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Abstract 
Neat yet colorful examples are indispensable to classroom lecturing and examination, however most dynamical 
examples in existing textbooks are of wheel system with pointed masses. Here we discuss the systems containing 
planar motion bars, but limited to the initial instant problem (IIP). By using the IIP's peculiarity, the general explicit 
expression for the kinetic energy can be circumvented, which can shorten the analysis procedure significantly. Similar 
ideas can be extended to the system of two degrees of freedom, with supplemented an extra equation. 
 
Keywords: Pendulum, Vibration, Multi-degree-of-freedom. 
 

Resumen 
Ejemplos atractivos y coloridos son indispensables para las clases y exámenes en el aula, sin embargo la mayoría de 
los ejemplos de dinámica en los libros de texto existentes son sistemas de ruedas con masas puntuales. Aquí discutimos 
sistemas que contienen barras de movimiento plano, pero limitados al problema inicial instantáneo (PII). Mediante el 
uso de la peculiaridad de PII, la expresión explícita general para la energía cinética se puede eludir, lo cual puede 
reducir el procedimiento del análisis de manera significativa. Ideas similares se pueden extender para el sistema de dos 
grados de libertad, complementado con una ecuación adicional. 
 
Palabras clave: Péndulo, vibración, varios grados de libertad. 
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I. INTRODUCTION 
 
The dynamics teaching and its examination necessitate 
concise yet colorful examples for the sake of the limitation 
of class hours and blackboard or slide spaces. Although 
dynamical problems exist ubiquitously in engineering, 
examples with easiness appropriate for class lecture and 
examination are not so many. Examples in most textbooks 
use wheel systems with pointed masses, e.g. the system of 
FIGURE 1(a), although bars are used extensively in 
engineering applications. We definitely desire for examples 
containing bars to enhance teaching and examination 
diversity, since the range of variety of wheels and masses is 

limited and monotonic. 
The case shown in FIGURE 1(b) contains one bar. Even 

though there is only one bar, the general solution is too 
tedious to be lectured on a blackboard. As a result of 
tradeoff between variety and conciseness, some so-called 
initial instant examples as in FIGURE 1 (b~d) are 
recommended [1]. The "initial instant problem(IIP)" refers 
to the dynamic analysis at the very beginning when a system 
KEPT at REST is RELEASED, for example, releasing the 
bar AB in FIGURE 1(b), or severing the light rope OA in 
FIGURE 1(d). 

The simplicity pertaining to IIPs is that the velocities, 
both the linear and angular, are zero, which can be used to 
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FIGURE 1. Classical examples diagram of dynamical problems. 
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shorten analysis procedure. However, because the general 
explicit expression for kinetic energy is usually not easy to 
write out (for example FIGURE 1 (b~d)), the IIPs are often 
analyzed with the ordinary differential equation (ODE) 
based approach [2]. This approach requires an acceleration 
analysis beforehand (see the next section), which is 
cumbersome for students. 

Usually the Law of Kinetic Energy (LKE) is more 
efficient than the approach based on ODEs because the 
former can avoid an acceleration analysis, but the cost is to 
write out the general explicit expression for the kinetic 
energy. We will demonstrate that this is not necessary with 
IIPs after their peculiarity being taken into account.  

In the following, we first experience the sophistication 
of the approach based on ODEs, then we illustrate how the 
IIP's peculiarity can be used to save the LKE based 
approach from exact explicit expressions of kinetics. Finally, 
this will be extended to cases of two degrees of freedom. 

 
 
 

II. CONVENTIONAL APPROACH 
 

For problems involving planar motion bars, conventionally, 
we use ODEs for a planar motion to solve them, rather than 
the LKE based approach [3]. This is because the LKE based 
approach often needs a general explicit expression of kinetic 
energy, which is rather challenging for systems containing 
planar motion bars. Although velocities in IIPs are zero at 
the very beginning, this peculiar fact has not caught much 
attention, because the kinetic energy is zero just at the initial 
instant. 

Overall the differential equation based approach is rather 
sophisticated. We will illustrate this entanglement through 
the example of FIGURE 1(b) in this section.  

In this example we assume that the wall is frictionless 
and the bar AB is uniform with a mass m and a length l. The 
question is how much is the angular acceleration of AB 
when it is released from the position shown in the figure. 

