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Abstract 
In this paper, some solutions of Einstein’s field equations for stress-energy tensor and magnetic stress tensor expressed 
in classical terms are proposed, which are combined to form a “magnetic stress-energy tensor” for an accelerated 
magnetic wave. 
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Resumen 
En este trabajo, son propuestas algunas soluciones de las ecuaciones de campo de Einstein para el tensor de tensión-
energía y el tensor de tensión magnética en términos clásicos, los cuales son combinados para formar un “tensor 
magnético de tensión-energía” para una onda magnética acelerada. 
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I. INTRODUCTION 
 
In General Relativity (GR), Einstein’s field equations [1] 
describe the metric of spacetime as well as its dynamical 
behaviour. Solutions of Einstein’s field equations are 
called “exact solutions” [2, 3] which are metrics of 
spacetime (hence often called “metrics”) and describe the 
structure of the spacetime including the motion of objects 
(as particles and charges) in spacetime.  

Current cosmological principle considers the universe 
as homogenous, isotropic and accelerating [4, 5] (like a 
spherical surface in accelerated dilation, for simplicity), 
which define a specific metrics of spacetime, where 
general relativity is applicable.  
Solutions of Einstein’s field equations usually include 
certain tensor fields which are taken to model states of 
ordinary matter, giving specific contributions to the stress-
energy tensor [6], which is a tensor quantity that describes 
the density and flux of energy and moment in spacetime 
according to the continuity equations. This tensor includes 
the energy components capable to distort and curve 
spacetime accounting the presence of matter, 
electromagnetic fields, and other physical effects that 
contribute to the mass-energy at the spacetime, being the 
source of the gravitational field in the Einstein’s field 
equations.  

One of the most known tensor solutions is the Maxwell 
stress tensor [7] for the electromagnetic field, which comes 
from the Maxwell’s equations [8]. In addition, some works 

describe the field evolution equations including magnetic 
field from tensor analysis [9], showing the contribution of 
the “magnetic stress-energy tensor” in the Einstein’s field 
equations. Previous works attempt to unify both; 
electromagnetic stress-energy tensor and gravity [10, 11], 
which consider that magnetic field could contribute in 
gravity to form a specific geometry of spacetime. 
Furthermore, previous papers consider that 
electromagnetic wave can propagate in four-dimension 
spacetime [12], as well as its propagation in a uniformly 
accelerated simple medium [13]. 

In this paper, some solutions of Einstein’s field 
equations for stress-energy tensor and magnetic stress 
tensor expressed in classical terms are proposed, which are 
combined to form a magnetic stress-energy tensor for an 
accelerated magnetic wave. 
 
 
II. SOLUTION OF EINSTEIN’S FIELD 
EQUATIONS FOR STRESS-ENERGY TENSOR 
IN CLASSICAL TERMS 
 
The compact form of Einstein’s field equation [14] is 
defined as 
 

4

2 4

2 8 ,GG S T T
r c

µν µν µν
π κ= = = =             (1) 
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where Gµν is the Einstein tensor, S4 is the scalar curvature 
in four-dimensions, r is the radius of sphere, c is the speed 
of light in vacuum, κ is the so-called Einstein gravitational 
constant, with G being Newton’s constant, Tµν is the 
stress-energy tensor and indexesµ,ν run 1, 2, 3, 4.  

According to this equation, scalar curvature for a 
spherical surface in four-dimensional spacetime directly 
depends of the stress-energy tensor, which is multiplied by 
the constant κ. 

In order to describe stress-energy tensor in classical 
terms, we consider from the classical mechanics that work 
is a form of energy (as mechanical energy) [15], that is 
force times distance, equal to the line integral of the 
(mechanical) force F along a path C, given by 
 

d ,
C

W r= ∫ F                                (2) 

 
where W is the work and r is the distance (from the center 
in circular motion). 

