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Resumen 
Teniendo en cuenta la necesidad y la importancia de introducir en el currículo de estudio de física e ingeniería los 
conceptos fundamentales relacionados con la transferencia de calor, en este trabajo, a partir de las soluciones de la 
ecuación de conducción de calor no estacionaria, discutiremos las escalas espaciales y temporales involucradas en las 
leyes de ese fenómeno y los límites de validez de su descripción actual, con la esperanza de que esos conceptos puedan 
ser de utilidad para profesores y estudiantes. 

 
Abstract 

Taking into account the actual need and importance of introducing the main concepts of heat transfer in the curriculum 
of science and engineering studies, and starting from the solutions of the non-stationary heat conduction equation, we 
discuss the length and time scales involved in the laws of this phenomenon and the limits of validity of its current 
description, hoping that these concepts can be helpful for teachers and students. 
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I. INTRODUCTION 
 
The conduction of heat in solids is a well known 
phenomenon, whose mathematical description dates from 
about two hundred years before, when Fourier [1] stated 
the famous law having his name. However, the role played 
in these phenomena by the thermal parameters governing 
the heat transport is often not well known or it is 
misinterpreted [2]. In particular, there are some 
characteristic (length and time) dimensions playing a very 
important role in the understanding of heat transfer 
phenomena. As there are many size and time dependent 
physical properties (in other words, these properties can be 
different for dissimilar phenomena), it is of great 
importance to deal with this theme with students (and 
teachers) at a college and university level. Therefore, it is 
the main objective of this work to define, in a 
phenomenological and easy accessible way, characteristic 
lengths and time dimensions for the very important 
phenomena of macroscopic heat transfer and to discuss 
about the limits of the laws describing it. This paper is 
distributed as follows. In the next section the laws of 
macroscopic heat transfer by conduction will be presented 
and the physical meaning of the involved thermal 
parameters will be briefly discussed. Sections III and IV 
will be devoted to the analysis of characteristic length and 
time scales respectively, both within the frame of non-
stationary heat conduction in the presence of pulsed heat 
sources. In section V an analysis of the limiting scales for 

periodical heat sources will be presented. The above 
aspects will be summarized in section VI together with the 
conclusions.  
 
 
II. LAWS OF MACROSCOPIC HEAT 
TRANSFER BY CONDUCTION 
 
It is well known that any temperature difference within a 
physical system causes a transfer of heat from the region 
of higher temperature to the one of lower. This transport 
process takes place until the system has become uniform 
temperature throughout. The rate of heat flux (units of W) 
transferred per unit time, t, depends on the nature of the 
transport mechanism, which can be radiation, convection 
or conduction (or a coupling of then) [3]. In this paper we 
will focus our attention to heat transfer by conduction in 
condensed matter, for which the local heat flow-rate in 
some direction, r, of homogeneous material is governed by 
Fourier’s law: 
 

TkAΦ ∇−= .                                  (1) 
 
The thermal conductivity, k (W/mK), is expressed as the 
quantity of heat transmitted per unit time, t, per unit area, 
A, and per unit temperature gradient ∇T=∂T/∂r. The 
negative sign indicate that heat flow will take place in the 
opposite direction of the temperature gradient. It 
characterizes stationary processes of heat transfer. 
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When a material is subjected to non-steady heating or 
cooling, its inner temperature profile is given in terms of 
time and spatial positions. The resulting conduction can be 
analyzed by combining Fourier’s law with a heat flow 
balance (energy conservation law or continuity equation). 
Assuming constant thermal conductivity this leads to a 
parabolic heat diffusion equation, often called Fourier’s 
second law: 

 

                      ( ) 0,12 =
∂

∂
−∇

t
trTT

α
,                    (2) 

 
where ∇ 2 is the Laplacian Operator. When internal heat 
sources are present a term equal to –Q(r,t)/k will be added 
to the left hand side of this equation, where Q (J/m3s) 
denotes possible heat losses (Q<0) or generation (Q>0) per 
unit volume per unit time. The coefficient α (m2/s) 
represents the thermal diffusivity, the rate at which a 
temperature variation propagates through the material. It 
can be defined as  
 

                         α=k / C ,                                     (3) 
 
where C (Jcm-3K-1) is the specific heat capacity, or heat 
capacity per unit volume of the material, defined as the 
product of density, ρ (g/cm3), and specific heat, c (J/gK):  
 

                            C=ρ c .                                     (4) 
 
Specific heat is the amount of heat that is required to raise 
the temperature of a unit mass of a substance by one 
degree, characterizing static problems in heat transfer. 
Thermal diffusivity can be considered, therefore, as the 
ratio of heat conducted through the material to the heat 
stored per unit volume.  