First we draw the free body diagram of forces on the bar as 
shown in FIGURE 2(a), where AF  and BF  are the normal 
forces exerted on points A and B, respectively. In the figure 

Cxa  and Cya  are components of the acceleration of the mass 
center C. The angular acceleration is denoted as the symbol 
α. The ordinary differential equations for the AB are 

2

cos60
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1 ( ) cos45 sin15
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C A B
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ma F mg F
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= = − + 
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= = − +
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∑
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 (1) 

 
Equation (1) involves five unknowns, but there are only 
three equations. We need two more equations from the 
acceleration analysis, which is shown in FIGURE 2(b). In 
the figure the relative accelerations of points A and B with 
respect to C along the normal directions, n

ACa  and n
BCa , are 

depicted deliberately. Both are zero due to the zero angular 
velocity of AB, the IIP's peculiarity. The wall constraint 
renders the accelerations of A and B to be along the wall. 

In light of FIGURE 2(b), we have 
 

t t

t t

A C AC Cx Cy AC
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+ + + 


+ + + 

a = a a = a a a

a = a a = a a a
                 (2) 

 
We project the two equations of Equation (2) to the 
directions perpendicular to  and A Ba a  correspondingly, and 
obtain 

 
t

t

0 cos45

0 cos30 sin 30 sin15
Cx AC

Cy Cx BC

a a

a a a

+ 


+ + 



  

=

=
    (3) 

 
Substituting t t / 2AC BCa a lα= =  into equation (3) leads to 

 
2 / 4

(2 6 3 2) /12
Cx

Cy

a l

a l

α

α

= − 


= − 
                     (4) 

 
Then substituting equation (4) back into equation (1) and 
eliminating AF  and BF , we eventually arrive at 

 

 2 6
4

g
l

α −
= .                               (5) 

 
 
 

III. TAILORED LKE BASED APPROACH 
 

It should be pointed that there is ONLY ONE bar in the 
problem of FIGURE 1(b). For more sophisticated systems, 
e.g. FIGURE 1(c), the difficulty with the conventional 
approach is intolerable. In contrast, the LKE is apt to the 
single degree-of-freedom (SDOF) system with multiple 
members. This law states as follows 

 
2 1 ΔT T W− = ,                                   (6) 

 
where 1T  and 2T are the kinetic energy at two instants, and 
ΔW is the work increment done by the active forces 
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FIGURE 2. Diagram of forces on a bar. 
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between the two instants.  

As for the IIP we discussed here, there is only one 
instant—the initial instant; accordingly, we must use the 
power formulas—the derivative form of equation (6), that is 

 
td

d i i i i i
T P F v
t

= = ⋅ =∑ ∑ ∑F v ,                  (7) 

 
where Pi is the power of the individual force (or moment) Fi. 
The power of force Fi equals to the vectorial dot product of 
the force vector Fi and the velocity vector vi of the point 
exerted by Fi. It can also be expressed as a scalar product of 
vi and Fi

t, the tangential component of Fi along the direction 
of vi. 

The bar AB of FIGURE 1(b) at an arbitrary position is 
illustrated in FIGURE 3(a). The instantaneous velocity  

center H can be determined easily by drawing two lines 
perpendicular to the velocities Av  and Bv , and the 
intersection of the two lines is just the instantaneous center. 
Accordingly the kinetic energy is  

 
2

2 2 21 1
2 2 12H

mlT J mHCθ θ
 

= = + 
 

  .               (8) 

 
For a general case, we need an explicit expression of HC 
with respect to the variable θ since it is involved in 
derivative operations of equation (7), but now we just keep 
it there. The only active force is the gravity of AB and its 
power is 

 
cos cosCP v mg HCβ θ β= =  ,                   (9) 

 
where β stands for the angle between the velocity Cv and 
gravity mg. The explicit expression of β  is very complex 
also. However since it is not involved in the derivative 
operations, we just need the particular value at the initial 
instant. 

Subsituting equations (8) and (9) back into (7), we 
obtain 

 
2

2 2d cos
12 d
ml HCmHC mHC HC mg

t
θθ θ θ β

 
+ + = 

 
   . 

 

Dividing both sides by θ  leads to 
 

2
2 d cos

12 d
ml HCmHC mHC HCmg

t
θ θ β

 
+ + = 

 
  .   (10) 

 
Now let us look into the peculiarity at the initial instant. The 
angular velocity θ  is zero. Besides, HC  and its change 

rate d
d
HC

t
 are both bounded, as a result, the second term on 

the left-hand side of equation (10) is zero. Hence at the 
initial instant we have 

 
2

2 cos
12
ml mHC HCmgθ β

 
+ = 

 
 .             (11) 

 
The remaining task is to determine  and HC β at the initial 
instant, rather than their general explicit expressions. 

