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Abstract 
Satyendra Nath (S.N.) Bose is one of the great Indian scientists. His remarkable work on the black body radiation or 

derivation of Planck’s law led to quantum statistics, in particular, the statistics of photon. Albert Einstein applied Bose’s 

idea to a gas made of atoms and predicted a new state of matter now called Bose-Einstein condensate. It took 70 years 

to observe the predicted condensation phenomenon in the laboratory. With a brief introduction to the formative period 

of Professor Bose, this research survey begins with the founding works on quantum statistics and, subsequently, provides 

a brief account of the series of events terminating in the experimental realization of Bose-Einstein condensation. We 

also provide two simple examples to visualize the role of synthetic spin-orbit coupling in a quasi-one-dimensional 

condensate with attractive atom-atom interaction. 
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Resumen 
Satyendra Nath (S.N.) Bose es uno de los grandes científicos indios. Su notable trabajo sobre la radiación del cuerpo 

negro o la derivación de la ley de Planck condujo a la estadística cuántica, en particular, la estadística de fotones. Albert 

Einstein aplicó la idea de Bose a un gas formado por átomos y predijo un nuevo estado de la materia que ahora se llama 

condensado de Bose-Einstein. Fueron necesarios 70 años para observar en el laboratorio el fenómeno de condensación 

previsto. Con una breve introducción al período de formación del profesor Bose, este estudio de investigación comienza 

con los trabajos fundacionales sobre estadística cuántica y, posteriormente, proporciona una breve descripción de la 

serie de eventos que terminaron en la realización experimental de la condensación de Bose-Einstein. También 

proporcionamos dos ejemplos simples para visualizar el papel del acoplamiento sintético de órbita de espín en un 

condensado casi unidimensional con interacción atractiva átomo-átomo. 

 

Palabras clave: S. N. Bosé; Espectro de cuerpo negro; Estadísticas cuánticas; Enfriamiento y captura; Realización 

experimental de la condensación de Bose-Einstein; Acoplamiento de órbita de giro. 

 

 

I. INTRODUCTION  
 

At the end of nineteenth century, properties of physical 

systems would be studied by using (i) classical mechanics, 

(ii) Maxwell’s theory of electromagnetism and (iii) 

thermodynamics. The developments in (i) - (iii) made people 

believe that ultimate description of nature had been 

completed. However, at the turn of the twentieth century such 

a belief was challenged on two major fronts. First, Albert 

Einstein developed the special theory of relativity in 1905 and 

general theory of relativity in 1915. Both these revolutionary 

theories had profound impact on classical mechanics. In the 

special theory, the Newtonian formulation of mechanics was 

shown to be an approximation that applies only at low 

velocities. The Newtonian concept of an absolute frame of 

reference as well as the assumption of the separation of space 

and time was shown to be invalid at high velocities. The 

general theory of relativity superseded Newton’s law of 

gravitation by providing a geometrical theory for the origin 

of gravitational force [1]. 

The other profound developments that led to 

revolutionary impacts on classical mechanics were quantum 

physics and quantum field theory formulated by Bohr, 

Sommerfeld, de Broglie, Heisenberg, Born, Schrödinger and 

Dirac. This conceptual revolution in physics took place 

during the first three decades of the twentieth century. The 

main objective was to explain several microscopic 

phenomena such as black-body radiation, photoelectric 

effect, atomic stability and atomic spectroscopy. Classical 

concepts were inadequate to provide their correct description; 

we needed a new theory - the so-called quantum theory. The 

origin of this theory is perhaps embedded in a talk given by 

Max Planck on December 14, 1900 to the German Physical 

society on the continuous spectrum of the frequencies of light 

emitted by an ideal heated body or the so-called black body 

[2]. Here Planck’s immediate concern was to provide a 

radiation formula that can account for experimentally 

confirmed prediction of the black-body spectrum. He 

considered the black body as an ensemble of charged 

oscillators and derived a formula that reduces to Wien and 
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Rayleigh-Jeans radiation laws in appropriate limits. As is 

well known, the Rayleigh-Jeans radiation formula when 

integrated over all frequencies leads to ultraviolet 

catastrophe. Planck’s law gives a way out from this crisis. 

Since the radiation law as given by Max Planck is based on 

an educated guess, it was felt that Planck’s formula should be 

derived from the first principle of statistical mechanics. In 

this context an unknown Indian-Satyendranath Bose, a young 

physicist from Dacca University (now in Bangladesh) 

provided a derivation of the Planck’s law without reference 

to classical electrodynamics. The judgement of history on 

Bose’s paper is that it not only laid the foundation stone of 

quantum statistics but also justified the photon concept of 

light that Einstein had championed since 1905. Einstein 

developed Bose’s concept further, extended it to monatomic 

ideal gases, and predicted what is known as the Bose-Einstein 

condensation. As named by Paul Dirac, particles obeying 

Bose statistics has come to known as bosons. According to 

Abraham Pais ‘The paper by Bose is the fourth and last of the 

revolutionary papers of the old quantum theory, the other 

three being by Planck, Einstein and Bohr [3]. Significantly 

enough, Bose’s name is one of the six which under graduate 

physics students come across in the course of statistical 

mechanics - the others being Maxwell, Boltzmann, Einstein, 

Fermi and Dirac [4].  

Satyendra Nath Bose was not an institution builder like 

Meghnad Saha, Homi Janngi Bhaba, Prasanta Mahalanobis 

or Shanti Swarup Bhatnagar. Throughout his life he was a 

professor with profound interest in different branches of 

science, statistics and mathematics, literature and music. He 

was very generous, gentle and, particularly, not caring about 

the glamorous aspects of science. It is, therefore, an 

interesting curiosity to look back into the formative period of 

Professor Bose and envisage a pedagogic study to visualize 

how Bose statistics led to our current understanding of the so-

called Bose-Einstein condensate which has effectively 

changed our current understanding of matter [5]. 

 

 

II. REMEMBERING THE EARLY LIFE OF BOSE 
 

Satyendranath Bose was born in Calcutta (now called 

Kolkata) on the first January, 1894 in a high caste Hindu 

family with two generations of English education behind 

him. Both his grandfather, Ambika Charan, and father, 

Surendra Nath, were Government employees in British India. 

Satyendranath had an inborn talent and would have 

flourished under any circumstances. But it was a lucky 

coincidence that he found a congenial atmosphere. 

