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Abstract 
We discuss the general form of Newton's second law valid for describing the dynamics of one-dimensional variable mass 

systems. We thus obtain the equation of motion of the one-dimensional oscillator with a variable mass, which is modeled 

as a quadratic function of time. The obtained equation of motion is numerically solved by means of a simple procedure. 

The work is addressed to physics courses at undergraduate level.  

 

Resumen 
Se discute la forma general de la segunda ley de Newton válida para describir la dinámica de los sistemas de masa variable 

de una dimensión. Obtenemos así la ecuación de movimiento del oscilador unidimensional con una masa variable, que 

se modela como una función cuadrática del tiempo. La ecuación obtenida de movimiento es numéricamente resuelta por 

medio de un procedimiento simple. La obra está dirigida a los cursos de física a nivel de pregrado. 
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I. INTRODUCTION  

 
In mechanics, variable-mass systems are systems which have 

mass that does not remain constant with respect to time. In 

such systems, Newton's second law of motion cannot directly 

be applied because it is valid for constant mass systems only 

[1, 2]. Instead, a body whose mass $m$ varies with time can 

be described by rearranging Newton's second law and adding 

a term to account for the momentum carried by mass entering 

or leaving the system [1, 6]. 

     Due to some conceptual difficulties, this topic is not 

commonly  addressed in basic physics courses. Thus, it may 

be interesting to propose new approaches to the topic for 

students of science and engineering at undergraduate level. 

     In this work, we derive the correct form of Newton's 

second law applied to single-degree of freedom systems with 

a time-variable mass. Then, we describe the dynamics of the 

single one-dimensional oscillator with the mass modeled by 

a quadratic function of time. The obtained equation of motion 

is solved by using a suitable numerical procedure for given 

initial conditions. 

    The work is mainly addressed to undergraduate students 

and teachers. The study of this topic requires acquaintance 

with basic concepts of calculus and physics at intermediate 

level. 

 

 

II. NEWTON'S SECOND LAW FOR VARIABLE 

MASS SYSTEMS  

 

Consider a particle of mass m which is moving with velocity 

v at time t. Under the action of the force F between the time 

instants t and t + dt, its velocity changes from v to v + dv. 

According to Newton's second law, the change of the linear 

momentum, dp, is given by 

 

                                   𝑑𝑝 = 𝐹𝑑𝑡,                                      (1) 

 

where p=mv. For constant mass, the previous equation entails 

                                     𝑚
𝑑𝑣

𝑑𝑡
= 𝐹.                                      (2) 

 

     Equation (2) represents Newton's second law commonly 

presented in textbooks. This form is particularly useful in 

obtaining the equation of motion of a constant mass particle. 

Equation (1) leads to an alternative form of Newton's second 

law, however:  

 

                                𝐹 =
𝑑𝑝

𝑑𝑡
=

𝑑

𝑑𝑡
(mv).                              (3) 

 

When applied to describe the dynamics of a constant mass 

particle, equations (2) and (4) provide equivalent expressions 

of Newton's second law. Furthermore, those equations are 

invariant under the Galilean transformation, defined by 
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                     𝑥′ = 𝑥 − 𝑢𝑡,              𝑣′ = 𝑣 − 𝑢,                  (4) 

 

where u is the velocity of the primed frame of reference 

relative to the unprimed frame.  

     The description of a variable-mass system is a bit more 

difficult. In order to explore this point, let us apply the 

Galilean transformations (4) to the equation of motion (3).         

     The invariance of Newton's second law enforces that the 

equation of motion in the primed frame of reference must 

retain the same form of equation (3): 

 

                                      𝐹′ =
𝑑

𝑑𝑡
(𝑚𝑣′).                             (5) 

 

The time derivative in the right-hand side yields 

  

                                 𝐹′ = m
dv

dt
+

𝑑𝑚

𝑑𝑡
(𝑣 − 𝑢).                  (6) 

 

and hence 

 

                              𝐹′ =
d

dt
(𝑚𝑣) −

𝑑𝑚

𝑑𝑡
𝑢 ≠ 𝐹.                  (7) 

 

So, the equation of motion (3) is not Galilean invariant when 

the particle mass is time dependent. In order to properly 

obtain the equation of motion, we have to apply the principle 

of conservation of linear momentum for the entire system, 

which is the basic principle behind the Newton's second law. 

