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Abstract 
We discuss the motion of a projectile from takeoff ramp. Consider an object with a constant initial speed at the ground 

level moves up a takeoff ramp, with decreasing its speed due to gravity. It is launched from the top of the ramp, and 

after flying through the air, it lands on the ground. In this case, higher (lower) takeoff ramp leads to smaller (larger) 

launch speed, for given angle 𝜃 of incline of the takeoff ramp. Our problem is to find the optimal takeoff ramp which 

maximizes the range of the projectile for given 𝜃. One finds that 𝜃 = 30° is critical; the takeoff ramp can enhance the 

range only for 𝜃 < 30°. This problem is suitable for undergraduate students in calculus-based physics courses.  
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Resumen 
Discutimos el movimiento de un proyectil desde la rampa de despegue. Considere que un objeto con una velocidad 

inicial constante a nivel del suelo se mueve hacia arriba por una rampa de despegue, y su velocidad disminuye debido a 

la gravedad. Se lanza desde lo alto de la rampa y, tras volar por los aires, aterriza en el suelo. En este caso, una rampa 

de despegue más alta (más baja) conduce a una velocidad de lanzamiento más pequeña (más grande), para un ángulo 

dado θ de inclinación de la rampa de despegue. Nuestro problema es encontrar la rampa de despegue óptima que 

maximice el alcance del proyectil para θ dado. Uno encuentra que θ = 30° es crítico; la rampa de despegue puede 

mejorar el alcance solo para θ <30°. Este problema es adecuado para estudiantes de pregrado en cursos de física 

basados en cálculo. 
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I. INTRODUCTION  

 
Discussing the motion of a projectile is one of the most 

standard topics in introductory physics courses. In this 

problem, when the projectile is launched and lands at the 

same height, one finds that the horizontal range of the 

projectile is a maximum when the launching angle above the 

horizontal is 45°. It is discussed that if the launching point is 

located at some height above the horizontal, the optimal 

angle is no longer 45° [1]. Variations of this problem, such 

as the effects of air resistance [2], a projectile shot along a 

slope [3], solving method without calculus [4], discussions 

by using time of flight [5], the case of ski jump with a linear 

landing hill [6], have been studied by many authors. In Ref. 

[7], the minimum launch speed to hit a target above the 

horizontal is discussed.  

In this paper, we discuss the motion of a projectile 

launched from takeoff ramp. Let us consider that an object 

has an initial speed at the ground level and it moves up a 

takeoff ramp with decreasing its speed due to gravity, and 

finally it is launched from the takeoff ramp. The projectile 

flies through the air, and it lands at a point on the ground. In 

this motion, if the initial speed at the ground level is 

constant, the launch speed from the takeoff ramp depends on 

the height of the ramp. This means that higher (lower) 

takeoff ramp leads to smaller (larger) launch speed, for 

given angle of the takeoff ramp. Our problem is to find the 

optimal takeoff ramp to maximize the range of the projectile, 

and to find the condition that takeoff ramp enhances the 

range of the projectile relative to that of ordinary projectile 

motion. This optimization problem is suitable for 

undergraduate students in calculus-based physics courses. 

 

 

II. PROJECTILE FROM TAKEOFF RAMP 

 
Figure 1 shows a schematic diagram of a projectile from 

takeoff ramp. Let us consider that a point-like object has the 

initial speed 𝑣0 at time 𝑡 = 0 at the origin. It moves along a 

frictionless incline of a takeoff ramp, which makes an angle 

of  𝜃 above the horizontal and a length of  ℓ. It is launched 

from point P with a speed 𝑣𝑃  at time 𝑡𝑃 , and after flying 

through the air due to gravity, it lands at point Q at time 𝑡𝑄. 

The position of point P and Q is  (𝑥𝑃 , 𝑦𝑃) =

(ℓ cos 𝜃 , ℓ sin 𝜃)  and  (𝑥𝑄 , 0) , respectively, and we define 

the flying distance 𝐿  as  𝐿 = 𝑥𝑄 − 𝑥𝑃 .  
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FIGURE 1. Schematic diagram of a projectile from takeoff ramp. 

