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Abstract 
In this work we present three energy converters which have the same efficiency under certain optimum conditions of 
performance. The first one is the well-known Curzon-Ahlborn finite-time heat engine. The second one is an infinite-
time cycle operating between two thermal bodies with finite heat capacities. The last case is a water mixer working as 
engine, which is designed with two stationary fluxes of water at different temperatures, T1 and T2, with only one exit, 
at temperature T, the specific heat capacity, c, is considered as a constant. The three converters under maximum power 
output, maximum work and maximum kinetic energy output, respectively, have the same Curzon-Ahlborn effiency, 
that is, 

12 /1 TTCA −=η , being T1 and T2 the extreme absolute temperatures involved in the performance of 
each converter. 
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Resumen 
En este trabajo se presentan tres diferentes convertidores de energía que tienen la misma eficiencia bajo ciertas 
condiciones óptimas de operación. El primero se trata de la ampliamente conocida máquina de Curzon-Ahlborn 
operando a tiempo finito. El segundo se trata de una sucesión de ciclos de Carnot operando entre dos cuerpos térmicos 
con capacidad calorífica finita. El último caso es una mezcladora de agua trabajando como máquina, la cual está 
diseñada con la entrada de dos flujos estacionarios de agua a diferentes temperaturas, T1 y T2, con una sola salida, a 
temperatura T, con calor específico, c,  que se toma como constante. Los tres convertidores bajo condiciones de 
máxima potencia de salida, máximo trabajo producido y máxima energía cinética obtenida, respectivamente, tienen la 
misma eficiencia conocida como de Curzon y Ahborn, cuya expresión es, 

12 /1 TTCA −=η , donde T1 y T2 son 
las temperaturas extremas absolutas involucradas en la operación de cada convertidor. 
 
Palabras clave: Termodinámica, operación óptima, Termodinámica de Tiempo-Finito. 
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I. INTRODUCTION 
 
In 1975 Curzon and Ahlborn [1] introduced a Carnot-like 
thermal engine in which there is no thermal equilibrium 
between the working fluid and the thermal reservoirs at the 
isothermal branches of the cycle. These authors 
demonstrated that such an engine produces nonzero power 
(contrary to the Carnot engine), and that the power output 
can be optimized by varying the temperature of the cycle’s 
isothermal branches. The efficiency under these conditions 
is 

1

21
T
T

CA −=η ,                                 (1) 

 
where T1 and T2 are the temperatures of hot and cold 
thermal reservoirs, respectively. This seminal paper led to 

the establishment of a new branch of irreversible 
thermodynamics, known as finite-time thermodynamics [2, 
3, 4, 5], which considers a macroscopic system as a 
network of systems working in cycles and exchanging 
energy in an irreversible manner. Thermodynamic 
optimization in finite-time thermodynamics has been quite 
fruitful due to its ability to provide realistic bounds to the 
performance parameters of a large number of natural and 
artificial energy-converting systems [3, 4, 5, 6, 7, 8, 9, 10, 
11]. Eq. (1) was obtained assuming that heat flows 
between thermal reservoirs and working fluid obey a 
Newton’s cooling law, so this result depends on the type of 
heat transfer law. If a different one is used Eq. (1) is not 
obtained [12, 13, 14]. In this work we present an engine 
where no specific law is considered for heat transfer in an 
explicit way however we also obtain Eq. (1). Then the 
question is, for what kind of systems Eq. (1) is universal?. 
In the present work we briefly discuss three energy 
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converters: A finite-time engine (CA-cycle), an infinite-
time engine and a water mixer, where the CA-efficiency is 
obtained in spite of they seemingly differ in basic aspects. 
 
 
II. CURZON AND AHLBORN THERMAL EN-
GINE 
 

  
 

FIGURE 1.  Curzon and Ahlborn thermal engine. 
 

 
In figure 1, it is shown a schematic drawing of Curzon and 
Ahlborn (CA) engine. There are two thermal reservoirs at 
temperatures, T1 and T2 (T1 > T2). During the isothermal 
expansion of the working substance, the substance must be 
colder than the heat source, that is T1W < T1. The same 
happens for isothermal compression, in that branch the 
substance gets a T2W (>T2) temperature. As it was 
commented before, CA assumed that heat fluxes through 
the vessel containing the working substance are 
proportional to the gradient of temperatures. In the 
isothermal expansion we therefore have 
 

)( 111 wTTQ −=
•

α ,                            (2) 
 
as the input heat. 

And, over the isothermal compression, heat rejected to 
the heat sink is 

 

),( 222 TTQ w −=
•

β                             (3) 
 
where, α and β are the thermal conductances, taken as 
constants, and the dots over sQ'  mean derivative respect 
to time. The power ( P ) of the engine is then given by the 
expression 
 

t
QQ

P 21 −= ,                                (4) 

 
being t the cycle’s period, and the efficiency of the cycle 
is, 

.
1Q

P
=η                                    (5) 

 
Curzon and Ahlborn found that under maximum power 
conditions the efficiency is given by, 

1

21
T
T

CA −=η . 