According to the GR, energy is described as an 
equivalent to the mass of a given body by square of speed 
of light. On the other hand, according to the Newton’s 
second law, square of velocity (speed of light, in this case) 
is equivalent to acceleration by distance, and force 
equivalent to mass by acceleration. Thus, writing those 
equivalences for “velocity” as speed of light, hence 
 

2 ,W c cE mc ma r Fr F ma= = = ∴ =               (3) 
 
where EW is the energy given by the work to move a body 
of mass m to the square of speed of light, F is the force and 
ac is the acceleration (related with speed of light). 

Furthermore, a tensor is generally defined as stress. A 
stress field is generally a force per unit area. Then, stress-
energy tensor described in classical terms can be defined 
as force F per unit area A [16], where from expression (3) 
for a spherical surface is giving by 
 

2
,

4
G W cE MaFT

rA A R
µν

µν µν π
= = =                   (4) 

 
where M is the mass of a massive body. Replacing 
expression (4) in the Einstein’s field equation (1), yields  
 

2 4 4 2

2 8 8 .
4

G c
G

MaG GS T
r c c R

µν
π π

π

 
= = =  

 
           (5) 

 
This solution represents scalar curvature in classical terms 
for a spherical surface that is curved in the region of a 
uniform gravitational system given by a central force M 
(as that of the Sun) [17]. 
 
 

III. SOLUTION OF EINSTEIN’S FIELD 
EQUATIONS FOR MAGNETIC STRESS 
TENSOR IN CLASSICAL TERMS 
 
On the other hand, “magnetic stress tensor” [18] is given 
from the magnetic force. In the same way, we can define 
magnetic stress tensor as the force (Lorentz force FL for 
speed of light, in this case) per unit area, where for a 
spherical surface is giving by 
 

2 2
0 0 0

,
4 4

M L qc qT
A R R c c

µν

µν π π µ ε µ
× ×

= = = =
F B B E B      (6) 

 
where µ0 is the permeability of free space, ε0 is the 
permittivity of free space, E is the electric field and the 
Poynting vector [19] is included, given by 
 

0

1 .eS
µ

= ×E B                                (7) 

 
If the field is only magnetic some terms are reduced, 
expression (6) becomes 
 

2

0 0 0

1 1 ,MT
c

µν µ ν
µ µ µ

= × = =
BE B B B             (8) 

 
where B2 = Bx

2 + By
2 + Bz

2, which is a simplified 
equivalent expression of the magnetic term in the Maxwell 
stress tensor [7], defined as 
 

2

0

1 ,
2

MTµν µ ν µνδ
µ

 
= − 

 

BB B                 (9) 

 
where δµν is Kronecker's delta. It is proportional to the 
magnetic tension force [20], which is actually a pressure 
gradient and also a force density (N/m3) that acts parallel 
to the magnetic field.  

Replacing expression (8) in (1), scalar curvature for 
solution of Einstein’s field equations with a magnetic 
stress tensor in classical terms can be written as 
 

2

2 4 4
0

2 8 8 .M
M

G GS T
r c c

µν
π π

µ

 
= = =   

 

B           (10) 

 
An equivalent expression in terms of electric field can be 
derived by developing expression (10) in terms of 
permittivity of free space and considering equivalence 
between electric and magnetic fields given by E = cB, and 
reducing yields 
 

( )2
02 4 4

2 8 8 ,E
E

G GS T
r c c

µν
π π ε= = = E           (11) 
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where E2 = Ex

2 + Ey
2 + Ez

2, being this tensor a simplified 
equivalent expression of the electric term in the Maxwell 
stress tensor. 
 