Another important thermal parameter for time varying 
heat transport phenomena is the so called thermal 
effusivity [Ws1/2cm-2K-1]. It is defined as  

 
               αρ

α
ρε ckck === ,                  (5) 

 
and it determine the amplitude of the temperature at a 
sample surface and its behaviour at interfaces in the case 
of transient and periodical heat sources. A more detailed 
explanation about the physical mean of the thermal 
parameters can be found elsewhere [4, 5]. 

 
 

III. CHARACTERISTIC LENGTH 
 
In order to visualize the typical behaviour of a diffusive 
phenomenon, such as the non-stationary heat conduction 
described above, it can be useful to start the analysis 
considering a semi-infinite homogeneous medium 
experiencing (uniformly, i.e. in such a way that the one-
dimensional approach used in what follows is valid) a 
sudden temperature change at the surface at x=0 from T0 to 
T1. For the calculation of the temperature field in the 

medium created by a heat pulse at t=0 one has to solve the 
homogeneous heat diffusion equation 
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with the boundary conditions 
 

T(x = 0, t ≥ 0) = T1 ;  T(x > 0, t=0) = T0.           (7) 
 
The solution of Eq. (6) with these conditions leads to [6]: 
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where erf is the error function defined as 
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so that erf(0)=0 and erf(u→∞)=1 (see Appendix IV of Ref. 
6 for other properties, such as the first derivative formula 
that we will use below). 

From the temperature field given by the above equation 
one may deduce, by differentiation, the heat flow, q=Φ/A, 
given by the Fourier’s law of conduction (Ec. (1)). In our 
case this lead to 
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This expression describes a Gaussian spread of thermal 
energy in space and time with characteristic width 
 

                               tt αμ 2= ,                         (11) 
 
giving the distance at which the amplitude of the heat flux 
reduces e times from its sample’s surface value at x=0 at 
each time instant, i.e., the heat flux amplitude q0. (The 
demonstration of this assertion would be a good exercise 
for students which can remember similar calculations in 
other branches of physics, such as that of the half live 
times from the law of radioactive decay, or the optical 
absorption length from the Lambert-Beer Law, among 
others). This characteristic distance is often denoted as the 
thermal diffusion length (for pulsed excitation). Scaling 
this result to three dimensions one can show that after a 
time t has elapsed the heat outspread over a sphere of 
radius μ. 

 
 

IV. CHARACTERISTIC TIMES 
 
Now suppose that a spherical particle of radius R is heated 
in the form described above by a heat pulse at its surface. 
The particle requires for thermalize a time equal to the 
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necessary for the heat to diffuse throughout its volume. 
The heat flux at the opposite surface of the particle can be 
obtained using Eq. (10), i.e. 
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where we can see that the thermal time constant 
 

                      
α

τ
2R

C = ,                                (13) 

 
(thus characterizing heat transfer rates) depend strongly on 
particle size and on its thermal diffusivity, α. The same 
result has been recently reported by Greffet [7] considering 
a heat pulse with a delta profile and by Wolf [8] from 
energy balance criteria. However, the solution given by the 
first mentioned author for the temperature field is 
questionable since it leads to a heat flux vanishing at the 
sample surface at x=0, what is physically undesirable.  

As for most condensed matter samples the order of 
magnitude of α is 10-6 m2/s, for a sphere of diameter 1 cm 
one obtain τc=100 s and for a sphere with a radius of 6400 
km, such as the Earth, this time is of around 1012 years, 
both values compatible with daily experience. But there is 
a problem when we deal with spheres having diameters 
between 100 and 1 nm (they are characteristic dimensions 
of the so called nanoworld), for which we obtain for these 
times values ranging from about 10 ns to1 ps. They are 
very close to the relaxation times, τ, or build-up times 
necessary for the onset of a heat flux after a temperature 
gradient is imposed on a given sample. At these short time 
scales Fourier’s Law of heat conduction is not more valid 
in the form given above.  