Schooling of little Satyen began at the age of five. His 

family was then living at north Calcutta. First, he was 

admitted to ‘Normal School’ close to their residence and then 

shifted to the famous Hindu School which had a glorious 

tradition behind it. Although Satyendranath had varied 

interest, he was particularly strong in mathematics. The 

mathematics teacher of the school, Upendranath Bakshi, was 

a legend. He was quick to recognize the signs of genius in the 

boy. Once, in a test examination, he gave Satyen 110 marks 

out of 100; his argument was that, in the answer script, Satyen 

did not skip any of the alternatives. Mr. Bakshi even believed 

that one day Satyen would become a great mathematician like 

Laplace or Cauchy [6]. 

In the entrance examination of 1909 Satyen stood fifth in 

order of merit. In addition to mathematics, he did very well 

in Sanskrit, History and Geography. But he opted for the 

science course and joined the intermediate science class at the 

Presidency College. In the intermediate examination of 1911, 

Styendranath stood first and his illustrious colleagues 

Meghnad Saha (coming from Dacca College) and Nikhil 

Ranjan Sen secured the second and third positions 

respectively. All of them joined the B. Sc. class in the 

Presidency College and opted for mixed Mathematics. In the 

B. Sc. Examination of 1913 Satyendranath Bose stood first, 

Meghnad Saha second, and Nikhil Ranjan third, all in the first 

class. The same result was repeated in the M. Sc. mixed 

mathematics examination of 1915 except that Nikhil Ranjan 

did not appear in the examination in that year. The bright 

Satyendranath was now ready for a career. 

 

 

III. BEGINNING THE CARRIER 
 

After completing the formal education in schools and 

colleges it was quite natural for Satyen to look for the 

prospect open before him. In those days jobs were difficult to 

get. But situation began to change as Sir Asutosh 

Mookherjee, the mathematician Vice Chancellor of Calcutta 

University introduced post graduate teaching program at the 

University. He immediately needed a band of teachers to run 

the program. In 1916 both Satyendranath and Meghnad were 

appointed as lecturers in the Applied Mathematics 

Department. But neither of them felt comfortable with the 

then Ghosh Professor of the Department, Dr. Ganesh Prasad. 

With kind permission of Sir Asutosh, both of them were 

transferred to the Physics Department although their formal 

training in Physics was up to B.Sc. level only. Bose and Saha 

were entirely self-taught in Physics. They studied modern 

Physics on their own and, remarkably enough, they translated 

Einstein’s papers on the theory of relativity from German to 

English [7]. During 1920s the situation in the Physics 

Department of the Science College at Calcutta was becoming 

rather uncomfortable due to inadequacy of technical 

resources. Meanwhile, Bose was looking for a better 

opportunity. At that time a new university was established at 

Dacca and the authorities there were looking for competent 

teachers. Bose was offered readership. When Sir Asutosh 

came to know this, he expressed his willingness to increase 

Bose’s salary. But Bose had already given his words to accept 

the appointment at Dacca. In 1921 he joined Dacca 

University. Mr. P. J. Hartog, the vice chancellor of the 

University gave Bose the task of building a new Department 

– including setting up of laboratories and teaching advance 

courses in Physics for B. Sc. Honours and M. Sc. students. 

Meanwhile, the library was also being equipped with books 

and journals. Bose taught thermodynamics and Maxwell’s 

theory of Electromagnetism. Just as his first group of students 

graduated in 1923, Bose received a letter from the University 

authority notifying that his appointment will not be extended 

beyond a year. The reason behind such a decision was a 

conflict between government of India and the provincial 
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government of Bengal regarding fund allocation for the 

University. This led Bose to a awkward position to keep his 

appointment. It was under this troubled situation that he 

wrote his famous paper on the derivation of Planck’s law. The 

story regarding publication of the paper is well documented 

in the scientific literature. He sent the article for publication 

to Philosophical Magazine in the beginning of 1924. After six 

months the editors informed him that the referees had given 

negative reports. He sent the rejected paper to Albert 

Einstein. Einstein was impressed; he himself translates it 

from English to German and submitted for publication in 

Zeitschrift für Physik with an added note, “In my opinion 

Bose’s derivation of the Planck’s formula signifies an 

important advance. The method used also yields the quantum 

theory of ideal gas, as I will work out in detail elsewhere.” It 

is perhaps the second sentence which contains the germ of 

Bose-Einstein condensation observed in the laboratory [8 – 

10] after seventy years since the publication of Bose’s paper 

[11]. In this context it will not be an exaggeration to say that 

it required the genius of Einstein to realise the far-reaching 

consequence of the work by Bose. During a friendly visit to 

Dacca in March 1924, Saha brought to Bose’s attention about 

the new attempts by Wolfgang Pauli, and by Albert Einstein 

and Paul Ehrenfest to derive Planck’s law. Saha’s visit, 

perhaps, provided further impetus to Bose for thinking about 

the interaction of radiation with matter. In fact, this led Bose 

writing a second paper that he again sent to Einstein. We shall 

now present Bose’s derivation of Plank’s law. Needless to 

say, we shall begin by considering historically significant 

discoveries that played a key role to explain the spectrum of 

black body radiation as visualized by Max Planck. 

 

 

IV. BLACK-BODY RADIATION, PLANCK’S 

LAW AND BOSE STATISTICS 
 

A. The observed Black-body spectrum 

 

It is a common experience that all material bodies when 

heated emit radiation. The spectrum of black-body radiation 

represents one of the early experimental results, the 

theoretical explanation of which ultimately led to quantum 

ideas. Experimentally, the black-body radiation spectrum 

was first studied by Tyndall [12]. There are two important 

terms that are commonly used to characterize the nature of 

the radiating substance. These are the so-called emissive and 

absorptive powers. A black body is made up of a substance 

whose absorptive power is unity. The term black body was 

coined by Kirchhoff [13].  

Figure 1 gives the schematic diagram of the original 

Tyndall experiment. It consists of the black-body light 

source, a collimating slit and lens, a prism and focusing lens, 

and light sensor mounted on a rotating arm. A rotary motion 

sensor measures the angle. The incandescent light source that 

emits light through a small cavity is a perfect emitter. When 

light from the black body is cast through a prism, the 

observed spectrum is continuous. Different wavelengths of 

light will project to different angles. 
 

 

 

 

 
 

FIGURE 1. Diagram for the setup of Tyndall experiment. 
 

