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I. INTRODUCTION 
 
The broad aim of physics is to understand and explain 
various physical phenomena occurring in nature/laboratory 
through observation, experimentation and theoretical 
formulation. Well known examples of physical processes 
are the motion of planets around the sun, evaporation of 
water, sound emission from a tuning fork, refraction of 
light, attraction of iron by magnets, discharge of an 
electrical capacitor, decay of the pi meson, etc. Whenever 
we observe any physical phenomenon, or perform any 
experiment to measure some physical quantity or 
formulate a theory to explain the same, we always land up 
at a number or a set of numbers. For example, if you 
observe the motion of a planet around the sun you may be 
interested to quantify its angular velocity, radius of the 
orbit, time period of the revolution, etc and these quantities 
are obviously numbers. Similarly, you may easily 
convince yourself that the several other examples cited 
above can also be characterized by numbers. Now as will 
become clear in the sequel the outcomes of the 
measurements are never absolutely precise [1, 2] due to 
various limitations of the apparatus/experimenter/adopted-
method and that is why one is neither able to reproduce it 
nor two or more measurements arrive at the same value. 
The variation in the values is caused due to the limitation 
of the instrument being used since it cannot measure a 
particular reading more precisely than the least count of 
the instrument; this is termed as errors of observations. 
The aim of the present paper is to focus attention on the 
classification, calculation and importance of these errors of 

observations. Our emphasis here will be to provide a 
working recipe to the undergraduate students which will 
enable them to carry out their laboratory work without a 
prior exposure to the statistical theory of errors as given by 
Gauss [3]. 
 
 
II. CLASSIFICATION 
 
Suppose a group of five students is asked to find the 
density of a given copper wire using separate balances, 
meter scales and screw gauges. Let the numbers for the 
density (in gm/cm3) reported by them be 
 

        8.2, 5.0, 8.39, 8.894, 9.1 .                    (1) 
 

The fact that these figures differ among themselves is to be 
attributed to the following classification of errors. The 
number 5.0 gm/cm3 obviously arose from a mistake on the 
part of the observer since it is quite far from the standard 
value [4], viz. 8.96 gm/cm3. Next the numbers 8.2 and 8.39 
suffer from the so called instrumental error (or systematic 
error) which is associated with an improper calibration of 
the apparatus employed. Finally, the numbers 8.894 and 
9.1 differ slightly from the standard value on account of 
what are known as errors of observations (or statistical 
errors). These arise due to the inherent limitations of the 
instruments as well as student’s power of observing and 
judging as elaborated below. 

In the case under study, the length measurement on the 
meter scale and diameter measurement on screw gauge 
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have been done by observing scale readings, assuming that 
the mass of the wire has been obtained with a physical 
balance using the null method. Now an average student 
cannot have a too sharp observational ability and 
sometimes a scale may be read at an oblique angle rather 
than at right angle as desired. Therefore, a graduation 
should be reported by quoting the least count of the 
instrument as the error of observation [5, 6]. For example, 
in the case of copper wire of interest a student may 
conveniently report its length as 1.07.8 ±  cm using a 
meter scale. As far as the mass measurement via the null 
method using a physical balance is concerned it is 
convenient to take the lowest fractional weight used as the 
least count. 
 
 
III. ERROR IN DENSITY 
 
You may now ask that if the least counts in the 
measurement of length , radius r and mass m of the wire 
are denoted by , rδ δ  and δm, respectively, then how to 
get the error of observation δρ associated with the density 
 

2
m

r
ρ

π
=  .                                   (2) 

 
To answer this, let us try a first guess by taking the 
logarithmic derivative 
 

δδδ
ρ
δρ
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r

r
m
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Now, it may happen that in a given experiment the value 
of m, r and  along with their δ’s may be so arranged that 
by accident the right side of the above equation almost 
vanishes. Such an accident [7], obviously, is the outcome 
of the various minus signs involved in Eq. (3) and it by, by 
no means, implies that the density measurement was very 
precise. Hence, the above guess should be modified by 
taking the absolute magnitudes of each term on the right 
hand side so as to determine the maximum possible error 
that could have been committed in the given experiment. 
In other words, the correct expression for the desired error 
in density is  
 