In effect, something appears paradoxical in the above 
description because Eq. (1) gives rise to infinite speeds of 
heat propagation. In other words, if we apply at a given 
instant a supply of heat to, for example, one face of a flat 
slab, according to Eq. (1) there will be an instantaneous 
effect at the rear side, i.e., the flux of heat reacts 
simultaneously to the concentration gradient leading to an 
unbounded propagation speed. This conclusion, of course, 
is physically not reasonable. This paradox was resolved in 
the mid of the past century [9] with the postulation of the 
so-called modified Fourier’s law, also known as 
Cattaneo’s Equation: 
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which tell us that, as a consequence of the temperature 
existing at each time instant, t, the heat flux appears only 
in a posterior instant, t +τ. Substituting Eq. (14) in the law 
of energy conservation [10] one can obtain the hyperbolic 

heat diffusion equation with first and second order time 
derivatives of the temperature field [11]: 
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where  

                         
τ
α

=u ,                                   (16) 

 
has a dimension of velocity. Note that if the characteristic 
time τc is much longer than the relaxation time τ, as occur 
in daily macroscopic phenomena, the second term in the 
right hand side of Eq. (14) can be neglected and the 
Fourier law becomes valid, thus the heated system 
gradually thermalize becoming isothermal and following 
any temporal variation of the heat flux imposed upon it. 
But for characteristic times approaching the relaxation 
time or shorter than it, the system cannot follow the 
imposed temporal changes and it behaves like a low-pass 
filter responding only to the mean value of the heat flux. 
This result can be better explained if we consider heating 
by an harmonic heat flux on the sample surface, instead of 
the above analyzed pulsed flux, as we will seen in the 
following paragraph. 

 
 

V. CHARACTERISTIC SCALES: HARMONIC 
HEAT SOURCES 
 
Consider an isotropic homogeneous semi-infinite solid, 
whose surface is heated uniformly by a source of 
periodically sinusoidal modulated intensity 
I0(1+cos(ωt))/2, where ω=2πf is the angular modulation 
frequency, and t is the time. The temperature distribution 
T(x,t) (without loss of generality we will also consider the 
one dimensional situation) within the solid can be obtained 
by solving the homogeneous heat diffusion equation (15) 
with the boundary condition 
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which express that the thermal energy generated at the 
surface of the solid is dissipated into its bulk by diffusion. 
The solution of interest for the problem described by the 
above equations can be proposed as: 
 

                    ( ) ( ) ( )[ ]tixtxT ωexpRe, Θ= .            (18) 
 
Substituting in Eq. (15) we obtain 
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where 
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and  
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Two limiting cases can be examined.  

First, for ω<<ω l we have 
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where 
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The general solution of Eq. (19) has in this case the form 
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describing a well known attenuated plane thermal wave 
whose characteristics have been described in detail 
elsewhere [12] and which play a very important role in the 
very exciting field of photothermal phenomena and 
techniques [5, 12]. This is the same solution one obtains 
when solving the parabolic heat diffusion, as one can 
demonstrate in a straightforward manner by substituting 
Eq. (18) in Eq. (2). In this case one obtains also for the 
wave number the result given by Eq. (22). More details 
can be found for example in our recent published work [5]. 
Thus, when thermal waves are excited by intensity 
modulated heat sources we may consider that for low 
frequencies such that ω<<ωl the parabolic approach is 
valid. This case represents a mode similar to that described 
above for τc>>τ, through which the heat generated in the 
sample is transferred to the surrounding media by diffusion 
at a rate determined by the thermal diffusivity. The thermal 
diffusion length (for periodical excitation), µ, gives the 
distance at which an appreciable energy transfer takes 
place and it is known also as a thermal diffusion length, 
with a physical significance similar to that of μt in time 
domain.  

It is worth to notice that the time constant τ in 
condensed mater is related to the phonon relaxation time, 
which is in the picosecond range, so that the limiting 
frequency becomes about ωl=1012Hz. As typical 
modulation frequencies in photothermal techniques are far 
beyond this value, then the use of the parabolic heat 
diffusion equation is sufficient for the analysis of the 
experimental results, what is advantageous when 
characterizing systems of small dimensions such as the 
recent developed colloidal suspensions of nanoparticles, 
the so called nanofluids, as described recently [13]. 

