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Abstract 
Exact analytic solution of the Schrödinger equation is reported for the newly constructed multiterm quantum 
mechanical potentials generated from the already solved sextic and dectic anharmonic potentials using the extended 
transformation method.  
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Resumen 
Se reporta una solución analítica exacta de la ecuación de Schrödinger para la nueva construcción de potenciales 
multitérmino de la mecánica cuántica generados a partir de los ya resueltos potenciales sexticos y décticos 
anarmónicos utilizando el método de transformación extendida.  
 
Palabras clave: Potencial exactamente resuelto, ecuación de Schrödinger, transformación extendida. 
 
PACS: 03.65.Fd; 03.65.Ge                                                                                                                      ISSN 1870-9095 

 
 
 

I. INTRODUCTION 
 
The exact solution of the non-relativistic Schrödinger 
equation for physically relevant potentials for different areas 
of physics and chemistry has attracted much attention of the 
physicist. Considerable effort [1, 2, 3, 4] has been made in 
order to obtain exact solution of the Schrödinger equation for 
the potential of physical interest. We obtain here a class of 
exactly solved potentials which are generated from the 
already exactly solved sextic and dectic anharmonic 
potentials using extended transformation [5, 6, 7, 8] method. 
The exactly solved potentials of the Schrödinger equation 
consist of bound state energy eigenfunctions and 
corresponding quantized energy eigenvalues. For each 
solution, an interrelation between the parameters of the 
potential and the orbital angular momentum quantum 
number has to be satisfied. The method of generation of 
exactly solved quantum systems is based on a transformation 
called the extended transformation (ET) that includes a 
coordinate transformation followed by a functional 
transformation and a set of plausible ansatze.  In multiterm 
potential ET may be applied repeatedly by selecting the 
‘working potential’ from the multiterm potential to generate 
a variety new quantum systems (QS) except for one which 
revert it back to the parent QS. A very useful property of the 
transformation method one should note is that the 
wavefunctions of the generated QSs are almost always 
normalizable. Normalizability of the eigenfunctions of the 

generated exactly solved potential (ESP) is essential as 
without this property the ESP cannot be used in quantum 
mechanical problem. 
 
 
II. FORMALISM 
 
 
A. Generation from sextic power potential 
 
The radial part of the Schrödinger equation for a solved 
quantum bound state problem denoted by A-QS in three-
dimensional spaces ( 12 == m ) is given by 
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The potential of A-QS is doubly anharmonic sextic potential 
and is expressed as: 
 

                         ( ) 246 crbrarrVA ++=  .                          (2) 
 
The constraint equation between the parameters of the A -QS 
potential and angular momentum quantum number Al is 
given by [9]: 
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The normalized energy eigenfunctions of the A-QS is as 
given by [9]: 
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The energy eigenvalues of A-QS are provided by [9]: 
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Applying ET to Eq. (1), this comprises of Coordinate 
transformation: 

 
                             ( )rgr B→ .                                   (6) 

 
Followed by a Functional transformation of the 
wavefunction: 

 
                   ( ) ( ) ( )( )rgrfr BABB Ψ=Ψ −1 ,                        (7) 

 
where ( )rBΨ  is the wavefunction of the transformed 
quantum system, henceforth called as B-QS. 
This leads to following equation: 
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The dimension of the Euclidean space of the transformed QS 
can be arbitrarily.  Let it be denoted as D. This yield: 
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this fixes ( )rfB . 
 Integrating 
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Where Nln2− is integration constant. This gives, 
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The transformed equation for B-QS changes to: 
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To bring the second degree differential equation (12) to the 
standard Schrödinger equation form we make the following 
ansatze by selecting the working potential ( ) 2cggV W

A = : 
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Eq. (14) yields, 
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Which satisfies the local property ( ) 0=rg , by putting the 
integration constant equal to zero. 

Now Eqs. (15) and (16) lead to B-QS potential  
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The parameters of the potential are: 
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Where 2

BC  is the characteristic constant of B-QS. It plays the 

same role as 2Ze− in case of Coulomb and 2
2
1 ωm in case of 

harmonic Oscillator system and 
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The constraint equation B-QS is found as: 

 

0
2

1

1

1
1 =⎟

⎠
⎞

⎜
⎝
⎛ −

++
Dl

C
BA B .                      (22) 

 



Exactly solvable quantum mechanical systems generated from the anharmonic potentials 

Lat. Am. J. Phys. Educ. Vol. 4, No. 1, Jan. 2010 81 http://www.journal.lapen.org.mx 
 

 
 
The energy eigenvalue of B-QS from Eq. (20) comes out to 
be: 
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The corresponding energy eigenfunction is obtained from 
equation (7) as: 
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B. Generation from dectic power potential 
 
To construct another new class of exactly solved quantum 
system we have applied our formalism on an already exactly 
solved central dectic power anharmonic potential and are 
given by [10]:  
 

                 ( ) 108642 erdrcrbrarrVA +−+−=  .               (25) 
 
The eigenfunction for the dimensionless Schrödinger 
equation for the above potential can be read as [10]: 
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The parameters a , b , c , d , e and angular momentum 
quantum number Al  are related to α , β  and λ by the 
following set of equations: 