⎥⎦
⎤

⎢⎣
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r
m
m 2 .               (4) 

 
As a numerical illustration, if the input mass, radius and 
length values along with their least counts were 
( )005.078.0 ±  gm, ( )001.0057.0 ±  cm and 
( )1.07.8 ±  cm, then you may readily verify that 
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     [ ]0115.00351.00064.0784.8 ++=  ,       (5a) 
 

47.00530.0784.8 =×=  gm/cm3 .         (5b) 
 
The physical significance of δρ is that it is a measure of the 
uncertainty in the value of the density in such a way that, 
with a fairly high degree of confidence [8], the unknown 
density would lie in the interval ρ+δρ and ρ-δρ 
i.e., 3.93.8 << ρ  gm/cm3. Following the guideline 
mentioned by Resnick and Halliday [9] we have kept more 
significant figures [cf. Eq. (5a)] in the intermediate steps 
than permitted in order to keep the precision in the final 
result. If it is rounded off at every step, this would result in 
reduced precision in the final result.  
 
 
IV. RADIUS OF TUNGSTEN FILAMENT 
 
Here is a case where the radius of wire has to be measured 
with more precision. The wire used in the fabrication of 
incandescent lamps is known as filament which is 
basically tungsten metal. Its radius is measured in mils 
which is related with centimeter as follows 
 

1 mil = 0.00254 cm .                            (6) 
 
Some typical radii of various wattages of filament lamps 
[10] are listed in Table I. 
 
 
TABLE I. Typical radii of various wattages of tungsten filament 
lamps. 
 

Wattage (Watt) Radius of the 
filament (mil) 

Radius of the 
filament (cm) 

10 0.32 0.000815 
100 0.80 0.00203 

1000 5.35 0.01359 
10000 23.00 0.05842 

 
 
The above table shows that one has to achieve precision up 
to five decimal places in fabricating the filaments for 
incandescent lamps. This precision cannot be achieved by 
any micrometer. The most satisfactory way to find the 
radius of such wires is to weigh a measured length. If w  
gm is the weight of the tungsten filament of length  cm 
then 
 

w
r

πρ
=  .                                   (7) 

 
For applying this method [11] the density ρ of the tungsten 
metal should be known with high precision. This was 
determined using X-rays beam on single crystal of 
tungsten as 02.032.19 ±  gm/cm3. Now let us examine 
the inherent precision of this method of finding the radius 
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of the filament by taking the logarithmic derivative of the 
expression in Eq. (7) 
 

1
.
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w w
r

w

δ δρ δ
δ

πρ ρ
= + +

⎡ ⎤
⎢ ⎥⎣ ⎦

 .                 (8) 

 
Let us consider a hypothetical case with the following data 
for this experiment 
 

( ) 0.095 0.001Weight of the filament w = ±  gm, 
 

( ) 40.3 0.1Length of the filament = ±  cm, 
 

( ) 19.32 0.02Density of tungsten ρ = ±  gm/cm3.   (9) 
 
Substitution of these values in the expression (8) gives 
 

0.00623 0.001 0.02 0.1

2 0.095 19.32 40.3
rδ = + +

⎡ ⎤
⎢ ⎥⎣ ⎦

, 

 
( )0.00311 0.01053 0.00104 0.00248= + + , 

 
0.00311 0.01405= × , 

 
0.00004=  cm .                       (10) 

 
This is the desired precision required for the radius of 
tungsten filament in the fabrication of incandescent lamps 
as evident from some typical values given in Table I. 
 