 

 

At point P, 𝑣𝑃  and 𝑡𝑃 is given by  
 

𝑣𝑃 = √𝑣0
2 − 2𝑔ℓ sin 𝜃 ,                             (1) 

𝑡𝑃 =
𝑣0 − 𝑣𝑃

𝑔 sin 𝜃
,                                             (2) 

 

where 𝑔 is the gravitational acceleration. Hereafter we 

suppose ℓ ≤ 𝑣0
2/(2𝑔 sin 𝜃), the object always flies out of 

the ramp.  

After flying through the air, the projectile lands at point 

Q, with 

 

𝑡𝑄 = 𝑡𝑃 +
1

𝑔
[𝑣𝑃 sin 𝜃 + √(𝑣𝑃 sin 𝜃)2 + 2𝑔ℓ sin 𝜃],   (3) 

 

𝑥𝑄 = 𝑥𝑃 + 𝑣𝑃 cos 𝜃 (𝑡𝑄 − 𝑡𝑃).                     (4) 

 

As a consistency check, when ℓ → 0, one can verify that 

Eq.(4) leads to the well-known results  

 

𝑥𝑄(ℓ = 0) = 𝐿0 =
𝑣0

2

𝑔
sin 2𝜃 .                                  (5) 

 

Now let us consider the optimization condition of the flying 

distance 𝐿 = 𝑥𝑄 − 𝑥𝑃, 

 

𝐿 =
cos 𝜃

𝑔
𝑣𝑃[𝑣𝑃 sin 𝜃 + 𝐴],                         (6) 

where 

 

𝐴 = √(𝑣𝑃 sin 𝜃)2 + 2𝑔ℓ sin 𝜃 .                   (7) 

 

For given 𝜃 , the extremum condition for 𝐿  is calculated 

from its derivative in terms of ℓ. Thus 

 

         
𝑑𝐿

𝑑ℓ
=

𝑑𝑣𝑃

𝑑ℓ
∙

𝑑𝐿

𝑑𝑣𝑃

 

=
𝑑𝑣𝑃

𝑑ℓ
∙

cos 𝜃

𝑔𝐴
(2𝑣𝑃𝐴 sin 𝜃 + 𝑣0

2 − 2𝑣𝑃
2 cos2 𝜃).   (8) 

 

From the extremum condition for 𝐿 , 𝑑𝐿/𝑑ℓ = 0 , the 

parenthesis in Eq. (8) must vanish. By squaring the  (9)𝑐𝑜𝑠,  

 

(2𝑣𝑃𝐴 sin 𝜃)2 = (−𝑣0
2 + 2𝑣𝑃

2 cos2 𝜃)2,          (9) 

gives 

𝑣𝑃 =
𝑣0

cos 𝜃
√

1 + sin 𝜃

2
,                            (10) 

 

where 𝑣𝑃 ≥ 0 . The other solution of Eq.  (9), 𝑣𝑃 =

𝑣0/ cos 𝜃 √(1 − sin 𝜃)/2, is not appropriate because it does 

not satisfy the original equation 𝑑𝐿/𝑑ℓ = 0.  This 

inappropriate solution arises from squaring the extremum 

condition, that is, Eq. (9). 

Substituting Eq. (10) into Eq. (1), we obtain the optimal 

length of the takeoff ramp 

 

ℓ𝑚𝑎𝑥 =
𝑣0

2

𝑔

sin 𝜃

(sin 2𝜃)2
(cos 2𝜃 − sin 𝜃).             (11) 

 

When the takeoff ramp has length of ℓ𝑚𝑎𝑥  , by substituting 

Eqs.  (10) and (11) into Eq.  (6) , we obtain the maximal 

value of the flying distance,  

 

𝐿𝑚𝑎𝑥 =
𝑣0

2

𝑔

1 + sin 𝜃

2 cos 𝜃
.                               (12) 

 

 

 
 

FIGURE 2. Relation of  ℓ̃𝑚𝑎𝑥 ,defined in the main text, and 

𝜃 from Eq. (11) (solid), and its upper bound 1/(2 sin 𝜃) (dashed). 