Thus, consider a single-degree of freedom system with a time 

varying mass m, as illustrated in Fig. 1.  

 

 

 
 

FIGURE 1. The particle of mass m and velocity w collides with a 

particle of mass m and gets stuck in it (upper part). After the process, 

the new particle of mass m + m moves with velocity v + v (lower 

part). 
 

 

The system (the body labeled 1 in the figure) moves with 

velocity v at the time t. The particle of mass m (labeled 2 in 

the figure) and mean velocity w collides with the system 

during a time interval t, imparting mass to the system. 

Assuming that the mass of the entire system is conserved 

during the collision, the new mass and the new velocity of the 

original system increase to m + m and to v + v, 

respectively. The linear momentum of the system at the time 

t is thus given by p(t) = mv + (m)w, while the new linear 

momentum at the time t + t reads p(t+t) = (m + m)(v + 

v). Hence, the change in the total linear momentum is  

 

                         
𝑝

𝑡
= 𝑚

𝑣

𝑡
+

𝑚

𝑡
𝑣 −

𝑚

𝑡
(𝑤 − 𝑣).           (8) 

 

Taking the limit t  0, m  0, v  0 in equation (8), 

one arrives to 

 

                               
𝑑𝑝

𝑑𝑡
= 𝑚

𝑑𝑣

𝑑𝑡
−

𝑑𝑚

𝑑𝑡
(𝑤 − 𝑣),                   (9) 

 

where w - v is the velocity of the incoming mass with respect 

to the centre of mass. Combining equations (3)  and (9) one 

obtains 

 

                               𝐹 = 𝑚
𝑑𝑣

𝑑𝑡
−

𝑑𝑚

𝑑𝑡
(𝑤 − 𝑣),                   (10) 

 

which in turn can be put in the form 

 

                       𝑚
𝑑𝑣

𝑑𝑡
= 𝐹 +

𝑑𝑚

𝑑𝑡
(𝑤 − 𝑣),                     (11) 

                                                                                                

F being the net external force acting on the system. 

Analogously, for the case dm/dt<0 (system losing mass) we 

would obtain 

 

                             𝑚
𝑑𝑣

𝑑𝑡
= 𝐹 −

𝑑𝑚

𝑑𝑡
(𝑤 − 𝑣),                     (12) 

 

Equations (11) and (12) describe the motion of a time varying 

mass particle, and represent the proper extension of Newton's 

second law. The term 
𝑑𝑚

𝑑𝑡
(𝑤 − 𝑣) in the right-hand side of  

both quoted equations should be interpreted as a real force 

acting on the particle, apart from the external force F. For the 

particular case F=0, the equation (12) leads to the simplified 

equation of motion 

 

                               𝑚
𝑑𝑣

𝑑𝑡
= −

𝑑𝑚

𝑑𝑡
(𝑤 − 𝑣),                     (13) 

 

Equation (13) is known as the rocket equation, which 

describes the motion of rockets drifting in the free space. The 

relative velocity w-v represents the velocity of gases escaping 

from the rocket, and is often called the exhaust velocity, and 

denoted by 𝑣𝑒 [5, 7]. 

Also note that equation (10) may be put in the form 

 

                                𝐹 =
𝑑

𝑑𝑡
(𝑚𝑣) −

𝑑𝑚

𝑑𝑡
𝑤,                       (14) 

 

which entails that equation (14) recovers equation (3) in the 

particular case w=0. 

Finally, it is easy to verify that equation (14) is invariant 

under Galilean transformation. 
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III. ENERGY BALANCE 
 

The kinetic energy of the system at the time t is given by 

 

                        𝑇(𝑡) =
1

2
𝑚𝑣2 +

1

2
∆𝑚𝑤2,                        (15) 

 

while at the time 𝑡 + ∆𝑡 the kinetic energy is 

 

𝑇(𝑡 + ∆𝑡) =
1

2
(𝑚 + ∆𝑚)(𝑣 + ∆𝑣)2.             (16) 

 

Neglecting higher order terms in m and v, the change in 

the kinetic energy reads 

 

∆𝑇 = 𝑚𝑣∆𝑣 +
1

2
∆𝑚(𝑣2 − 𝑤2),             (17) 