 
V. POWER RADIATED FROM TUNGSTEN 
FILAMENT 
 
The examples cited so far were supported by hypothetical 
data. Now we report a case where the actual data are 
available for demonstrating the role of errors of 
observation. This is the value of power radiated W by 
tungsten filament per unit area over the temperature range 
273-3655 deg. K obtained by Jones [11], Jones and 
Langmuir [12], Zwikker [11], and Forsythe and Worthing 
[11] and presented in Table II. In their experiments 
basically V-shaped tungsten filaments having length ( )  
50 cm, diameter ( )d  2.61 mils and resistance 243.7=R  
ohms were mounted in lamp bulbs and the energy radiated 
W’ over the temperature range 273 to 3655 deg. K were 
measured. Thus the reported value of radiated power 
satisfies the relation 
 

W
W

dπ

′
=  Watt/cm2 .                      (11) 

 
 

TABLE II. The radiation data from tungsten filaments having 
length  cm and diameter d cm in the temperature range 273 to 
3655 deg. K. The results of experiments performed by Jones [11], 
Zwikker [11], Forsythe and Worthing [11], and Jones and 
Langmuir [12] quote the values of power radiated W  in the 
units of Watts per square centimeter. The dimensions of the 
filaments were measured at 293 deg. K. 
 
 
 
Temperature 

(K) 

 
Jones 

W 

 
Zwikker 

W 

Forsythe 
and 

Worthing 
W 

Jones and 
Langmuir 

W 

273 0.0 …………. ………..  
293 0.0 ………… ………… 0.0 
300 0.000016 ……………. - 0.000032 
400 0.00197   0.00199 
500 0.00970   0.0097 
600 0.0304   0.0304 
700 0.0764   0.076 
800 0.169   0.169 
900 0.331   0.3314 

1000 0.602   0.6019 
1100 1.030   1.026 
1200 1.67 1.70 1.70 1.658 
1300 2.58 2.70 2.60 2.566 
1400 3.86 3.94 3.86 3.823 
1500 5.54 5.52 5.61 5.516 
1600 7.77 7.90 7.86 7.741 
1700 10.6 10.7 10.73 10.59 
1800 14.2 14.1 14.46 14.18 
1900 18.6 18.6 18.6 18.61 
2000 23.9 24.0 24.1 23.99 
2100 30.3 30.5 30.4 30.46 
2200 37.9 38.2 38.1 38.13 
2300 46.8 47.2 47.0 47.17 
2400 57.3 57.3 57.0 57.68 
2500 69.2 69.4 69.2 69.81 
2600 83.0 83.5 83.0 83.72 
2700 98.8 100.5 98.9 99.54 
2800 116.7 119.0 116.5 117.4 
2900 137.2 139 136.5 137.6 
3000 160.1 162 159.6 160.3 
3100 186.1 189 184.2 185.6 
3200 215.0 221 211 213.7 
3300 247.6 254 242 245.0 
3400 284.0 291 276 279.6 
3500 325.0  314 317.7 
3600 371.0   359.7 
3655 399.4  376 382.6 

 
 

The variations in the values of power radiated W Watts per 
square centimeter mentioned in columns 2, 3, 4 and 5 can 
be explained by calculating the errors associated with this 
particular method. For this we make use of the Planck’s 
radiation formula and rewrite the expression (11) as  
 

4
4d T

W T
d

σπ ε
σε

π
= = .                    (12) 
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Here σ is the Stefan-Boltzman constant and ε is the 
emissivity of tungsten filament at temperature T. Now we 
take the logarithmic derivative of this expression 
 

T
T

W
W δ

ε
δεδ 4

+= ,                         (13) 

 
which gives the error associated with value of W  as 
 

⎥⎦
⎤

⎢⎣
⎡ +=

T
TWW δ

ε
δεδ 4 .                       (14) 

 
The values of ε reported by Jones and Langmuir [12] [cf. 
Table III] throughout temperature range 273-3655 deg K 

do not quote the errors associated with its values. So we 
will take the value of error in ε  as one which enters due 
to rounding of the result. For example, the value of ε at 
1200 deg. K is quoted as 0.141 which signifies that if its 
value were either 0.14051 or 0.14149, in both cases when 
it is rounded off to three significant figures its value will 
be 0.141. So the error that enters into the value of ε at 1200 
deg. K will be 0005.0± . The evaluation of error δT 
associated with the measurement of temperature has been 
carried out by Dmitriev and Kholopov [13] in the 
temperature range 900-3200 K but we take their values in 
the temperature 1200-3200 K [cf. Table III] since radiation 
measurement data  of all the four experiments are available 
in this range. 