 

 

Figure 2 shows relation of a dimensionless parameter 

ℓ̃𝑚𝑎𝑥 = ℓ𝑚𝑎𝑥/(𝑣0
2/𝑔) and 𝜃 expressed in Eq.  (11)  (solid 

curve), and upper bound of ℓ̃ = ℓ/(𝑣0
2/𝑔) ,  1/(2 sin 𝜃) as 

discussed below Eq.(2) (dashed curve). As seen from the 

figure, larger ℓ̃𝑚𝑎𝑥  is monotonically decreasing function of 

 𝜃. It vanishes at 𝜃 = 30°, which corresponds to a solution 

of 

cos 2𝜃 − sin 𝜃 = 0,                              (13) 

 

derived from Eq.  (11) . The fact that  ℓ̃𝑚𝑎𝑥   becomes 

negative for 𝜃 > 30° tells us that takeoff ramp can enhance 

the flying distance only for 𝜃 < 30°. 

To see this, we plot the flying distance as a function of 

𝜃. Figure 3. shows  �̃�𝑚𝑎𝑥 = 𝐿𝑚𝑎𝑥/(𝑣0
2/𝑔)(solid curve) and 

 �̃�0 = 𝐿0/(𝑣0
2/𝑔)(dashed curve). As seen from the figure, 

�̃�𝑚𝑎𝑥 > �̃�0 is satisfied for 𝜃 < 30° , and �̃�𝑚𝑎𝑥 = �̃�0 at 𝜃 =
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30° . Since the takeoff ramp disappears for 𝜃 > 30° , the 

curves in this region has no physical meanings (shaded in 

the figure). We define the enhancement of the flying 

distance, ∆�̃�, from that of ordinary projectile motion as 

 

                        ∆�̃� = �̃�𝑚𝑎𝑥 − �̃�0 

=
2(1 + sin 𝜃)

cos 𝜃
(sin 𝜃 −

1

2
)

2

.                 (14) 

 

Red dotted curve in Figure 3 represents  ∆�̃�, and ∆�̃� ≥ 0 for 

𝜃 < 30°, and it has its minimal value  ∆�̃� = 0  when  𝜃 =
30°, as expected. An advantage of takeoff ramp is that the 

object has its initial height  ℓ sin 𝜃 at point P, although its 

launching speed 𝑣𝑃  becomes smaller than 𝑣0 . Launching 

from the takeoff ramp is more effective to enhance the 

flying distance for smaller 𝜃 , and such a benefit of the 

takeoff ramp is dissipated at 𝜃 = 30°. 

As an alternative way to find 𝜃 = 30°, one can derive 

the condition to enhance the flying distance from Eq. (6) 

without differentiation. Define ∆𝐿′ = 𝐿 − 𝐿0 . From the 

condition for ∆𝐿′ > 0 and after some computation, one finds 

 

ℓ <
𝑣0

2

𝑔
∙

1 − 4 sin2 𝜃

2 sin 𝜃
.                      (15) 

 

Since ℓ > 0 by definition, 𝜃 < 30° must be satisfied. And when 

Eq. (15) is satisfied, ∆𝐿′ > 0, that is, the flying distance is 

enhanced by takeoff ramp relative to that of the case without 

takeoff ramp.  

 

 
FIGURE 3. Parameters  �̃�𝑚𝑎𝑥  , �̃�0 , and ∆�̃� , defined in the main 

text, as a function of  𝜃. The shaded region 𝜃 > 30° is excluded.  

 

 

III. CONCLUSIONS 

 
We have discussed the motion of a projectile from a takeoff 

ramp. Since higher (lower) takeoff ramp leads to smaller 

(larger) launch speed, for given angle of the takeoff ramp, 

the range of the projectile nontrivially depends on the size of 

the takeoff ramp. By solving the extremum condition for the 

range of the projectile, we found that 30° of the launching 

angle 𝜃 is critical; for 𝜃 < 30°, one can find the optimal size 

of the takeoff ramp to maximize the range of the projectile. 

In this case, the range is larger than that of the case without 

takeoff ramp. On the other hand, for 𝜃 > 30°, takeoff ramp 

never enhances its range. This optimization problem is a 

good exercise for undergraduate students in calculus-based 

physics courses. 
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