 

which leads to 

 
𝑑𝑇

𝑑𝑡
= 𝑚

𝑑𝑣

𝑑𝑡
𝑣 +

1

2

𝑑𝑚

𝑑𝑡
(𝑣2 − 𝑤2).             (18) 

 

Inserting (11) into the right-hand side of equation (18), we 

obtain the power supplied by the force F, which reads 

 

𝐹𝑣 =
𝑑𝑇

𝑑𝑡
+

1

2

𝑑𝑚

𝑑𝑡
(𝑤 − 𝑣)2.                  (19) 

 

The time derivative of the kinetic energy of the particle 1 is 

explicitly given by 

 

                               
𝑑𝑇1

𝑑𝑡
= 𝑚

𝑑𝑣

𝑑𝑡
𝑣 +

1

2

𝑑𝑚

𝑑𝑡
𝑣2,                     (20) 

 

from which equation (18) can be put in the form 

 

                                 
 𝑑𝑇

𝑑𝑡
=

𝑑𝑇1

𝑑𝑡
−

1

2

𝑑𝑚

𝑑𝑡
𝑤2.                        (21) 

 

Then, inserting (21) into the right-hand side of (19) one 

obtains 

 

                    𝐹𝑣 =
𝑑𝑇1

𝑑𝑡
−

1

2

𝑑𝑚

𝑑𝑡
𝑤2 +

1

2

𝑑𝑚

𝑑𝑡
(𝑤 − 𝑣)2.         (22) 

 

Notice that for the case 
𝑑𝑚

𝑑𝑡
< 0 (system losing mass) we 

would obtain instead 

 

                  𝐹𝑣 =
𝑑𝑇1

𝑑𝑡
+

1

2

𝑑𝑚

𝑑𝑡
𝑤2 −

1

2

𝑑𝑚

𝑑𝑡
(𝑤 − 𝑣)2.         (23) 

 

In order to analyze the role of each term present in the right-

hand side of equations (22) and (23), consider for the sake of 

illustration a one-dimensional system with only two forms of 

energy: the kinetic energy T and the internal energy U.  (The 

reasoning used hereinafter in this section are not completely 

valid for the system described in the next sections, where 

other forms of energy are present, like gravitational potential 

energy and elastic potential energy.) So, the total energy can 

be written as E=T+U. Assuming no heat transfer between the 

system and the external environment it follows that 

 

                            𝐹𝑣 =
𝑑𝐸

𝑑𝑡
=

𝑑𝑇

𝑑𝑡
+

𝑑𝑈

𝑑𝑡
.                             (24) 

 

Comparing equations (19) and (24) we get 

 

                            
𝑑𝑈

𝑑𝑡
= ±

1

2

𝑑𝑚

𝑑𝑡
(𝑤 − 𝑣)2,                         (25) 

 

where the sign  () stands for  dm/dt >  0 (< 0).  

     Equations (24) and (25) tell that the work done by the 

external force F is not entirely converted into kinetic energy. 

     Regardless whether the system is losing or acquiring mass, 

part of that work is transformed into internal energy. In short: 

a particle of variable mass behaves like a dissipative system. 

     If we ignore external forces when two masses hit and stick 

together, it follows from (24) that 

 

                                   
𝑑𝑇

𝑑𝑡
= −

𝑑𝑈

𝑑𝑡
.                                   (26) 

 

Equation (26) refers to totally inelastic collisions, which 

entails that the change in kinetic energy during this class of 

collisions is negative. This explains what happens to the 

kinetic energy: it mostly goes into internal energy and heat, 

and some of it goes into sound waves, etc. 

 

 

IV. MODELING THE VARIABLE MASS 

OSCILLATOR 
 

In order to model the variable mass oscillator, consider a 

leaking bucket of water which is attached to a spring, as 

illustrated in Fig. 2. The water exits out the bucket through a 

small hole at the bottom. Assume that the mass loss of water 

and the motion of the oscillator are along a line (the $z$-axis).  

 

 
 

FIGURE 2. Oscillator with a variable mass. A bucket of water 

which is attached to a spring. The water flows out through a small 

hole in the bottom of the bucket. 
 

 

In this situation, and ignoring friction, the system is subjected 

to the action of three different forces, namely, the elastic force 

exerted by the spring, the weight of the oscillator, and the 

force exerted by the leaking water. In accordance with 

equation (12), one obtains [6]: 

 



Hilario Rodrigues et al. 