 
TABLE III. Calculation of W and Wδ  using the formulae (12) and (14) in the temperature range 1200-3200 deg. K. The corresponding 
experimental values of Planck’s radiation are compared with range W Wδ+  toW Wδ−  and those experimental values which lie outside this 
range or superscripted by a star. 
 

 
Temperature 

(K) 

 
Emissivity 

ε  

 
δT 

[cf. Ref. 12] 

 
Theoretical 

value 
W Wδ±  

 
Jones 

W 

 
Zwikker 

W 

Forsythe 
and 

Worthing 
W 

 
Jones and 
Langmuir 

W 
1200 0.141 2.0 1.66±0.02 1.67 1.70* 1.70* 1.658 
1400 0.175 1.5 3.81±0.03 3.86* 3.94* 3.86* 3.823 
1600 0.207 2.1 7.69±0.06 7.77* 7.90* 7.86* 7.741 
1800 0.237 2.7 14.11±0.11 14.2 14.1 14.46* 14.18 
2000 0.263 3.6 23.86±0.22 23.9 24.0 24.1* 23.99 
2200 0.285 4.8 37.86±0.40 37.9 38.2 38.1 38.13 
2400 0.304 6.0 57.19±0.67 57.3 57.3 57.0 57.68 
2600 0.320 7.4 82.91±1.07 83.0 83.5 83.0 83.72 
2800 0.334 9.1 116.4±1.7 116.7 119.0* 116.5 117.4 
3000 0.346 10.8 158.9±2.5 160.1 162* 159.6 160.3 
3200 0.357 12.9 212.3±3.7 215.0 221* 211 213.7 

 
 
 
Now we turn to the calculation of theoretical values of W 
and Wδ  by making use of the formulae (12) and (14) 
using the quoted values of ε  and Tδ  in Table III in the 
temperature (T) range 1200-3200 K and taking 

121067.5 −×=σ Watt/cm2K4 and 0005.0=δε . The 
theoretical values so obtained are mentioned in column 
four of the Table III. The theoretical range WW δ+  to 

WW δ−  provide the width inside which the 
experimental results should lay otherwise either the errors 

Wδ associated with experimental parameters δε  and 
Tδ are not true or something is wrong with the theory. 

This comparison has been carried out in Table III and 
• a star is superscripted on those experimental 

values where it is outside the range but at higher 
side. 

• two stars are superscripted on those experimental 
values where it is outside the range but at lower 
side. 

This comparison leads us to the following observations. 
• In the temperature range 1200-1600 deg. K the 

values [11] reported by Jones, Zwikker and 

Forsythe and Worthing lie outside this range 
whereas values obtained by Jones and Langmuir 
[12] are consistent with the theory. 

• In the temperature range 1800-2000 the values 
reported by Forsythe and Wothing [11] only are 
not consistent with calculation. 

• In the temperature range 2800-3200 only the 
Zwikker [11] findings lie beyond the range. 

• In all the above observations the values are at 
higher side. Not a single case is seen where it is 
below the range. 

• In the temperature range 2000-2600 the findings 
of all the four experiments are within the 
experimental error limit. 