In this experiment, parallel light rays travel through the 

collimating lens, which allows the light rays to remain 

parallel. Passing through the prism, the light rays refract and 

project in front of the aperture slit over the light sensor. The 

light sensor detects and records the light intensity as voltage. 

So, by measuring the voltage as a function of angle, one can 

find the intensity of radiation in the spectrum as a function of 

wavelength.  

Figure 2 displays a typical black-body spectrum giving 

the intensity as a function of wave length. The curves in this 

figure clearly show that the black-body spectrum is 

temperature dependent. The intensity of radiation at any 

given temperature tends to zero at both shorter and longer 

wavelengths and has a maximum in between. The maximum 

tends towards shorter wavelength as temperature increases. 

 

B. Attempts for theoretical explanation 
 

Calculating the black-body curve was a major challenge in 

theoretical physics during the late nineteenth century because 

of the following. 

 

 
 

FIGURE 2. Black-body spectrum. Power density is measured in 

the unit of 103 𝑊𝑎𝑡𝑡𝑠/𝑚3 and wavelength in 𝑛𝑚 

 

 

(1) The radiation spectrum is not influenced by factors 

like the substance of emitting body or condition of its 

surface. The black-body spectrum is then a pure and 

ideal case. If one could describe the energy 

distribution of this ideal case then one would learn 

something about radiation process in all cases. 

(2) It is the basic thermodynamic state of light in which 

radiation is in thermal equilibrium with a given 

temperature. Light is an electromagnetic field. The 

black-body radiation shows that the continuous 

electromagnetic field can have temperature 
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dependence. This point was not physically realizable 

at that time. 
In view of the above there were attempts to explain the nature 

of the black-body spectrum by using thermodynamical 

methods. The thermodynamical consideration of perfect gas 

led to far-reaching consequences like the discovery of 

temperature radiation. In this context we note the following 

similarities between a perfect gas and black-body radiation 

both of which may be supposed to be confined in enclosures. 

(i)  In the kinetic theory we assume a perfect gas as being 

an assembly of particles having all velocities from 

zero to infinity and moving in all directions. 

(ii)  In the case of black-body radiation, the radiation also 

proceeds in all directions and is composed of waves of 

all lengths. 

(iii)  The gas molecules in a perfect gas exert pressure on 

the wall. 

(iv)  In the case of radiation also, the light waves carry 

momenta and exert pressure when they are incident on 

the walls. 

Thus, it was tempting to find analogy between black-body 

radiation and a perfect gas. Studies in the distribution of 

energy in the black-body spectrum were begun by Wien [14]. 

The radiation emitted by a black body is not confined to a 

single wavelength but spreads over a continuous spectrum. 

The problem was to determine how the energy is distributed 

over different wavelengths. Wien showed that 𝐸𝜆𝑑𝜆 i. e. the 

amount of energy contained in the spectral region included 

within the wavelengths 𝜆 and  𝜆 + 𝑑𝜆 emitted by a black body 

at a temperature 𝑇 is of the form 

 

                            𝐸𝜆𝑑𝜆 =
𝐴

𝜆5 𝑓(𝜆𝑇)𝑑𝜆.                           (1) 

 

Using 𝜆 = 𝑐/𝑣, Eq. (1) can be written in the equivalent form 

 

                          𝑣𝜈𝑑𝜈 = 𝐵𝜈3𝜑 (
𝜈

𝑇
) 𝑑𝜈,                            (2) 

 

with 𝑣𝜈, the energy density of the radiation having frequency 

𝜈. This expression was obtained from purely 

thermodynamical consideration applied on a Gedanken 

experiment which involves a spherical enclosure having 

perfectly reflecting walls capable of slowly moving 

outwards. The enclosure was assumed to be maintained at 

some temperature and a small black-body of negligible heat 

capacity was placed inside it. Formula in Eq. (1) was derived 

by considering thermal equilibrium between the two. As a 

consequence of adiabatic expansion Wien could deduce  

 

                𝜆 𝑇 = Constant.                                   (3) 

 

Equation (3) is often called the displacement law [2, 14]. The 

physical interpretation of the law is that if radiation of a 

particular wavelength at a certain temperature is adiabatically 

altered to another wavelength, then the temperature changes 

in the inverse ratio. Wien also made assumptions regarding 

the mechanism for emission and absorption of radiation. The 

radiation inside a hallow enclosure was supposed to be 

produced by a resonator of molecular dimension and the 

frequency of the wave emitted is proportional to the kinetic 

energy of the resonators. The resonators were supposed to 

obey the Boltzmann statistics [15]. This consideration 

converts the energy distribution law in Eq. (1) in the form 

 

                     𝐸𝜆𝑑𝜆 =
𝐴

𝜆5 𝑒−𝑐2/𝜆𝑇𝑑𝜆,                              (4) 

 

where 𝑐2 = 𝛼 𝑐/𝑘𝐵 and 𝛼, constant. 

Let us now try to see to what extent the formula in Eq. (3) 

can explain the experimental black-body spectrum. For given 

values of 𝑐2 and 𝐴, 𝐸𝜆 vanishes at 𝜆 = 0 and 𝜆 = ∞. Thus, it 

appears that the energy distribution law in (3) is a good 

candidate to explain black-body spectra as given in figure 2.  

More specifically,  

(i) Paschen [16] working with light of short wavelength 

verified that Wien’s formula fits the data for short 

waves. 

(ii)  On the other hand, Lummer and Pringshiem [17] 

working with long waves and high temperature found 

considerable disagreement of the theoretical values 

from the experimental results. 

In the above context we note that thermodynamical 

consideration could not give any improved expression for 

𝑓(𝜆𝑇) to fit the experimental data. Wien discovered his 

energy distribution law in 1893. After seven years Lord 

Rayleigh [18] attempted to find an energy distribution 

function by the use of classical electromagnetic theory. The 

work was completed by Sir James Jeans [19]. The law 

discovered by them goes by the name Rayleigh-Jeans law. To 

derive the law, they considered a black body chamber in the 

form of a parallelepiped with perfectly reflecting walls. Also, 

they assumed that there is a black particle inside. In the 

course of time the enclosure will be filled with stationary 

waves of all lengths, for the particle emits radiation which is 

reflected back by the wall. The reflected and incident waves 

interfere and form stationary waves. 