Lat. Am. J. Phys. Educ. Vol. 8, No. 2, June 2014 324 http://www.lajpe.org 

 

          𝑚
𝑑2𝑧

𝑑𝑡2 = −
𝑑𝑚

𝑑𝑡
𝑞 − 𝑘𝑧 − 𝑚𝑔,                  (27) 

 

where 𝑞 = 𝑤 − 𝑣, z(t) is the displacement of the centre of 

mass measured from the initial equilibrium position; w is the 

mean velocity at which the water leaves the system; 𝑣 =
𝑑𝑧/𝑑𝑡 is the velocity of the oscillator; k is the stiffness 

coefficient of the linear restoring force; and g is the 

acceleration of gravity. 

     Now, imposing the conditions 𝑤 = 𝑣 = 0, 
𝑑𝑚

𝑑𝑡
= 0, and 

𝑑2𝑧

𝑑𝑡2 = 0 at the time t = 0, provide the equilibrium position 

 

                         𝑧0 = −
𝑚(0)𝑔

𝑘
,                                 (28) 

 

where 𝑚(0) is the initial mass of the oscillator. If m is 

constant, the system would oscillate around the equilibrium 

position 𝑧0. So, by means of the transformation 

 
                                𝑧 → 𝑧 + 𝑧0.                             (30) 

 

The equation (27) turns into 

 

    𝑚
𝑑2𝑧

𝑑𝑡2 = −
𝑑𝑚

𝑑𝑡
𝑞 − 𝑘𝑧 + (𝑚(0) − 𝑚)𝑔.        (31) 

 
So, the ''instantaneous'' equilibrium position at every time t is 

computed by 

 

                         𝑧0(𝑡) =
𝑚(0)−𝑚(𝑡)

𝑘
𝑔,                         (32) 

 
which entails that as the water leaves the leaking bucket, the 

equilibrium position undergoes a continuous upward 

movement.  

The mass of water within the bucket has a quadratic 

dependence on the time (see appendix for details of 

calculation), which is given by 

 

                   𝑚𝑤(𝑡) = 𝑚𝑤(0) (1 − 𝑓𝑡√
𝑔

2ℎ0
)

2

,                 (33) 

 

where 𝑚𝑤(0) is the initial mass of water, 𝑓 =
𝑎

𝐴
, is the ratio 

between the cross-sectional areas, and ℎ0 is the initial height 

of the column of water. The mass of the oscillator is given by 

the summation of the mass of the bucket 𝑚𝑏, and the time-

varying mass of water  𝑚𝑤(𝑡). 

     Assuming the leaking of water occurs at a very low rate, 

one can neglect the effect of the first term on the right side of 

equation (31) on the dynamics of the oscillator. The equation 

of motion thus reads 

 

            (𝑚𝑏 + 𝑚𝑤)
𝑑2𝑧

𝑑𝑡2 = −𝑘𝑧 + (𝑚𝑤(0) − 𝑚𝑤)𝑔.      (34) 

 

 

 

V. NUMERICAL SOLUTION 

 
According to equation (33), the bucket of water is completely 

empty after the elapsed time given by 

 

                                     𝜏 =
1

𝑓
√

2ℎ0

𝑔
.                                  (35)  

 

For the time interval 0 ≦ 𝑡 ≦ 𝜏 the equation of motion (34) 

can be put in the form 

 

            𝑎 =
𝑑2𝑧

𝑑𝑡2 = −
𝑘𝑧−(𝑚𝑤(0)−𝑚𝑤)𝑔

𝑚𝑏+𝑚𝑤
,                     (36)  

 

After the elapsed time , the oscillations are governed by the 

equation of motion 

 

                𝑎 =
𝑑2𝑧

𝑑𝑡2 = −
𝑘𝑧−𝑚𝑤(0)𝑔

𝑚𝑏
,     𝑡 ≧ 𝜏.              (37) 

 

Henceforth we discuss approximate solutions of equations 

(36) and (37). With this aim, we use a simple numerical 

method which can be implemented, for example, in electronic 

calculators or even by using the Excel spreadsheet. 