The above observations guide us that either there is 
something wrong with the theory or the values of errors 
δε  and Tδ  associated with the measurements of 
emissivity and temperature, respectively are not true. It is 
well known that the theory of Planck’s radiation cannot be 
doubted and also we cannot comment on the reported 
values of emissivity. This leads we to conclude that the 
uncertainty Tδ  in the measurement of temperature should 
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have been somewhat large compared to the marginal 
values reported by Dmitriev and Kholopov [13] [cf. Table 
III]. In fact, Mee, Elkins, Fleenor, Morrison, Sherill and 
Seiber [14] have reported this uncertainty to be as large as 

5.20±  K. The calculations were repeated taking this 
value for Tδ  and the resulted range WW δ+  to 

WW δ− demonstrate that all the measured values by 
Jones [11], Zwikker [11], Forsythe and Worthing [11], and 
Jones and Langmuir [12] are now consistent with the 
theory. The values so obtained are not reported here and it 
is left as an exercise for the students. 
 
 
VI. SINGLE AND MULTIPLE OSERVATIONS 
 
The above was an example of the so called single 
observation composed of a set of variables measured once 
to determine a desired quantity in the laboratory. Such a 
situation often arises either because the student has to 
finish an experiment in one practical class of generally two 
hours duration or the researcher does it in his laboratory 
and the observations are not repeated. The latter case arises 
for example when temperature of a cooling object is 
recorded as a function of the time because at any given 
instant only one reading of the thermometer can be taken. 

However, in many situations multiple observations are 
allowed, e.g. when the student is permitted to repeat the 
above mentioned density experiment or the thermal 
radiation measurements carried out by the four well known 
scientists over large sequence of the experiments. If s  is 
the observable of our interest and 

1 1 2 2, , ....., n ns s s s s sδ δ δ± ± ±  are the individual 
values of the interest along with their errors, then it is 
convenient to introduce the mean value s  of it and the 
associated error sδ  given by 
 

∑
=

=
n

i

i

n
s

s
1

                                 (15) 
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Theoretically speaking, this s  is more reliable estimate of 
the unknown quantity of our interest because the error of 
observations sδ  tends to zero as n goes to infinity 
provided the nsss δδδ ,......, 21  are regarded as 
independent random variates. The above finding may be 
generalized to other observables to serve as readymade 
recipes to any student for calculating error of observations 
in the practical class even if the student has not been 
taught either the physical significance of the said 
observables or the formal theory of errors. 

VII. UTILITY OF ERRORS 
 
Knowledge of the possible error associated with a quantity 
is of great importance not only in academic line but also in 
day-to-day life. This fact will be elucidated under four sub-
headings which will serve dual objectives: firstly, one will 
be able to refresh one’s memory regarding some 
theoretical/experimental facts known to him/her and 
secondly one will enjoy learning some new facts which 
one might not have come across earlier. 
 
 
A. Ascertaining relative importance of variables 
 
● A glance at equations (4, 5) for the statistical error 
shows that every involved variable contributes its own 
relative error in additive manner with appropriate 
coefficient. These coefficients represent the powers carried 
by the concerned variables in the expression of the 
observable. For example, the coefficient 2 before rrδ  
[cf. Equation (4)] arises because the density of the wire 
depends on the radius through 2r . In the present case the 
relative errors contributed by the mass, radius and length 
[cf. equation (5)] are 0.64%, 3.51% and 1.15%, 
respectively, totaling to 5.3%. Therefore, a student knows 
which variable gives maximum contribution to the error in 
his experiment and hence which variable should be 
measured with more sensitive instrument in order to 
increase the reliability of the final result. 
● Referring back to the set of numbers equation (1) it is 
noticed that different students have quoted their results for 
density up to varying number of decimal digits. Naturally, 
one may ask a genuine question as to what should be the 
criterion to decide on the number of digits which should be 
retained after the decimal point. This criterion is fixed by 
the value of error of observations. To understand this let us 
look at the numerical illustration [cf. Equation (5)] in 
which the error of observation was found to be 0.47 which 
may be rounded off to 0.5. Therefore, the value of density 
of wire may be quoted up to one digit after the decimal 
place, viz 5.08.8 ±  gm/cm3 because although there is 
uncertainty at the first decimal place the most probable 
digit in the ρ at the first place is 8. We say that final value 
of the desired quantity in the present experiment has two 
significant figures [15, 16, 17, 18, 19, 20]. 