In FIGURE 3(b), the two sides of the angle  β  are 
perpendicular to the corresponding two sides of CHA∠ , 
thus CHAβ = ∠ . Applying the cosine theorem to AHC∆  
leads to 

 
2 2 2

cos
2

HA HC ACHC
HA

β + −
= ,                 (12) 

 
where HA  can be determined from AHB∆  using the sine 
theorem as 

 

sin sin
HA AB

ABH AHB
=

∠ ∠
.                   (13) 

 
That is 

 
sin15 3 2 6

sin120 6
HA l l−

= =




,            (14) 

 
2HC  in equation (12) and (11) can be determined from 

AHC∆  using the cosine theorem as 
 

2 2 2 2 cosHC HA AC HA AC HAC= + − ⋅ ∠ .       (15) 
 

With equation (14), / 2, 45AC l HAC= ∠ =  , 2HC  is 
 

2 2(5 2 3)
12

HC l−
= .                       (16) 

 
The same result as equation (5) can be obtained by 
substituting equations (12), (14) and (16) into equation (11).  

Since the general expression for the kinetic energy and 
its derivative are not involved, this tailored LKE based 
approach is much simpler compared to the conventional 
approach in the last section. 
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FIGURE 3. Diagram of forces on a bar at an arbitrary position. 
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IV. GENERALIZATION 
 
The tailored LKE based approach in the previous section 
can be generalized to any steady SDOF system.  

Assume s is the generalized coordinate describing the 
SDOF system. Then the displacement vector ir  of any point 
is a function of s, thus 

 
d d
d d

i i
i s

t s
= 

r rv = .                             (17) 

 
The total kinetic energy is 

 
2 21 1 1 ( )

2 2 2i i i i iT m v m m s s= = ⋅∑ ∑  v v = ,       (18) 

 

where d d( )
d d

i i
im s m

s s
= ⋅∑

r r  is the generalized mass.  

The power in equation (7) equals to  
 

d ( )
d

i
i i iP s Q s s

s
= ⋅ = ⋅ =∑ ∑  

rF v F ,        (19) 

 
where ( )Q s is the generalized force corresponding to s. 

Substituting equations (18) and (19) into equation (17) 
leads to 

 
31 d ( ) + ( )  = 

2 d
m s s m s ss Qs

s


   .                 (20) 

 
It can be further reformulated as 

 
21 1 ( ) '( )

( ) 2
s Q s m s s

m s
 = −  

 



.                (21) 

 
Consider the peculiarity of the IIP case, 0s = , the above 
equation is reduced to 

 
 ( ) ( )s Q s m s=  .                         (22) 

This is parallel to the Newton second law of a F m= . 
Now let us appreciate the above generalization with a 

more sophisticated case of FIGURE (1c), and some tricks 
for analysis. In this example, the joints and slide are 
frictionless, and the bar AB and dick C are uniform with 
masses ,AB Cm m respectively. The point mass B has a mass 

Bm . 2AB AO r= = . AB is horizontal at the initial instant. 
We want to know the angular acceleration of the disc C 
when the system is released from the configuration in 
FIGURE 1(c). 

FIGURE 4 shows the system configuration in an 
arbitrary configuration. The system kinetic energy is 

  
2

2 2 2 2 2 2

2
2 2 2 2 2

3 1 1
4 2 12 2

3 1
4 2 12

C C AB AB B AB

C C AB AB B AB

ABT m r m GH m GB

ABm r m m GH m GB

θ ω ω

θ ω

 
= + + + 

 
 

= + + + 
 





 

(23) 
 

Still we do not need figure out the explicit relationship 
between Cθ  and ABω . The force power is 

 

1 2

3

cos cos
       cos

C C AB AB

B AB

P m gR m gGH
m g BH

θ β ω β
ω β

= + +

,       (24) 

 
where 1 2 3, ,β β β  are indicated in FIGURE 4. In the figure G 
is the instantaneous velocity center of AB.  

Substituting equations (23) and (24) into (7) and 
dividing both sides by Cθ , we obtain  
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(25) 
Since at the initial instant, both Cθ  and ABω are zero, as a 

result, /AB Cω θ  is the indeterminate 0/0. For a dynamical 
problem, this 0/0 should be understood as the limit of 

( ) / ( )AB Ct tω θ  as time t approaches 0 from t>0. Concerning 
the SDOF system, the velocity ratio depends on the 
geometrical configuration only. Thus, we can determine the 
velocity ratio limit through a finite nonzero situation. 