     Thus, consider a generic function of time 𝑦(𝑡). We can 

assign to the time derivative of 𝑦(𝑡) the approximate 

expression 

 

                                    
 𝑑𝑦

𝑑𝑡
≈

𝑦(𝑡+ℎ)−𝑦(𝑡)

ℎ
,                          (38) 

 

which can be a good approximation if the time step h is small 

enough. This allows to compute the approximate value of y at 

the time 𝑡 + ℎ: 

 

                               𝑦(𝑡 + ℎ) ≈ 𝑦(𝑡) + ℎ
𝑑𝑦

𝑑𝑡
,                   (39) 

 

provided the time derivative of y at the time t.  

     Thus, consider the first order differential equation 

 

                        
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦),        𝑦(𝑡0) = 𝑦0.                 (40) 

 

Euler method consists of using (39) as the approximate 

solution of the differential equation (40). So, assign a value 

for the time step h, and set 𝑡0 + ℎ. Now, the first step from 𝑡0 

to 𝑡1 = 𝑡0 + ℎ yields the new value of y: 

 

                   𝑦1 = 𝑦(𝑡0 + ℎ) = 𝑦0 + ℎ𝑓(𝑡0, 𝑦0).          (41) 

 

After n successive steps, we get 

 

                          𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛),                    (42) 

 

where 𝑦𝑛 = 𝑦(𝑡𝑛). 

Further improvements of the Euler method allows 

approximate solutions of higher accuracy. One of these 

improvements is the midpoint method, which consists of 

taking function evaluations at the time step 𝑡𝑛 +
ℎ

2
, and then 
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applying the Euler method using these evaluations. So, 

following this method we have first to compute 

 

                       𝑦𝑛+1/2 = 𝑦𝑛 +
ℎ

2
𝑓(𝑡𝑛, 𝑦𝑛),                      (43) 

 

and then obtain the value of the function at the time 𝑡𝑛 + ℎ: 

 

                   𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛+1/2, 𝑦𝑛+1/2),              (44) 

 

where by definition 𝑡𝑛+1/2 = 𝑡𝑛 + ℎ.  Note that in equation 

(44) the derivative function 𝑓(𝑡, 𝑦) is evaluated at the 

midpoint time 𝑡𝑛 +
ℎ

2
, and not at the time 𝑡𝑛. 

In order to numerically solve equation (36) valid for the 

time interval 0 ≦ 𝑡 ≦ 𝜏, we first compute 𝑧(𝑡) and 𝑣(𝑡)      at 

the time step 𝑡𝑛 +
ℎ

2
: 

 

                                  𝑧𝑛+1/2 = 𝑧𝑛 +
ℎ

2
𝑣𝑛 ,                        (45) 

 

and 

 

                                  𝑣𝑛+1/2 = 𝑣𝑛 +
ℎ

2
𝑎𝑛,                       (46) 

where 

 

                          𝑎𝑛 = −
𝑘𝑧𝑛−(𝑚𝑤(0)−𝑚𝑤(𝑡𝑛)𝑔

𝑚𝑏−𝑚𝑤(𝑡𝑛)
,                  (47) 

 

with 𝑧𝑛 = 𝑧(𝑡𝑛) and  𝑣𝑛 = 𝑣(𝑡𝑛). The next step provides: 

 

                                  𝑧𝑛+1 = 𝑧𝑛 + ℎ𝑣𝑛+1/2,                    (48) 

  

and 

 

                                  𝑣𝑛+1 = 𝑣𝑛 + ℎ𝑎𝑛+1/2,                   (49) 

 

where now 

 

                    𝑎𝑛+1/2 = −
𝑘𝑧𝑛+1/2−(𝑚𝑤(0)−𝑚𝑤(𝑡𝑛+1/2)𝑔

𝑚𝑏−𝑚𝑤(𝑡𝑛+1/2)
.     (50) 

 

In order to compute the dynamical evolution of the oscillator 

for  𝑡 ≧ 𝜏, the equation (37) must be replaced by 

 

                               𝑎𝑛 = −
𝑘𝑧𝑛−𝑚𝑤(0)𝑔

𝑚𝑏
,                       (51) 

at the time 𝑡𝑛. 

 

 

VI. RESULTS 
 

In this section we present results obtained for the case of a 

bucket of mass 𝑚𝑏 = 1.0 kg, filled with the initial mass of 

water of 𝑚𝑤(0) = 10 kg with a column of initial height ℎ0 =
0.5 m. The bucket of water is attached to the spring of 

stiffness coefficient 𝑘 = 100 N/m. The mass of the oscillator 

is given at every time by 𝑚(𝑡) = 𝑚𝑏 + 𝑚𝑤(𝑡),  𝑚𝑤(𝑡) being 

the time varying mass of water.  