 
                              alA =−− ββα 322 ,                             (27) 

 
                             blA −=−+ αβλλ 225 ,                           (28) 

 
                                  c=+ αλβ 22 ,                                  (29) 

 
                                 d=βλ2 , e=2λ .                               (30) 

 
The corresponding energy eigenvalues of the dectic 
anharmonic QS is given by [10]: 
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To implement ET, we have selected ( ) 2aggV w

A =  as the 
working potential and the transformation function is found  
as 
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The corresponding modified Eqs. (15) and (16) lead to  
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The parameters of the potential are connected by the 
following two constraint equations: 
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The energy eigenvalue of B-QS is found as: 
 

      ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

+
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−=

2

3

2

2
3

2

2
3

2

4

2
2

82 β
β

β

β
β
β DlE B

B  .                (41) 

 
The corresponding energy eigenfunction of B-QS can be 
obtained from equation (7) and is 
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FIGURE  1. The curves are for the B-QS ( ) ( ){ }000 ,, BBB ErrV Ψ  in 
generated from the sextic potential, where the parameter set is 

75.2;0;1;1;1 0111 ===−== BB ElCBA . 
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FIGURE 2. The curves are for the B-QS 

( ) ( ){ }1B1B1B E,r,rV Ψ  generated from the sextic potential, 
where the parameter set is 

75.4;1;1;1;2 1111 ===−== BB ElCBA . 
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FIGURE 3. The curves are for the B-QS 
potential ( ) ( ){ }222 ,, BBB ErrV Ψ  generated from the sextic potential, 
where the parameter set is 

75.6;2;1;1;3 2111 ===−== BB ElCBA . 

 
 
 
 

III. NORMALIZABILITY OF THE GENERATED 
QUANTUM SYSTEMS 
 
The normalizability condition of the generated wavefunction 
of the bound state QS obtain by the extended transformation 
can be proved under fairly general condition, as it seems to 
preserve the normalizability property to a quite a good 
extent. Normalizability condition for −D dimensional B-QS 
eigenfunction is: 
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This can be reduced to 
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Hence the entire ( )rBΨ  are normalizable for .0≠BE  For any 
physical QS, ( )rVA exists ensuring normalizability of 
daughter B-QS. As such, the wavefunction of the generated 
QS are always normalizable corresponding to a non-null 
eigenvalues, when the wavefunction of the parent QS are 
normalizable. 
 
 
IV. CONCLUSIONS  

 
We deal with the Schrödinger equation with some central 
anharmonic potential in arbitrary dimensional spaces for 
radial wavefunctions through a simple mapping procedure. 
We have obtained a class of exactly solved potentials for the 
Schrödinger equation which may find applications in 
different branches of Physics and Chemistry. The 
eigenfunctions are normalizable for must of the cases and 
bound state energy eigenvalues spectrum are found. The 
constraint equation relating the parameters of the potentials 
and angular momentum quantum numbers have been 
obtained for different potentials. In quantum multiterm 
potentials it is possible to generate a finite number of 
different exactly solved quantum systems by selecting the 
working potential, but we restrict ourselves to taking one 
term working potential for simplicity.  
 
 
REFERENCES  
 
[1] Roy, P. and Roychoudhury, R., On exact solutions of the 
doubly anharmonic oscillators, J. Phys. A: Math. Gen. 20, 
6597-6601 (1987). 
[2] Flesses, G. P. and Watt, A., An exact solution of the 
Schrödinger equation for a multiterm potential, J. Phys. A: 
Math. Gen. 14, L315-L318 (1981). 



Exactly solvable quantum mechanical systems generated from the anharmonic potentials 

Lat. Am. J. Phys. Educ. Vol. 4, No. 1, Jan. 2010 83 http://www.journal.lapen.org.mx 
 

[3] Coleman, S., Aspect of symmetry, selected Erice Lectures 
(Cambridge Univ. Press, Cambridge, 1988) p. 234. 
[4] Kaushal, R. S., On solving the Schrödinger –like wave 
equation in N-dimensions for generalized sextic and octic 
potentials, Modern Phys.Lett. 6, 383-389 (1991). 
[5] Ahmed, S. A. S., A transformation method of generating 
exact analytic solutions of the Schrödinger equation, Int. J. 
of Theoretical Phys. 36, 1893-1905 (1997). 
[6] Buragohain, L. and Ahmed, S. A. S., Generation of dual 
and self-dual quantum mechanical potential systems, Lat. 
Am. J. Phys. Educ. 3, 573-577 (2009). 

[7] Ahmed, A. S. and Buragohain, L., Generation of new 
classes of exactly solvable potentials, Phys.Scr.80, 1-6 
(2009). 
[8] Ahmed, S. A. S., Borah, B. C. and Sarma, D., Generation 
of exact bound state solutions from solvable non-power law 
potentials by a transformation method, Eur. Phys. J., D17, 5-
11 (2001). 
[9] Bose, S. K., Exact solution of non-relativistic 
Schrödinger equation for certain central physical potentials, 
Nouvo Cimento B, 113, 299-328 (1996). 
[10] Dong, Shi-Hai and Ma, Zhong-Qi, The exact solution to 
the Schrödinger equation with the octic potential, arXiv1: 
quanta-ph/9901037. 

 