 
IV. SOLUTION OF EINSTEIN’S FIELD 
EQUATIONS FOR AN ACCELERATED 
MAGNETIC SPHERICAL SURFACE 
 
Considering a solution that combines both, stress-energy 
tensor given in classical terms and magnetic stress tensor 
given by the magnetic tension force [21], we can introduce 
magnetic field term in expression (5) by considering the 
equivalence with the inverse of spherical surface from the 
magnetic field equation with respect to a charge in motion, 
hence 
 

0
2 2

0

1 ,
4 4

qc
R qc R

µ

π µ π
= ∴ =

BB                  (12) 

 
and then, replacing expression (12) in (4), yields 
 

2
0

,
4

GM c cMa MaT
R qc

µν
π µ

×
= =

B                     (13) 

 
which is a “magnetic stress-energy tensor” that combines 
both, stress-energy tensor and magnetic stress tensor, 
where cross product shows that direction of acceleration is 
perpendicular to the magnetic field. According to 
expression (8), it is when mechanical force equals Lorentz 
force (F = FL), and also considering equivalences in 
expression (3), yields 
 

2

,c
McMa qc

r
= = ×B                       (14) 

 
and then, 
 

2 ( ) ,L LMc qc r r E= × = =B F               (15) 
 
where EL is the energy given by the magnetic field to move 
a charge to the square of speed of light. Simplifying speed 
of light term in both sides of expression (15), hence 
 

( ) ,McMc q r r
q

= ∴ =B
B

                   (16) 

 
where r is an equivalent to the well-known gyro-radius 
expression (also known as radius of gyration, Larmor 
radius or cyclotron radius) [22] for a particle moving 
within a magnetic field. 

Thus, replacing expression (13) in the expression (1) 
scalar curvature for Einstein’s field equations with the 
magnetic stress-energy tensor is proposed as  
 

2 4 4
0

2 8 8 ,GM c
GM

MaG GS T
r c c qc

µν
π π

µ

 ×
= = =   

 

B      (17) 

 
which describe scalar curvature of a magnetic spherical 
surface in accelerated dilation that can be curved by a 
massive mass M. 

In the same way, an equivalent expression in terms of 
electric field can be derived by developing expression (17) 
in terms of permittivity of free space and considering 
equivalence between electric and magnetic fields, and 
reducing yields 
 

0
2 4 4

2 8 8 .GE c
GE

MaG GS T
r c c q

µν
επ π  

= = =   
 

E        (18) 

 
It is noticed that expression (17) is analogous to the 
expression that results of consider a magnetic field B at 
parallel to a spherical surface in accelerated dilation. 
Development of this analogy is shown in Appendix A.  
 
 
V. SOLUTION OF EINSTEIN’S FIELD 
EQUATIONS FOR AN ACCELERATED 
MAGNETIC WAVE  
 
As known, wave equation can be written as a partial 
differential equation that describes the evolution of a wave 
over time in a medium where the wave propagates at the 
same speed independent of wavelength and independent of 
amplitude [23]. Thus, for the electric field E wave 
equation is defined as 
 

2 2
2

0 0 2 2 2

1 ,
t c t

µ ε ∂ ∂
∇ = − =

∂ ∂

E EE               (19) 

 
and for the magnetic field B, wave equation in three 
dimensions is given by 
 

2 2 2 2
2

2 2 2 2 2

1 .
x y z c t

∂ ∂ ∂ ∂
∇ = + + =

∂ ∂ ∂ ∂

B B B BB        (20) 

 
Considering the component in one-dimension of a 
magnetic wave in propagation along a single line toward 
the z-axis direction, expression (20) is reduced as  
 

2 2

2 2 2

1 .
z c t

∂ ∂
=

∂ ∂

B B                           (21) 

 
This equation has a sinusoidal solution considering that 
magnetic field is in propagation as described by a wave 
function, which describes the displacement of particles in a 
wave as a function of time and their positions, hence 
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( , ),y z t=B                                 (22) 
 
where y is displacement at z, t. An equivalent to the wave 
form is given by the proportionality between velocity of 
propagation and angular frequency, defined as 
 

2
2

2
,c

k
ω

=                                (23) 

 
where ω is the angular frequency and k is the wave 
number. Thus, from expression (22) and (23), we can write 
expression (21) as  
 

2 2 2

2 2 2

( , ) ( , ) .y z t k y z t
z tω

∂ ∂
=

∂ ∂
                   (24) 

