physics because of the wave-particle dual 
properties of the electrons. This is just like the solar 
system model of an atom proposed by Ernest Rutherford 
couldn’t explain why the electrons don’t radiate energy 
while moving around a nucleus. For the electrons in a 
crystal, we need to apply quantum mechanics to the 
electrons and consider the influence of the ions. Due to the 
huge number of ions, it is hard to get an analytical solution 
about electrons. Therefore, several approximation methods 
are proposed. The approach that “Nearly free electrons” is 
one of them. In this approach, mean field is used to 
represent the real field and the period electric field induced 
by ions is regarded as perturbation. Under these 
assumptions, Schrödinger equation yields approximations 
of electron energies and positions, and thereafter, the 
concept of energy band is proposed  [2]. 
 

 

 
FIGURE 2. Considering the electrons are moving in 2D k – space. Fig. 2(a), (b) represent energy of conduction band and valence band. In the 
(c) and (d), the condition that ky=0 is considered. If there is no magnetic field and the electrons are moving only under the effect of electric 
field, Eq. (5) leads to the conclusion that wave vector k decreases, i. e. the average of k moves to the left. Fig. 2(c) shows that under the 
influence of electric field, there are more electrons in the region of kx<0, which results in negative average value of k. Red line stands for the 
positions occupied by electrons. Fig. 2(d)) shows that under the influence of electric field, there are more electrons in the region of kx>0, 
which results in positive average value of k. Red line stands for the positions occupied by electrons. 



Lianxi Ma, Qingli Zhao and Chi Chen 

Lat. Am. J. Phys. Educ. Vol. 3, No. 1, Jan. 2009 50 http://www.journal.lapen.org.mx 

 

One important conclusion of “nearly free electron 
approximation” is that the electron’s energy can be 
expressed as 
 

                        
2

0 ( ) ,Aε ε= ± − 0k k                                  (3) 
 
where ε0 is potential energy which is a constant; A(k-k0) is 
kinetic energy, and we have A>0; k is wave vector which 
can be an arbitrary value and it determines electron’s 
kinetic energy. Therefore the electron’s energy can still be 
regarded as being composed of potential and kinetic 
energies. We usually defines a quantity with mass 
dimension, m*, with the relation 

2

2 | * |
A

m
= . Here 

271.05 10 erg s
2
h
π

−= = × ⋅ , is Planck constant. (The 

reason that we use m*, instead of m, to stand for mass will 
be mentioned later). Hence, electron’s energy has two 
possibilities: one is parabolic surface convex to the bottom 
(take “+” in Eq. (3), shown in Fig. 2(a)), and the other is 
parabolic surface concave to the bottom (take “-” in Eq. 
(3), shown in Fig. 2(b)). 

Another conclusion of energy band theory is that 
electron’s velocity, v, can be expressed as 

 

                      
1 .dv
h dk

ε
=                               (4) 

 
And in the electro-magnetic field, the electron’s equation 
is 
 

                
( )( ) ( ) .d e e

dt c
×

= − + = −
k v HE Π                  (5) 

 
Here 

c
HvEΠ ×

+= , is the sum of electric and magnetic 

field. The left hand side of the Eq. (5) is momentum 
change rate, and the right hand side is the sum of the 
electric and magnetic forces. Therefore, it is still in the 
form of Newton’s second law of motion: F = dp/dt. 
However, readers may have noticed that the momentum is 

k instead of classical form of mv. Equation (5) shows 
that the sum of electric and magnetic forces, Π)( e− , 
induces the change of wave vector k, rather than the 
change of velocity v. This is the essential difference from 
the Newton’s second law aF m= . The fact that Eqs (3), 
(4), and (5) all include Planck constant indicates that under 
the frame of classical physics, it is impossible to get those 
equations derived. 

Armed with these 3 equations, we are able to consider 
Hall effect now. Equation (3) shows that energy ε is 
symmetric to wave vector k, and therefore Eq. (4) shows 
that electron’s velocity can be either positive or negative. 
Because the number distribution of electrons with k is 
symmetric, the numbers of electrons with positive and 
negative velocity are equal – no electric current is 
produced. Interestingly, in the case that there is no external 