     The algorithm for solving the equations (36), (37) 

comprises the following steps. First, assign initial values to 

all variables: the elapsed time 𝑡 = 0; the initial position 𝑧 =
𝑧(0); the initial velocity v(0); the initial mass of water 

𝑚𝑤(0); the initial height of the water column ℎ0; the value of 

the ratio between the cross-sectional areas 𝑓 = 𝑎/𝐴. Assign 

values to constants 𝑔, k, and the mass of the bucket 𝑚𝑏. Then, 

compute the position 𝑧𝑛+1/2 at the time step 𝑡𝑛 + ℎ/2, given 

by equation (45); compute the acceleration step 𝑎𝑛 at the time 

step 𝑡𝑛, given by equation (47) for 0 ≦ 𝑡 ≦ 𝜏, and  by 

equation (50) for 𝑡 ≧ 𝜏; then, compute the velocity 𝑣𝑛+1/2 at 

the time 𝑡𝑛 + ℎ/2, given by equation (46). Compute the 

acceleration 𝑎𝑛+1/2 given by equation (50), or by (51) if 𝑡 ≧

𝜏. Now, compute the new values of 𝑣 and 𝑧 by using 

equations (49) and (48). The time 𝑡 is incremented by ℎ at 

each step. The new values of the mass of water within the 

bucket 𝑚𝑤(𝑡) is directly obtained from equation (33) as the 

function of time.  

     We start with the initial condition 𝑧(0) = 0 and    𝑣(0) =
0. Thus, the change of the dynamical state of the system is 

initially caused by the change in mass of the oscillator with 

time. We also compute the elastic potential energy 𝑈𝑘, and 

the gravitational potential energy, 𝑊, which are given 

respectively by 

 

𝑈𝑘 =
1

2
𝑘 (𝑧 −

𝑚0𝑔

𝑘
)

2

, 

and 

𝑊 = (𝑚𝑏 + 𝑚𝑤(𝑡))𝑔. 
 

The mechanical energy of the system is given by the 

summation of the elastic potential energy, the gravitational 

potential energy and the kinetic energy, namely 𝐸 = 𝑇 +
𝑊 + 𝑈𝑘. 

      In the carried out numerical simulations we adopt the 

value ℎ = 0.01 s for the time step. With this step we need a 

few thousand steps to perform the simulation. Assigning for 

the ratio 𝑓 = 𝑎/𝐴 the value 𝑓 = 0.01, for example, the water  

takes tens of seconds to exit the leaking bucket. So, this does 

not demand a huge computational time, providing however a 

very accurate numerical result. 

 

 
FIGURE 3. Position as a function of time for the value  f=0.01. The 

used values of the other parameters are = 9.8 𝑚. 𝑠−2, 𝑘 =
100 𝑁/𝑚, 𝑚𝑏 =  1.0 𝑘𝑔 (mass of the bucket), 𝑚𝑤(0)  =  10 𝑘𝑔 

(initial mass of water), and ℎ(0)  =  0.5 𝑚 (initial height of the 

water column). 
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Figure 3 depicts the behavior of the position of the oscillator 

as a function of time for the adopted values of the model 

parameters outlined in the caption of the figure. Notice that 

the ''instantaneous'' equilibrium position of the oscillator 

moves upward while the water within the bucket flows out.  

     The oscillations are obviously caused by the action of the 

restoring force, as the mass of the oscillator decreases. In 

special, one notices that the amplitude of the oscillations 

decreases, while the frequency increases as the mass of the 

oscillator decreases. The final equilibrium position, around 

which the system oscillates for 𝑡 > 𝜏, can be computed by 

using equation (28), which in the present case has the value 

0.98 𝑚. 

 

 
FIGURE 4. Energy as a function of time for 𝑓 = 0.01. The values 

of the other model parameters are the same used in the previous 

figure. 
 

Figure 4 shows the behavior of the energy of the oscillator as 

a function of time for the same set of values of the parameters 

used in Figure 3. As discussed in Section III we can see that 

the total energy of the oscillator is dissipated due to the mass 

loss of the system. 