As shown in FIGURE 5 of the initial instant, it can be 
verified that 2GH GA AO r= = = GB AB= = . Considering 
the velocity of the common point A of the disk C and bar AB, 
we have 
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FIGURE 4. Diagram of forces on a bar and a disk. 
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1AB

C

GA
AO

ω
θ

= =


.                              (26) 

 

 
For a realistic physical system, the quantity in the second 
round bracket in equation (25) is bounded, as a result,  

 
2d d 0

d d
AB

AB AB B AB
C

GH GBm GH m GB m GB
t t

ω ω
θ

 + + = 
  

. 

(27) 
 

In light of the configuration in FIGURE 5, we have  
 

1 2 3120 , 90 , 60β β β= = =   .               (28) 
 

Substituting equations (26), (27) and (28), we eventually 
arrive at 

 
2 3

24 20 9
B C

C
B AB C

m m g
m m m r

θ −
=

+ +
 . 

 
 
 

V. EXTENTIONS TO TWO-DOF CASES 
  
Definitely we attempt to extend the applicable scope of the 
tailored LKE approach. However, this approach cannot be 
applied to systems of two degrees of freedom (DOF) 
directly. This is because either LKE or its derivative-power 
formulas equation, is a scalar relationship, and it can 
produce just ONE equation. For a two-DOF system, in 
general, we need two equations for individual generalized 
variables. An extra equation need be supplemented. 

The system in FIGURE 1(d) is a little bit simpler, 
though it has two DOFs after the light rope severed. This is 

because no force is exerted along the horizontal direction, 
and the law of conservation of momentum along this 
direction can be employed. In brief, from mathematical 
view, this system has one free variable still. Further more, 
the horizontal component of the velocity of the mass center 
C is zero, thus the orbit of C is vertical down.  

 
 

 
 
 
The motion analysis has been depicted in FIGURE 6, where 
H is the instantaneous velocity center of AB. The system 
kinetic energy at an arbitrary position is 
 

2
2 2 21 1 .

2 2 12H
mlT J mHCθ θ

 
= = + 

 
               (29) 

 
And the corresponding power is 
 

P mgHCθ=  .                           (30) 
 

Substituting equation (29) and (30) into (7) leads to 
 

2
2

12
ml dHCmHC mHC mgHC

dt
θ θ

 
+ + = 

 
  .     (31) 

 
Although in this case the relationship between HC  and θ  
is very simple, we still keep it implicitly. For the IIP, the 
second term of equation (31) is discarded straightforwardly, 
and we have 
 

12
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12
lgHC HCθ

−
 

= + 
 

 .                        (33) 

 
At the initial instant, 0/ 2 cosHC l θ= , and equation (33) is 
reduced to the final solution as  
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FIGURE 6. A two-DOF system. 
 

O

A

C

H

30°

B

r

30°

vH

vB

mB g
60°

G

vC

mC g

120°
mABg

90°

(b)  
 

FIGURE 5. Diagram of forces on a bar and a disk. 
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VI. CONSTITUTIVE TWO-DOF CASES 

Now we consider a nontrivial two-DOF case shown in 
FIGURE 7, where the bar AB is uniform with a length 2l 
and mass m, and the soft light ropes O1A and O2B have the 
same length l1, whereas their masses are ignored. We want 
to know the angular acceleration of AB at the initial instant 
after O2B is severed. In this case, no conservation law can 
be used. We start from the kinetic energy at an arbitrary 
position in FIGURE 8 as the following 
 

2
2
2

2 2
1 1 2 1 1 2 1 2

1 (2 )
2 12
1      [( ) ( ) 2 cos( )] ,
2

m lT

m l l l l

θ

θ θ θ θ β β

= +

+ + +



   

    (34) 

 
where 1 2,β β  are illustrated in the FIGURE 8. We still keep 
them there without explicit expressions with respect to the 
generalized variables 1 2,θ θ .  