The black body chamber is filled with diffuse radiation of 

all frequencies between 0 to ∝. Using the above picture Lord 

Rayleigh found out the number of possible wave motion 

having their frequencies between 𝜈 and 𝜈 + 𝑑𝜈.  The number 

of vibrations per unit volume was calculated as 
4𝜋𝜈2 

𝑐3 𝑑𝜈. 

Since electromagnetic waves are transverse, they can be 

polarized and each polarized component is independent of the 

other. Thus, the required number of vibrations per unit 

volume is 
8𝜋𝜈2 

𝑐3 𝑑𝜈. Converting frequency into wavelength the 

number becomes 

 

                   
8𝜋

𝜆4 𝑑𝜆.                                        (5) 

 

The energy of each vibration is 𝑘𝐵𝑇. In view of this the 

energy distribution law obtained by Rayleigh and Jeans is 

given by 

 

                        𝐸𝜆𝑑𝜆 =
8𝜋

𝜆4 𝑘𝐵𝑇 𝑑𝜆.                            (6) 

 

The distribution in Eq. (6) can account for the long 

wavelength part of the black-body spectrum. For smaller 

values of 𝜆, 𝐸𝜆 tends to ∝. This is the so-called ultraviolet 

catastrophe. This implies that if the black body chamber is 
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initially filled with infrared radiation, finally it will be filled 

up with ultraviolet radiation. Thus, we see that neither of the 

radiation formulas, one given by Wien and other given by 

Rayleigh and Jeans, can explain the black-body spectrum. 

Therefore, explanation of the black-body spectrum using 

theoretical consideration assumed the status of an unsolved 

problem. 

 

 

C. Planck’s Law of black-body radiation 

 

Planck [20] imagined that a black-body radiation chamber is 

filled up not only with radiation, but also with the molecules 

of a perfect gas. At that time, the exact mechanism of 

generation of light by atomic vibrations or of absorption of 

light by atoms and molecules was unknown. Planck, 

therefore, introduced resonators of molecular dimensions as 

the via media between radiation and gas molecules. These 

resonators absorb energy from the radiation, and transfer 

energy partly or wholly to the molecules when they collide 

with them. In this way thermodynamical equilibrium is 

established. 

The resonators introduced by Planck were dipole 

oscillators which may be described as Hertzian oscillators of 

molecular dimensions such that the density 𝑣𝜈 of radiation of 

frequency 𝜈 could be written as  

 

                𝑣𝜈 =
8𝜋𝜈2 

𝑐3 𝐸𝜈 ,                                 (7) 

 

where 𝑣𝜈 is the mean energy of a resonator emitting the 

radiation. According to classical idea 𝐸𝜈 = 𝑘𝐵 𝑇.  As a result, 

the expression in Eq. (7) gives the Rayleigh-Jeans law which 

is inconsistent with the experimental data. Planck abandoned 

the hypothesis of continuous emission of radiation by 

resonators, and assumed that they emit energy only when the 

energy is an integral multiple of certain minimum energy 𝜖. 

As we know currently, this assumption is equivalent to light 

quantum hypothesis of Einstein [21]. In any case, let us try to 

calculate the mean energy of these resonators. The 

probability that a resonator will possess the energy 𝐸 is 

𝑒𝑥𝑝(−𝐸/𝑘𝐵𝑇). Let 𝑁0,  𝑁1,  𝑁2, … , 𝑁𝑟 , …. be the number of 

resonators having energies 0, 𝜖, 2𝜖, 3𝜖, … . , 𝑟𝜖, …. Then we 

have 

 

      𝑁 = 𝑁0 + 𝑁1 + 𝑁2 + ⋯ + 𝑁𝑟 + ⋯,                  (8) 

 

and  

 

𝐸 = 𝜖[𝑁1 + 2𝑁2 + 3𝑁3 + ⋯ + 𝑟𝑁𝑟 + ⋯ ],           (9) 

 

with  

 

                      𝑁𝑟 = 𝑁0𝑒−𝑟𝜖/𝑘𝐵𝑇.             (10) 

 

Using Eq. (10) in (8) we get  

 

                              𝑁 =
𝑁0

1−exp [−
𝜖

𝑘𝐵𝑇
]
 .     (11)  

 

Again using Eq. (10) in (9) we get, 

                          𝐸 = 𝜖𝑁0
exp [−𝜖/𝑘𝐵𝑇]

(1−exp [−𝜖/𝑘𝐵𝑇])2.                       (12) 

 

Dividing Eq. (12) by (11) we can write 

 

         
𝐸

𝑁0
=

𝜖

exp[−
𝜖

𝑘𝐵𝑇
]−1

.                            (13) 

 

We know from the law of equipartition of energy that the 

mean energy of a resonator is 𝑘𝐵𝑇. This result agrees with 

that given in Eq. (13) only at an extremely high temperature. 

The energy assigned to the resonators, namely, 

0, 𝜖, 2𝜖, 3𝜖, … . , 𝑟𝜖, …. correspond to the light quantum 

hypothesis in that resonators can have only discrete set of 

energies. Thus, the mean energy given in Eq. (13) is a 

quantum law. Using Eq. (13) in Eq. (7) we get the energy 

density inside the enclosure as 

 

                𝑢𝜈𝑑𝜈 =
8𝜋𝜈2

𝑐3

𝜖 𝑑𝜈

exp[−
𝜖

𝑘𝐵𝑇
]−1

.          (14) 

 

Comparing Eq. (14) with (2), the Wien’s distribution law, we 

see that 𝜖 must be proportional to 𝜈. In view of this, Planck 

took 𝜖 = ℎ𝜈, where ℎ is the so-called Planck’s constant. Thus 

 

       𝑢𝜈𝑑𝜈 =
8𝜋ℎ𝜈3

𝑐3

𝑑𝜈

exp[−
ℎ𝜈

𝑘𝐵𝑇
]−1

.         (15) 

 

Using 𝑑𝜈 = −
𝑐

𝜆2 𝑑𝜆, we get  

 

   𝑢𝜆𝑑𝜆 =
8𝜋ℎ𝑐

𝜆5

𝑑𝜆

exp[−
𝑐ℎ

𝜆 𝑘𝐵𝑇
]−1

.                      (16) 

 

Equation (16) is known as the Planck’s law of radiation. In 

the short wavelength limit Eq. (16) gives the Wiens 

distribution law and in the long wavelength limit we get 

Rayleigh-Jeans law. Thus, the Planck’s formula could 

explain the black -body spectrum satisfactorily. 