 
 

B. Cases where theory needs refinement 
 
● Next, knowledge of the error of observations can often 
tell us whether a proposed theory needs improvement. For 
example, consider the problem of determining the 
acceleration due to gravity g. Its theoretical value in terms 
[21] of the gravitational constant G, mass of the earth M, 
and mean radius of the earth R is known to be 

 



D. C. Agrawal and V. J. Menon 

Lat. Am. J. Phys. Educ. Vol. 4, No. 1, Jan. 2010 72 http://www.journal.lapen.org.mx 
 

 
( )28

27238

2 )(1037.6
)(1098.5)(1067.6

cm
gmscmgm

R
GMgtheory

×

×⋅⋅×
==

−−
, 

(17a) 
 

                                    =983 cm/s2 .                           (17b)  
 
● Suppose that its experimental measurement with the help 
of a Kater’s pendulum at a given spot yields 

25975 −⋅±= scmg theory
. Since theoryg  lies outside the 

experimental error bars hence an improvement of theory is 
called for by incorporating corrections due to local 
hole/mass distribution around that spot, non-spherical 
shape of the earth, etc. As another example, let us take the 
case of spectrum of alkali atoms which should have been 
hydrogen-like but the precise measurements of the energy 
levels within an accuracy of 10-4 eV reveals a fine 
structure. To explain this experimental finding one has to 
incorporate the effect of spin-orbit coupling in the theory. 

 
● As a historically interesting illustration [5], we may 
recall the observation made by Lord Rayleigh in 1894. 
Whereas a liter of nitrogen derived from the air weighed 
1.2572 gm, an equal volume of nitrogen prepared from its 
compounds weighed only 1.2506 gm. This apparently a 
small difference was, however, beyond the limit of 
experimental error involved and a series of elaborate 
experiments attributed it to the presence of an unknown 
element viz argon in the air. 

 
 

C. Cases where experiment needs refinement 
 
● Let us look from another angle at the above example of 
determining g. If the measurements were performed using 
a simple pendulum the accuracy would have been poorer; 
for instance one could find 2

exp /)80980( scmg t ±= . 
Since in this case tg exp  and theoryg  have obvious overlap 
the experiment does not provide any evidence against the 
theory. However, the existence of terms representing finer 
details of the theory of g can be ascertained by doing more 
precise experiment using Kater’s pendulum as mentioned 
earlier. As a further illustration consider the well known 
theoretical prediction that elementary particles and their 
anti-particles such as electron and positron will have 
exactly the same mass i.e. +− = ee mm . If an experiment 
could be devised to measure the relative mass difference 
( ) −+− − eee mmm  and a non-vanishing value within an 
accuracy of one part in a million was found then it would 
lead to revision of the theory. 
● As a last example we may mention the phenomenon of 
bending of light [22] by gravitational refractive effect 
produced by massive objects. Einstein’s general theory of 
relativity predicts that the stellar light passing near the 
sun’s edge would bend by 1.7’’. To measure this tiny 
effect, and thereby to confirm the theory, experiments 
during solar eclipses had to be refined progressively so 

that the error of observation could be brought down to 
about one percent. 

 
 

D. Utility in practical life 
 
● The concept of error or uncertainty plays a role in 
everyday life as well. For instance, if a car manufacturer 
specifies that upon applying the brakes the vehicle will 
come to halt within a distance of m2030 ±  then you will 
clearly not go for such a car. On the other hand, if a 
parachute manufacturer tells that the landing speed of the 
parachute will be sm /5.05.1 ±  then you would like to 
purchase such an item. This is because you know from 
your experience that if you jump without any aids from a 
height h=1m then the landing speed, viz. 
( ) smgh /42 ≈  is safe enough for the human body. 
It is hoped that this much background will be sufficient 

for motivating students to start physics practical in the 
laboratory even if the prior theory of the experiment  or the 
distribution theory of errors has not been taught 
beforehand. 
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