The force power in the configuration of FIGURE 8 is  
 

2 1

1 1 2 2 1
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       cos cos .
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β β
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+ 

              (35) 

 
 Substituting equations (34) and (25) into (7) verifies that  
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Dividing both sides with 1θ  leads to  
 

2
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2
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θ
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  (37) 

 
According to the IIP's peculiarity, the fifth term in the 
square bracket is zero, 
 

1 2 1 2 1 2( )sin( ) 0l lθ β β β β+ + =   .                (38) 
 

Contrary to the SDOF case from the geometrical 
information, we cannot determine the ratio 2 1/θ θ   now. This 
system has two DOFs and 1 2,θ θ  are independent of each 

other. We understand the ratio 2 1/θ θ   is the limit of 

2 1( ) / ( )t tθ θ  as t approaching zero. From mathematical view, 
we have 
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.           (39) 

 
According to L'Hopital rule, we have 
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As a result  
 

Δ Δ
2 2 2 2

0
1 1 1 1

( ) (0)lim
( ) (0)t

t
t

θ θ θ θ
θ θ θ θ→

= = =
   

   

.                (40) 

 
Equation (40) means that the velocity ratio limit equals to 
the ratio of finite accelerations in IIPs. 

Further at the initial instant we can figure out (see 
FIGURE 8) 
 

1 2 00,β β ϕ= = .                               (41) 
 
Substituting equations (38), (40) and (41) into equation (37), 
we have 
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FIGURE 8. Case of two-DOF. 
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FIGURE 7. Case of two-DOF. 
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2 2 2 2

2 1 1 1 1 2 0 1 0 1 24 / 3 2 cos cosl l l l gl glθ θ θ θ ϕ ϕ θ θ+ + = +      .   (42) 
 

As we expect, there are two unknowns in the above 
equation. We must supplement another equation. Here we 
use the theorem of angular momentum around a fixed point. 
We can write out the system angular momentum around the 
fixed point O1 as,  

 

1

2

2 1 1 1 2 1
(2 ) ( ) ( )
12O

m lL ml O E ml O Fθ θ θ= − + −   .      (43) 

 
The external force produces an external moment of force 
around the O1 as 
 

1 1 2 1 1( ) ( cos cos )OM F mgO D mg l lθ θ= − = − − .      (44) 
 

According to the angular momentum theorem  
 

1

1

d
( )

d
O

O

L
M F

t
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We have  

 
2

2 1 1 1 1 2

1 1
1 1 2 2 1 1

(2 ) ( )
12

d d
( cos cos ).

d d

m l mO E l mO F l

O E O Fml ml mg l l
t t

θ θ θ

θ θ θ θ

− + − +

− = − −

  

 

      (45) 

 
As we argue in using LKE for the IIP,  
 

1 1
1 1 2

d d 0
d d
O E O Fml ml

t t
θ θ= =  .             (46) 

 
At the Initial instant we have the following geometrical 
parameters 
 

 

1 0 2

1 1 0

1 1 0

1 1 1 0

, 0
cos
cos

cos

O D l l
O E l l
O F O D l l

θ ϕ θ
ϕ
ϕ

ϕ

= =
= −
= −
= = −

                      (47) 

 
Substituting equations (46) and (47) into (45), we have 
 

1 0 2 1 0 1 1 1 0(4 / 3 cos ) ( cos ) ( cos )l l l l l l g l lϕ θ ϕ θ ϕ− − − = −  . (48) 
 

Solving the simultaneous equations of (42) and (48), we 
obtain the final solution 
 

2
0

2 2
0

3sin
1 3sin

g
l

ϕθ
ϕ

=
+

 .                          (48) 

 
Solution (48) has nothing to with l1. 

A common case is 0 290 , 3 /(4 )g lϕ θ= =

 . For this case, 
O1A and O2B are parallel to the gravitational acceleration. 
This means that the horizontal external force component is 
zero at the initial instant. The extra equation can be 
supplemented by this fact, that is, the horizontal acceleration 
component of the mass center C is zero. This fact can be 
further rendered by the O1A as 1 0θ = . With this equation, 
we can directly get the solution 2 3 /(4 )g lθ =  from equation 
(42).  

|Other common cases are: 0 245 , 3 /(5 )g lϕ θ= =

 ; 

0 260 ,ϕ θ= 

  9 /(11 )g l= ; 0 230 , 3 /(7 )g lϕ θ= =

 . 
In addition, solution (48) is applicable to the case of 
0 90ϕ >  . 

 
 

VII. CONCLUSION 
 
We have illustrated a tailored LKE based approach to the 
initial instant problems (IIP). Using this approach, the IIP 
can be lectured concisely with limited time and blackboard 
space, since the general explicit expression for the kinetic 
energy can be avoided. As a result, the dynamical examples 
are no longer the monotonic wheel systems. 

The conciseness of the tailored LKE approach is due to 
the facts: 1) the physical realistic system is bounded; 2) the 
ratio limit of velocities at the initial instant equals to the 
ratio of the corresponding finite accelerations. 
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