electric field, electron’s velocity is not zero and actually, 
oscillation is formed. After the electric field E is 
introduced, Eq. (5) shows that k decreases (dk/dt is 
negative). In the case that energy band is like Fig. 2(a), 
which means that it is not filled full and called conduction 
band, then there are more electrons in the –k region. In 
another word, there are more electrons with negative 
velocity （ velocity direction is opposite to the electric field 
E), and hence electric current with the same direction of 
external electric field is produced. This can be said that 
electric carriers are electrons, which is displayed in Fig. 
2(c). In the case that energy band is like Fig. 2(b), which 
means that it is filled full and called valence band, then k 
cannot be changed anymore. Or strictly speaking, electrons 
going out of -k border come back from +k border [3], and 
so electron distribution does not change. Resultant current 
is zero. 
In the case that there are vacant places in the valence band, 
we call those vacant places holes. Since the electron’s 
velocity is still symmetric to the k, the overall electric 
current is zero. When electric field E is introduced, Eq. (5) 
shows that k decreases (dk/dt is negative). But electrons 
going out of -k border come back from +k border [3], and 
so there are more electrons with +k, which means that 
there are more electrons with negative velocity (opposite 
to the electric field E). Electric current in the direction of 
electric field is formed as shown in Fig. 2(d). This can be 
said that the electric carriers are holes. Yes, under the 
influence of the external electric field, it is the electrons, 
rather than holes, that move to form current. Both produce 
the electric current with the same direction as the external 
electric field. This conclusion agrees with that of classical 
physics. 

Readers may wonder why we used quantum 
mechanics rather than classical mechanics to get the 
essentially the same result. This is because under the frame 
of the classical mechanics, the electric current should 
appear as long as the electrons in the solid have collective 
motion under the influence of external electric field. But 
this is in contradiction to the experiment. Experimentally 
we have found some solids that are insulators but there are 
a lot of electrons in them. Quantum theory gives the result 
that electrons may go opposite direction and the current 
may cancel out. (In fact this is because of the interaction 
between electrons and crystal lattice.) Explaining this 
phenomenon is one of the great successes of energy band 
theory. 

In the following we discuss the result derived from 
quantum theory, that is different from the one derived from 
classical mechanics. 

Now we consider a magnetic field H that is 
perpendicular to the electric field and along the z direction 
is introduced. We still assume that electrons’ motion can 
be described by Newton’s law aF m= . For the electrons 
in conduction band – or non-strictly speaking, free 
electrons – Lorentz force and acceleration directions are 
straightforward: along the –y direction. Electrons move 
toward the –y direction and thereafter produce the electric 
field -Ey that pointing toward –y, and Hall coefficient 
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RH=Ey/(jxH) is negative. This can be predicted by classical 
mechanics too. However, what is the Lorentz force for the 
electrons in valence band – or non-strictly speaking, 
bounded electrons? Yes, the right hand rule is still right: 
Lorentz force is toward the –y direction. But electrons 
don’t accelerate along the direction of the Lorentz force. 
Rather, they accelerate toward the direction opposite to the 
Lorentz force! This induces the electric field -Ey along the 
y direction and the Hall coefficient RH=Ey/(jxH) is positive. 
Why? Because the electron’s mass is negative now! 

Considering the motion of electrons in a crystal 
lattice and if we still treat the electrons as classical 
particles, the following equation can be used: 

 
                                    * ,m=F a                                 (6) 
 
which is very similar to Newton’s second law of motion. 
Here the mass m* is called effective mass which is not a 
constant. Rather it is the function of wave vector k. Strictly 
speaking it is a tensor. Therefore generally speaking the 
directions of external force F and the acceleration a are 
different. The definition of effective mass m* is 
 

                              

2

2

1 1 .
*m k

ε∂
=

∂
                               (7) 

 
For the Eq. (3), electron’s mass has two possibilities: one 

is positive, *
2

m
A

= , which corresponds to convex 

parabolic surface (Fig. 2(a)) and the acceleration direction 
of the electrons in the conduction band is the same as the 
external force; the other is negative, *

2
m

A
= − , which 

corresponds to concave parabolic surface (Fig. 2(b)) and 
the acceleration direction of the electrons in the valence 
band is opposite to the external force. Holes are formed in 

the concave surface, and so the mass of the electrons is 
negative and the electrons accelerate opposite to the 
magnetic force. 

The negative mass means that when electrons are 
moving, the momentum obtained from electric field is less 
than that transferred to the lattice. Their resultant 
momentum decreases. In fact, Eq. (6) includes the effect of 
interaction between electrons and crystal lattice. 

In summary, we can see that quantum mechanics and 
classical mechanics give the same direction of the electric 
current, but give the different acceleration direction in the 
magnetic field in for the valence band. 

Therefore, the Hall Effect with the holes as electric 
carriers is explained. 

Actually, it has been rigorously proved [4] that the 
collective motion of the electrons in the valence band 
when there are holes is equivalent to the motion of positive 
change e of the holes. And the mathematical description 
for the latter is much easier and the physical picture is 
clearer. Therefore, we usually say that hole has positive 
charge e. 
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