Planck’s hypothesis that resonators can have only discrete 

energies resolved the essential mysteries of the black-body 

radiation. The subsequent works of Einstein on the 

photoelectric effect and of Compton on the scattering of X-

rays established the discrete or quantum nature of radiation 

[22]. Thus, Planck’s work is a statement of quantum 

hypothesis of light. A quantum of radiation goes by the name 

photon. It was then natural to look for derivation of Planck 

radiation formula by treating the black-body radiation as a 

gas of photons in a similar way as Maxwell derived his 

distribution law for a gas of conventional molecules. But a 

gas of photons differs radically from a gas of conventional 

molecules because Maxwell’s molecules are classical objects 

while photon is a purely quantum mechanical concept and is 

thus indistinguishable. In this context Bose derived a 

Statistics for indistinguishable particles (quantum statistics) 

and made use of it to deduce Planck’s formula. In his historic 

paper of 1924, Bose [11] treated black-body radiation as a gas 

of photons; however, instead of considering the allocation of 

the “individual” photons to the various energy states of the 

system, he fixed his attention on the number of states that 
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contained a particular number of photons. We shall try to 

elucidate this point in some detail. 

 

 

D. Bose Statistics 

 

Let us try to calculate the distinct number of ways in which 

𝑁𝑠 indistinguishable particles can be distributed in 𝐴𝑠 

indistinguishable boxes. We refer to these boxes as cells since 

they represent minimum volume in the phase space when we 

apply this method for the derivation of Planck’s law. Let the 

cells be designated as 𝑥1, 𝑥2, 𝑥3 … … . , 𝑥𝐴𝑠
. A particular 

distribution can be represented by 

 

        𝑥1
𝛼𝑥2

𝛽
… … … . 𝑥𝐴𝑠

𝛾
,                       (17) 

 

where 𝛼, 𝛽, … … … , 𝛾 are the number of particles in the cells 

𝑥1, 𝑥2, … … 𝑥𝐴𝑠
 respectively.  Clearly, 

 

           𝛼 + 𝛽 + ⋯ + 𝛾 + ⋯ = 𝑁𝑠.              (18) 

 

Now consider the product 

 

(𝑥1
0 + 𝑥1

1 + 𝑥1
2 + ⋯ 𝑥1

𝑟 + ⋯ )(𝑥2
0 + 𝑥2

1 + 𝑥2
2 + ⋯ 𝑥2

𝑟 +

⋯ ) … … … . (𝑥𝐴𝑠
0 + 𝑥𝐴𝑠

1 + 𝑥𝐴𝑠
2 + ⋯ 𝑥𝐴𝑠

𝑟 + ⋯ ),                (19) 

 

where each factor consists of an infinite number of terms. In 

this product we have all possible combinations of the powers 

of  𝑥1, 𝑥2, 𝑥3 … … . , 𝑥𝐴𝑠
. Hence the number of ways of 

distributing 𝑁𝑠 particles in the 𝐴𝑠 cells is equal to the number 

of those terms of type (17) for which the condition (18) is 

satisfied. 

Now let 𝑥1 = 𝑥2 = 𝑥3 = ⋯ = 𝑥𝐴𝑠
= 𝑥. The number of 

combinations in which the 𝑁𝑠 indistinguishable particles can 

be distributed in 𝐴𝑠 cells is equal to the coefficient of 𝑥𝑁𝑠  in 

this expression 

 

(𝑥1 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑟 + ⋯ )𝐴𝑠 = (1 − 𝑥)−𝐴𝑠.        (20) 

 

Thus, the number of ways in which 𝑁𝑠 number of 

indistinguishable particles can be distributed in 𝐴𝑠 

indistinguishable cells is 

 

                    
(𝐴𝑠+𝑁𝑠−1)!

(𝐴𝑠−1)! 𝑁!
.                                     (21) 

 

This is the so-called Bose statistics. 

 

E. Bose’s deduction of Planck’s law 

 

A black-body chamber may be supposed to be full of photons 

in thermal equilibrium. The problem of finding spectral 

distribution of energy then reduces to that of finding the 

number of photons possessing energy ℎ𝜈 in a black-body 

chamber having temperature 𝑇. Bose realized the problem in 

this way and gave a very powerful method for the derivation 

of Planck’s law [23]. According to quantum hypothesis, a 

radiation of frequency 𝜈 consists of photons of energy ℎ𝜈. 

The photons move in all possible directions with the constant 

velocity 𝑐 and momentum ℎ𝜈/𝑐. Thus 

𝑝𝑥 =
ℎ𝜈𝑥

𝑐
, 𝑝𝑦 =

ℎ𝜈𝑦

𝑐
 and 𝑝𝑧 =

ℎ𝜈𝑧

𝑐
              (22) 

 

such that  

 

𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2 =

ℎ2𝜈2

𝑐2  .   (23) 

 

Let us now find out the phase space volume described by the 

photons within the energy layers ℎ𝜈𝑠 and ℎ(𝜈𝑠 + 𝑑𝜈𝑠). This 

is given by 

 

           𝐺𝑠 = ∫ … ∫ 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧                 (24) 

 

with 𝐺𝑠 = 𝑉
4𝜋ℎ3𝜈𝑠

2

𝑐3  𝑑𝜈𝑠.  This is the phase space volume at 

the disposal of the photons in the energy range ℎ𝜈𝑠 and 

ℎ(𝜈𝑠 + 𝑑𝜈𝑠). But each photon has a phase volume ℎ3. Thus, 

the number of cells per unit volume 

 

𝐴𝑠𝑑𝜈𝑠 =
4𝜋𝜈𝑠

2𝑑𝜈𝑠

𝑐3  .             (25) 

 

Since two photons are distinguished by their state of 

polarization from each other, instead of (20) we must write 

 

  𝐴𝑠𝑑𝜈𝑠 =
8𝜋𝜈𝑠

2𝑑𝜈𝑠

𝑐3  .                           (26) 

 

The result in Eq.(26) is in agreement with that in (7) obtained 

by Rayleigh. Let the number of photons of frequency 

between 𝜈𝑠 and (𝜈𝑠 + 𝑑𝜈𝑠) be denoted by 𝑁𝑠𝑑𝜈𝑠. We have 

then to find out the number of ways in which the 𝑁𝑠𝑑𝜈𝑠 

oscillators can be distributed amongst the 𝐴𝑠𝑑𝜈𝑠 cells.  We 

make supposition that each cell may contain 1,2,3, … , 𝑟, … .. 
upto 𝑁𝑠𝑑𝜈𝑠 photons. Then we get 

 

                    𝑊 = ∏
(𝐴𝑠+𝑁𝑠)𝑑𝜈𝑠!