 
Solving expression (24), as a function of their positions, 
yields 
 

2
2 2

2

( , ) cos( ) ( , ),y z t k A kz t k y z t
z

ω∂
= − − = −

∂
   (25) 

 
where A is the wave amplitude; and solving as a function 
of time, hence 
 

2
2

2

2
2

2

( , ) cos( ),

( , ) ( , ) ( , ),y

y z t A kz t
t

y z t y z t a z t
t

ω ω

ω

∂
= − −

∂
∂

= − =
∂

           (26) 

 
where ay is the acceleration in the y direction. Then, 
velocity is given by 
 

( , ) ( ) ( , ),y
y z t Asen kz t v z t

t
ω ω∂

= − − =
∂

        (27) 

 
where vy is the velocity in the y direction. Thus, solving 
expression (27) and according to expression (22), wave 
function in sinusoidal form for the magnetic field is given 
by 
 

( , ) sin( ).y z t A kz tω= = −B                  (28) 
 
This expression shows the wave form propagation in 
sinusoidal form of the magnetic field as a harmonic 
sinusoidal wave. Simplifying for a simple harmonic 
motion as a function of time, hence 
 

2( ) sin( ) sin ,ty t A t A
T
πω  

= = =  
 

B            (29) 

 
where T is the period of oscillation.  

When amplitude is related by the maximum amount of 
magnetic field, harmonic sinusoidal wave solution (29) can 

be written as B = Bsin(ωt). Thus, replacing in expression 
(17) becomes  
 

4 4
0

sin( )8 8 ,GM c
GM

Ma B tG GS T
c c qc

µν
ωπ π

µ

 
= =   

 
   (30) 

 
which describe scalar curvature for an accelerated 
magnetic wave that can be curved by a massive mass M, 
with the magnetic stress-energy tensor expressed in 
sinusoidal form. Expression (30) in function of time can be 
written as 
 

4 4
0

8 8 sin( ) .GM
GM

G G MB tS T
c c q t

µν
π π ω

µ

 
= =   

 
     (31) 

 
 
VI. CONCLUSIONS  
 
This work aims to propose some solutions for the stress-
energy-tensor and a magnetic stress tensor expressed terms 
of classical mechanics and electromagnetism, respectively. 
Then, those tensors are combined to attempt unify both; 
stress-energy tensor and magnetic stress-energy tensor, in 
the proposed magnetic stress-energy tensor. Then, 
considering the wave form of the magnetic field, it is 
proposed a solution of Einstein’s Field Equations for an 
accelerated magnetic wave.  
Regarding to the education, general theory of relativity is 
revisited describing the main concepts of this theory and 
some of the proposed exact solutions defined by the 
metrics of spacetime and the stress-energy tensor, where it 
is showed the possibility to apply some of the known 
equivalences to consider another possible properties from 
the classical theories. 
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APPENDIX A 
 
From the magnetic field given in expression (12), it is 
found charge by velocity of light for a particle in motion, 
hence 
 

20
2

0

4 .
4

qc qc R
R

µ π
π µ

= ∴ =
BB                  (A1) 

 
Now considering that the spherical surface is in 
accelerated radial dilation, we can introduce acceleration 
of the spherical surface by multiplying square of 
acceleration in both terms of expression (A1); reordering 
and then considering classical equivalences for gravity 
with the accelerated circular motion [15], given by  
 

2 2

2
,GMv r ar GM a

r
= = ∴ =            (A2) 

 
then, expression (A1) can be written as 
 

2 2 2
2 2

2 4
0 0

2

4
0

4 4 ,

4 ,

a a rqc R R
a c
GMaqc R

c

π π
µ µ

π
µ

= =

=

B B

B
      (A3) 

 
and, multiplying expression (A3) by 2 and reordering, 
hence 
  

2 4
0

2 8 ,G Ma
R c qc

π
µ

 
=   

 

B                       (A4) 

 
which is an equivalent expression of (17), where as in the 
case, it is equivalent to the scalar curvature of a magnetic 
spherical surface in accelerated dilation that can be curved 
by a massive mass M. 
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