On the other hand, for ω>>ω l, the wave number 
becomes 
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and the solution of Eq. (19) is  
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i.e., an harmonic thermal wave traveling at a given 
frequency without attenuation and with the velocity u. This 
case, discussed in more detail elsewhere [12] represents a 
form of heat transfer which takes place through a direct 
coupling of vibrational modes (i.e. the acoustic phonon 
spectrum) of the material. The velocity u is then related to 
the velocity of propagation of the heat carriers, i.e., to the 
velocity of sound in a medium. At these high frequencies 
(short time scale) ballistic transport of heat can be 
dominant and of importance at the nanoscale. In other 
words, for τc<<τ=1/ω and/or ω>>ωl=1/τ the media 
becomes non-dispersive for the heat flux, analogous to 
what happens with electromagnetic waves in the case of a 
non-dispersive medium, i.e. a medium with negligible 
electrical conductivity as a vacuum (for electromagnetic 
waves in an electrical conductive medium such as a metal 
one can define the skin depth, analogous to the thermal 
diffusion length).  

Characteristic lengths are then of the order of Λm=uτ, 
i.e., of the mean free path of the phonons, the average 
distance a phonon travels between successive collisions. 
This determines the other important characteristic 
dimension when dealing witch heat transport phenomena 
and it is involved in the transition between diffusive and 
ballistic heat transport regimes. If the mean free path is 
much shorter than the characteristic length, the Fourier law 
is valid locally. If not, non-local effects must be taken into 
account. It is worth to notice that when the dimensions of 
the system are comparable with the phonon wave length 
the heat transfer can be quantized and a quantum of 
thermal conductance can be defined, representing the 
maximum possible value of energy that can be transported 
by phonon mode at a given temperature, as has been 
discussed by Schwab et al [14]. This is a very interesting 
and actual theme that is behind the scope of the present 
work.  

On the other hand, quantum mechanics shows that the 
mean free path is a function of the phonon frequency [15]. 
Low-frequency phonons have large mean free paths and 
vice versa. At high temperature one defines an average 
mean free path. Therefore, as discussed by Cahill et al [16] 
and more recently by Wautelet and Duvivier in the 
framework of nanoscale thermal transport [17], the 
temperature, the basic parameter of Thermodynamics, may 
not be defined at very short length scales but only over a 
length larger than Λm since its concept is related to the 
average energy of a system of particles. ¿What is then the 
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size of the regions over which a local temperature can be 
defined? The above mentioned authors state that as the 
mean free path is in the nanometer range for many 
materials at room temperature, systems with characteristic 
dimensions below about 10 nm are in a non-
thermodynamical regime, although the concepts of 
thermodynamics are often used in the description of heat 
transport in systems with these dimensions. To the author 
knowledge there is no a comprehensible and well 
established way yet to solve this very important problem 
about the definition of temperature in such systems.  

The discussed characteristic scale parameters are 
summarized in Table I. 

 
 

TABLE I. Characteristic dimensions in heat transfer. 
 

Parameter Brief description 
 

R Particle radius or typical dimension of 
the physical system 

tt αμ 2=  Effective thermal diffusion length (in the 
time domain, for pulsed heating) 

α
τ

2R
C =  

Thermal time constant for a system of 
dimension R 

ω
αμ 2

=  
Thermal diffusion length (in frequency 
domain, for periodical heating) 

τ (Phonon) relaxation time or build on 
time for the heat flux after a temperature 
gradient is imposed on a sample. 

Λm Phonon mean free path 
ωl = 1 / τ Cut off frequency between diffusive and 

ballistic heat diffusion regimes in the 
case of harmonic heat sources. 

 
 
 

VI. CONCLUDING REMARKS 
 
One can conclude by analyzing the characteristic time and 
length scale parameters of a physical system showed 
above, that the limits of the macroscopic approach to heat 
transfer appear when they become comparable with the 
phonons relaxation times and mean free path, respectively. 
Controversial aspects of the heat transfer at reduced 
dimensions have been analyzed in the last years by several 
authors. However, no definitive, clear explanation of the 
involved physical mechanisms has been offered so far. But 
the phenomenological aspects described here suggests the 
possibility of dealing in advanced or introductory physics 
courses with concepts related to heat transfer applied to 
systems of reduced dimensions, which appear in the 
growing fields of nanoscience and nanotechnology, 
moletronics, mesoscopic systems, among others. We feel 
that the approach presented in this study will aid in 
opening the literature associated with this theme to 
teachers and students.  
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