𝐴𝑠𝑑𝜈𝑠! 𝑁𝑠𝑑𝜈𝑠!𝑠  ,                         (27) 

 

according to Bose statistics in Eq. (21), as the probability of 

𝑁𝑠𝑑𝜈𝑠 indistinguishable particles to be distributed in 𝐴𝑠𝑑𝜈𝑠 

cells. Using 𝑊 in the Boltzmann relation between entropy 

and probability 

 

        𝑆 = 𝑘𝐵 ln 𝑊.                                  (28) 
 

we get 

 

𝑆 = 𝑘𝐵 ∑ ln
(𝐴𝑠+𝑁𝑠)𝑑𝜈𝑠!

𝐴𝑠𝑑𝜈𝑠! 𝑁𝑠𝑑𝜈𝑠!
 .       (29) 

 

To obtain the law of distribution, Bose optimized the entropy 

subject to the constraint 

 

              𝐸 = ∑ (𝑁𝑠𝑑𝜈𝑠)ℎ𝜈𝑠𝑠 , Constant,               (30) 

 

which imply that the total energy 𝐸 of the photon gas is 

conserved. From (28) we have 

 

𝛿 ∑ [(𝐴𝑠 + 𝑁𝑠) ln(𝐴𝑠 + 𝑁𝑠) − 𝐴𝑠 ln 𝐴𝑠 − 𝑁𝑠 ln 𝑁𝑠] = 0,𝑠   (31) 

 

using Stirling’s formula 



Satyendra Nath Bose: Quantum statistics to Bose-Einstein condensation 

Lat. Am. J. Phys. Educ. Vol. 17, No. 2, June 2023 2301-7 http://www.lajpe.org 
 

                               ln 𝑛!  ≈ 𝑛 ln 𝑛 − 𝑛.                 (32) 

 

Accommodating the energy constraint 

 

                                  ∑ 𝜈𝑠𝛿𝑁𝑠 = 0,                               (33) 

 

through the method of Lagrange undetermined multiplier, we 

get 

 

 𝑁𝑠 =
𝐴𝑠

𝑒𝛼𝜈𝑠−1
.                            (34) 

 

Here 𝛼, is the undetermined multiplier. Using 𝛼 =
ℎ

𝑘𝐵𝑇
, Eq. 

(34) becomes 

 

          𝑁𝑠 =
𝐴𝑠

𝑒ℎ𝜈𝑠/𝑘𝐵𝑇−1
.                                (35) 

 

From Eq. (26) and the fact that the energy density 

 

                      𝜌𝜈𝑠
𝑑𝜈𝑠 = 𝑁𝑠ℎ𝜈𝑠𝑑𝜈𝑠,                            (36) 

 

we get the Planck’s result 

 

                        𝜌𝑑𝜈 =
8𝜋𝜈2𝑑𝜈

𝑐3

ℎ𝜈

𝑒ℎ𝜈/𝑘𝐵𝑇−1
.                        (37) 

 

We remember that Planck deduced this law by making use of 

hypothetical molecular resonators of discrete energies. On 

other hand, the treatment of Bose explicitly demonstrates that 

the concept of photons can be used to derive the Planck’s law. 

In this way Bose’s treatment provided a definitive proof for 

the light quantum hypothesis. 

 

 

V. ON THE REALIZATION OF BOSE-EINSTEIN 

CONDENSATION 
 

A. Einstein’s quantum theory of ideal gas 

 

We have seen how Bose derived his statistics for the 

probability of distributing 𝑁𝑠 indistinguishable particles in 𝐴𝑠 

cells. This remarkable result provided a natural basis to 

deduce Planck’s radiation law for the explanation of black-

body spectrum without taking recourse to the use of classical 

electromagnetic theory.  Bose’s derivation of Planck’s 

formula is an application of his statistics to massless particles. 

Einstein [24] recognized that the method employed by Bose 

can also be generalized to deal with massive particles and 

thus have a quantum theory for the ideal gas. To derive this 

quantum mechanical theory let us consider a gaseous system 

of 𝑁 noninteracting indistinguishable particles confined in a 

volume 𝑉 and sharing a given energy 𝐸. The statistical 

quantity of interest in this case is the number of distinct 

microstates Ω(𝑁, 𝑉, 𝐸) accessible to the system characterized 

by (𝑁, 𝑉, 𝐸). For large 𝑉, the single particle energy levels in 

the system are very close to one another. Thus, we may divide 

the energy spectrum into a large number of groups of levels 

which may be referred to as the energy cells. This is 

schematically shown in figure 3. 

 
 

Figure 3. Distribution of particles in the energy cells. 

 

 

Let 𝑛𝑖 be the number of particles in the 𝑖𝑡ℎ cell. Clearly, the 

set {𝑛𝑖} will satisfy the conditions 

 

                   ∑ 𝑛𝑖𝑖 = 𝑁.                                 (38) 

 

And 

             ∑ 𝑛𝑖𝑖 𝜀𝑖 = 𝐸,                                (39) 

 

with 𝜀𝑖, the average energy of a level. If 𝑊{𝑛𝑖} stands for the 

number of distinct microstates associated with the 

distribution set {𝑛𝑖}, then the number of distinct microstates 

accessible to the system will be given 

 

     Ω(𝑁, 𝐸, 𝑉) = ∑ 𝑊{𝑛𝑖}{𝑛𝑖}  .                   (40) 

 

The summation in Eq. (40) is taken over all distinct sets that 

obey the conditions in Eqs. (38) and (39). Again if 𝑤(𝑖) is the 

number of distinct microstates associated with the 𝑖𝑡ℎ cell of 

the spectrum, then 

 

                                 𝑊{𝑛𝑖} = ∏ 𝑤(𝑖)𝑖 .                          (41) 

 

Bose statistics tells us that 

 

                      𝑤(𝑖) =
(𝑛𝑖+𝑔𝑖−1)!

𝑛𝑖!(𝑔𝑖−1)!
,                           (42) 

 

where 𝑔𝑖is the number of levels in the ith cell. Then 

 

    𝑊{𝑛𝑖} = ∏
(𝑛𝑖+𝑔𝑖−1)!