 

 

VI. CONCLUSIONS 
 

In this work, we discuss the appropriate form of Newton's 

second law applied to single-degree of freedom systems with 

a time variable mass. We present a set of equations which are 

used to model the dynamics of a one-dimensional oscillator 

with a time-varying mass. The dependence of the mass on the 

time is taken into account, by means of a simple modeling 

(the leaking bucket of water) where the mass of the oscillator 

has a quadratic dependence on time. 

     The resulting equation of motion is numerically solved in 

terms of the improved Euler method, and some results for 

chosen values of the model parameters have been presented 

and discussed in the text.  

     According to the results obtained by the numerical 

simulations, the system shows a typical oscillatory behavior 

with "amplitude" and "frequency" which vary as the water 

leaves the bucket. At the end, there remains only the bucket 

that oscillates like a one-dimensional harmonic oscillator 

with constant amplitude and frequency. 

     This study, despite its simplicity, is intended to be used as 

a useful approach for students get acquainted with the physics 

of systems with time-varying mass at the undergraduate level. 

The conclusions must notice the new and remarkable 

contributions of the paper. Also the suggestions and 

shortcomings of the manuscript must be pointed out. 
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APPENDIX 
 

Let us thus consider a cylindrical bucket of water with cross-

sectional area 𝐴 with a column of water of height ℎ. At the 

bottom of the bucket there is a small hole with cross-sectional 

area 𝑎, with 𝑎 ≪  𝐴, through which the liquid flows out 

under the action of the gravity force. 

     As depicted in Figure 2, we place the point of reference 2 

at the free liquid surface, and the reference 1 at the bottom of 

the bucket. Neglecting losses, which is reasonable if the hole 

is tiny and the storage bucket is large and wide, we can apply 

the Bernoulli equation: 

 

        𝑝2 +
1

2
𝜌𝑄2 + 𝜌𝑔(𝑧1 + ℎ) = 𝑝1 +

1

2
𝜌𝑞2 + 𝜌𝑔𝑧1,    (A1) 

 
where 𝑝1 and 𝑝2 are the pressure at the bottom of the bucket 

and at the free liquid surface, respectively. The upper part of 

the bucket is open to the atmosphere, and the water leaks the 

bucket freely through the hole in the bucket bottom. So, we 

have 𝑝1 = 𝑝2 = 𝑝0, where 𝑝0 is the local atmospheric 

pressure. 𝑄 is the velocity at the free liquid surface and 𝑞 is 

the exit velocity of the water;  ℎ is the height of the free liquid 

surface relative to the bottom; 𝜌 is the density of the liquid; 

and 𝑧1 is the position of the bottom of the bucket in along the 

z-axis.  

     Because of the large cross-sectional area 𝐴 in comparison 

with the hole, the velocity 𝑄 can be set equal to zero. Thus, 

we can make these substitutions into the Bernoulli equation 

to obtain 
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                                     𝑞 = √2𝑔ℎ .                                 (A2) 

 

Notice that equation (A2) is valid even when the surface level 

is decreasing due to water leakage, provided that the time rate 

of change of ℎ and 𝑄 is sufficiently small. The rate at which 

the height ℎ decreases with time can be used to calculate the 

rate of loss of mass, applying the mass balance on the content 

of the bucket. In fact, from the equation of continuity the rate 

of loss of mass is related to the mass flow trough the equation 

 

                                    
𝑑𝑚

𝑑𝑡
= −𝜌𝑞𝑎.                                 (A3) 

 

On the other hand, the mass of water stored in the bucket at 

time t is given by 

 

                                 𝑚(𝑡) = 𝜌𝐴ℎ(𝑡).                              (A4) 

 

where ℎ(𝑡) is the height of the water column within the 

bucket.  

Inserting (A2) into (A3) yields 

 

                               
𝑑𝑚

𝑑𝑡
= −𝜌𝑎√2𝑔ℎ(𝑡).                         (A5) 

 
From (A4), one can put (A5) in the form  

 
𝑑𝑚

𝑑𝑡
= −𝑓√𝜌𝐴√2𝑔𝑚,                            (A6) 

where =
𝑎

𝐴
 . Thus we find 

 

                            
𝑑𝑚

𝑚1/2 = −𝑓√𝜌𝐴√2𝑔 𝑑𝑡.                        (A7) 

 

Integrating the equation (A7), we obtain the mass of water 

within the bucket as a function of time, given by equation 

(33). 

 

 