This expression is widely known as efficiency of Curzon 
and Ahlborn. 
 
 
III. INFINITE-TIME CYCLE 
 
In the previous section, Eq. (1) has been obtained for the 
Curzon and Ahlborn engine, working at maximum power 
output, under a finite time operation. This efficiency seems 
to be a characteristic of finite-time cycles; however, it is 
possible to find Eq. (1) for reversible cycles working at 
infinite-time. 

Let the next procedure be, we have two identical 
bodies with constant heat capacity, at T1 and T2 
temperatures, respectively ( 21 TT > ), now we operate a 
thermal heat engine between both of them. If the bodies 
remain at constant pressure and there are not phase 
transitions,  
 

)2( 21 fp TTTCW −+= ,                  (6) 
 

fT  is the final temperature of both bodies. In figure 2, it is 
shown a diagram of this process in an entropy vs. 
temperature diagram. 

After n Carnot’s cycles (small rectangles in the figure) 
the bodies at 1T  and 2T , initial temperatures acquire the 

same final temperature fT , at this state it is not possible to 
obtain any more work from this device. If we want to get 
maximum work, then it is necessary that universe entropy 
production vanishes, i.e. 0=Δ US . 
 
 

 
FIGURE 2. T-S diagram for heat thermal engine, working 
between two thermal bodies at constant pressure. 
 
 
Thus, 
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If Eq. (7) is solved for fT  we straightforward get that, 
 

21TTTf =  .                                 (8) 
 
Substituting Eq. (8) in (6), we obtain the maximum work 
 

( )2121max 2 TTTTCW p −+=  .                  (9) 
 
From efficiency definition, at maximum work, we have 
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                         (10) 

 
That is, the Curzon and Ahlborn efficiency, 
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is obtained by means of a sequence of reversible Carnot 
cycles. Now, it is important be aware that the entire cycle 
plotted in Fig. 2 is an irreversible cycle. 
 
 
IV. WATER POWERED MACHINE 
 
In figure 3 it is shown a self-contained machine with only 
two equal steady streams of hot and cold water at 
temperatures 1T  and 2T . Its only output is a single high-
speed jet of water. The heat capacity per unit mass of 
water, C , may be assumed to be independent of 
temperature.  
 

 
 

FIGURE 3. Water mixer. 
 

The machine is in a steady state and the kinetic energy in 
the incoming streams is negligible. The heat intake per unit 
mass of water is 
 

[ ]
2

)()( 21 TTCTTCQ −−−
= .              (11) 

 
Since the machine is in a steady state, due to energy 
conservation, 
 

Qv
=

2

2

,                              (12) 

 
where 2/2v  is the kinetic energy per unit mass. Giving 
 

)2( 21 TTTCv −+= .                     (13) 
 
Since the entropy increase is always positive, we therefore 
have, 
 

,0lnln
2
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From this we have 
 

21TTT ≥ .                           (15) 
 
Therefore, the maximum possible speed of the jet is given 
by 
 

)2( 2121max TTTTCvv −+=≤ .    (16) 
 
On the other hand, the efficiency for this energy converter 
is, 

( )
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             (17) 

And, finally we get 
 

.1
1

2

T
T

−=η                                 (1) 

 
That is, the same expression for the efficiency found by 
Curzon and Ahlborn, Eq. (1), but now we have a 
transformation of heat into maximum kinetic energy in a 
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steady state flux and there is not a thermodynamic cycle by 
itself. 
 
 
V. CONCLUSIONS 
 
We present three different thermal engines where the 
efficiency of Curzon and Ahlborn is obtained, in one case, 
under maximum power output, another at maximum work 
and the last one at maximum kinetic energy output. Our 
first engine, proposed by Curzon and Ahlborn undergoes 
an irreversible global cycle in a finite time, but the inner 
cycle is reversible (endoreversibility condition). The 
second engine undergoes an overall irreversible process, 
with a sequence of reversible cycles and, finally the water 
mixer, which is not a cycle rather a steady process where 
heat is transformed into kinetic energy. The results suggest 
that the efficiency of Curzon and Ahlborn, is a general 
feature of thermal engines, without having the kind of 
universality of the Carnot’s efficiency. On the other hand, 
is well known that Eq. (1) depends on the type of heat 
transfer law between working fluid and thermal baths (see 
figure 1), but in the others last  two thermal engines, there 
is not an explicit heat law, consequently, efficiency is 
independent of any heat transfer law. This possible 
paradox until now has not been explained within the 
context of finite-time thermodynamics. 
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