𝑛𝑖!(𝑔𝑖−1)!𝑖 .                       (43) 

 

The entropy of the system is given by 

 

 𝑆(𝑁, 𝑉, 𝐸) = 𝑘 𝑙𝑛 Ω (𝑁, 𝑉, 𝐸) = 𝑘 𝑙𝑛[∑ 𝑊{𝑛𝑖}{𝑛𝑖} ].   (44) 

 

The expression in Eq. (44) can be replaced by 

 

         𝑆(𝑁, 𝑉, 𝐸) ≈ 𝑘 𝑙𝑛 𝑊 {𝑛𝑖
∗},                     (45) 

 

where {𝑛𝑖
∗} is the distribution set that maximizes the number 

𝑊{𝑛𝑖}; the numbers 𝑛𝑖
∗ are clearly the most probable values 

of the distribution number 𝑛𝑖. The maximization should be 

carried out under the constraints implied by Eqs. (38) and 

(39). Thus 

 

𝛿 𝑙𝑛 𝑊 {𝑛𝑖} − [𝛼 ∑ 𝛿𝑛𝑖 + 𝛽 ∑ 𝜀𝑖𝛿𝑛𝑖𝑖𝑖 ] = 0,       (46) 
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where 𝛼 and 𝛽 are Lagrange’s undetermined multipliers. 

Now 

 

          𝑙𝑛 𝑊 {𝑛𝑖} = 𝑙𝑛 ∏ 𝑤(𝑖)𝑖  = ∑ 𝑙𝑛 𝑤 (𝑖).𝑖             (47) 

 

Using Stirling’s formula 𝑙𝑛 𝑥 ! = 𝑥 𝑙𝑛 𝑥 − 𝑥, we can write 

from Eqs. (42) and (47) 

 

      𝑙𝑛 𝑊 {𝑛𝑖} ≈ ∑ [𝑛𝑖 𝑙𝑛 (
𝑔𝑖

𝑛𝑖
+ 1) + 𝑔𝑖 𝑙𝑛 (1 +

𝑛𝑖

𝑔𝑖
)]𝑖 ,   (48) 

 

From Eqs. (46) and (48) we get 

 

            𝑛𝑖
∗ =

𝑔𝑖

𝑒𝛼+𝛽𝜀𝑖−1
.                            (49) 

 

Equivalently,  

 

                
𝑛𝑖

∗

𝑔𝑖
=

1

𝑒𝛼+𝛽𝜀𝑖−1.                             (50) 

 

may be interpreted as the most probable number of particles 

per energy level in the i th cell. It is important to note that the 

final result in Eq. (50) is totally independent of the manner in 

which the energy levels of the particles are grouped into the 

cells so long as the number of levels in each cell is 

sufficiently large. From Eqs. (45), (48) and (49), the entropy 

of the gas is given by  

 
𝑆

𝑘
= ∑[𝑛𝑖

∗(𝛼 + 𝛽𝜀𝑖) − 𝑔𝑖 𝑙𝑛(1 − 𝑒−𝛼−𝛽𝜀𝑖)]

𝑖

 

                = 𝛼𝑁 + 𝛽𝐸 − ∑ 𝑔𝑖𝑖 𝑙𝑛(1 − 𝑒−𝛼−𝛽𝜀𝑖).        (51) 

 

From Eq. (51) we write 

 

   
𝑆

𝑘
= 𝛽 [

𝛼

𝛽
𝑁 + 𝐸 −

1

𝛽
∑ 𝑔𝑖 𝑙𝑛(1 − 𝑒−𝛼−𝛽𝜀𝑖)𝑖 ].      (52) 

 

Equation (52) in conjunction with the second law of 

thermodynamics gives 𝛽 = 1/𝑘𝑇 and 𝛼 = −𝜇/𝑘𝑇, where 𝜇 

stands for the chemical potential defined as 𝜇 = (
𝜕𝐸

𝜕𝑁
)

𝑉,𝑇
. 

As we noted the result in Eq. (50) is independent of the 

manner in which the energy levels of the particles are 

grouped into cells so long as the number of levels in each cell 

is sufficiently large. In view of this, we use the value of 𝛼 and 

𝛽 in Eq. (50) and get the mean occupation number of the level 

𝜀 in the form 

 

                          ⟨𝑛𝜀⟩ =
1

𝑒(𝜀−𝜇)/𝑘𝑇−1
 .                        (53) 

 

From Eq. (53) it is clear that for the mean occupation number 

to be positive, 𝜇 < 𝜀 for all values of 𝜀. When 𝜇 becomes 

equal to the lowest value of 𝜀, say 𝜀0, the occupancy of that 

particular level becomes infinitely high. This implies that all 

particles in the gaseous states can go to the lowest energy 

state. For temperatures at which  

 

                          𝑒(𝜀−𝜇)/𝑘𝑇 >> 1 .                           (54) 

 

The gaseous particles obey the Maxwell-Boltzmann 

statistics given by  

 

                            ⟨𝑛𝜀⟩𝑀,𝐵 = 𝑒(𝜇−𝜀)/𝑘𝑇.                            (55) 

 

Equation (54) tells us that the chemical potential of the 

system must be negative. Thus, the fugacity 𝑧 = 𝑒𝜇/𝑘𝑇of the 

system must be smaller than unity. The quantity 𝑧 reflects the 

tendency of a substance to prefer one phase to another and 

can literally be defined as the tendency to escape. Moreover, 

in a quantum mechanical theory 𝑧 is related to 𝑁 and 𝑉 by 

 

                        
𝑁

𝑉
= 𝑧

(2𝜋𝑚𝑘𝑇)3/2

ℎ3 .                             (56) 

 

In terms of the de Broglie wavelength  

 

                                     𝜆 =
ℎ

√2𝜋𝑚𝑘𝑇
                                  (57) 

 

Eq. (56) can be written as 

 

                                          
𝑁

𝑉
=

𝑧

𝜆3.                                     (58) 

 

From Eq. (58), 𝑧 to be less than unity we must have 

 

                             
𝜆3𝑁

𝑉
<< 1.                                   (59) 

 

The quantity 𝑛𝜆3 (𝑛 = 𝑁/𝑉) is an appropriate parameter in 

terms of which the various physical properties of the system 

can be addressed. For example, one can consider three cases 

(𝑖) 𝑛𝜆3−> 0: In this case 𝜆−> 0 such that the particle aspect 

of the gas molecules or atoms dominates over the wave 

aspect. Obviously, the system is classical. (𝑖𝑖) 1 > 𝑛𝜆3 >: 

We can expand all physical quantities as a power series in 

that parameter and investigate how the system tends to 

exhibit non-classical or quantum behavior. (𝑖𝑖𝑖) 𝑛𝜆3 ≈ 1: 

The system becomes significantly different from the classical 

one and the typical quantum effects dominate. 

From Eq. (57) we write 

 

              𝑛𝜆3 =
𝑛ℎ3

(2𝜋𝑚𝑘𝑇)3/2.                             (60) 

 

This expression clearly shows that the system is more likely 

to display quantum behavior when it is at a relatively low 

temperature or has a relatively high density of particles. 

Moreover, for smaller particle mass, the quantum behavior 

will be more prominent. From Eq. (53) the total number of 

particles 𝑁 in the system is obtained as 

 

       𝑁 = ∑ ⟨𝑛𝜀⟩𝜀 = ∑
1

𝑧−1𝑒𝛽𝜀−1𝜀 .                     (61) 

 

For a large volume 𝑉, the spectrum of the single-particle state 

is almost continuous such that the summation on the right 

side of Eq.(61) can be replaced by integration. The density of 

states in the neighborhood of 𝜀 is given by 

 

     𝜌(𝜀)𝑑𝜀 =
2𝜋𝑉

ℎ3 (2𝑚)3/2𝜀1/2𝑑𝜀 ,                (62) 
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so that 

 

    
𝑁

𝑉
=

2𝜋

ℎ3 (2𝑚)3/2 ∫
𝜀1/2𝑑𝜀

𝑧−1𝑒𝛽𝜀−1

∞

0
+

1

𝑉

𝑧

1−𝑧
.              (63) 

 

In writing Eq. (63) we have separated out the 𝜀 = 0 term in 

Eq. (61) which has a statistical weight equal to one. Denoting  
𝑧

1−𝑧
 by 𝑁0 we write Eq. (63) in the form 

 

           
𝑁−𝑁0

𝑉
=

2𝜋

ℎ3 (2𝜋𝑚𝑘𝑇)3/2 ∫
𝑥1/2𝑑𝑥

𝑧−1𝑒𝑥−1

∞

0
               (64) 

 

with 𝑥 = 𝛽𝜀. In terms of Bose-Einstein functions 

 

 𝑏𝜈(𝑧) =
1

𝛤(𝜈)
∫

𝑥𝜈−1𝑑𝑥

𝑧−1𝑒𝑥−1

∞

0
= 𝑧 +

𝑧2

2𝜈 +
𝑧3

3𝜈 +. . . . . . . ..   (65) 

 

The result in Eq. (64) can be written as  

 

                
𝑁−𝑁0

𝑉
=

1

𝜆3 𝑏3/2(𝑧).                          (66) 

 

The quantity (𝑁 − 𝑁0)  denotes the number of particles (𝑁𝑒)  

in the excited states. Therefore, 

 

               𝑁𝑒 = 𝑉 (
2𝜋𝑚𝑘𝑇

ℎ2 )
3/2

𝑏3/2(𝑧).                   (67) 

 

The function 𝑏3/2(𝑧) increases monotonically and is bounded 

with the largest value 

 

𝑏3
2

(𝑧) = 1 +
1

2
3
2

+
1

3
3
2

+ ⋯ … … … 

                      = 𝜁(3/2) = 2.812.         (68) 

 

Hence, for all 𝑧 of interest  

 

      𝑏3/2(𝑧) ≤ 𝜁(3/2).                            (69) 

 

In view of Eq. (69) 𝑁𝑒  in Eq. (67) will satisfy the condition 

 

𝑁𝑒 ≤ 𝑉 (
2𝜋𝑚𝑘𝑇

ℎ2 ) 𝜉(3/2).                        (70) 

 

The quantity in Eq. (70) gives the maximum number of 

particles in the excited states. If the actual number of particles 

𝑁 of the system exceeds this limiting value, then 𝑁0 number 

of particles given by 

 

𝑁0 = 𝑁 − 𝑉 (
2𝜋𝑚𝑘𝑇

ℎ2 )
3/2

𝜁(3/2),               (71) 

 

will be pushed into the ground state. Since 𝑁0 = 𝑧/(𝑧 − 1), 

the precise value of 𝑧 can be determined using 

 

       𝑧 =
𝑁0

𝑁0−1
≈ 1.                               (72) 

 

For 𝑧 to be one, the chemical potential 𝜇 must be zero. Thus 

from Eq. (53),  〈𝑛𝑒〉 =
1

𝑒𝜖/𝐾𝑇−1
. This result shows that for 

large 𝑁, there is no limit to the number of particles that can 

go onto the ground state 𝜀 = 0. This curious phenomenon of 

a macroscopically large number of particles accumulating in 

a single particle state 𝜀 = 0 is referred to as Bose-Einstein 

condensation. It is purely of quantum mechanical origin and 

takes place in the momentum space. 

The condition for the onset of Bose-Einstein condensation 

is 

 

               𝑁 > 𝑁𝑒 ,                                    (73) 

 

which gives a critical value of temperature 

 

            𝑇𝑐 =
ℎ2

2𝜋𝑚𝑘
(

𝑁

𝑉𝜁(3/2)
)

2/3

.                        (74) 

 

For given values of 𝑁 and 𝑉 Bose-Einstein condensation 

takes place when temperature 𝑇 of the gas is less than 𝑇𝑐. 

 

B. Physical picture of condensate formation 

 

An atom of mass m at temperature T can be regarded as a 

quantum mechanical wave packet that has spatial extension 

of the thermal de Broglie wave length 𝜆 =/√2𝜋𝑚𝑘𝑇 given 

in Eq. (57). From this expression for 𝜆 one can study the 

physical changes that occur in the ideal gas as one gradually 

lowers the temperature. (i) As long as the temperature is high, 

the wave packet is very small such that we can use the 

classical concept for the trajectory of the wave packet. At 

such temperatures we imagine atoms as billiard balls that 

move in the container and occasionally collide. Atoms are 

distinguishable. This is shown in figure 4(a). (ii) As the 

temperature is lowered the wave length increases and the 

wave aspect of atoms tends to compete with the particle 

aspect. This is shown in figure 4(b). (iii) At T =Tc   given in 

Eq. (74) the individual wave packets overlap and we have 

identity crisis. 

 

 

 
 

Figure 4. Physical changes of atoms during the formation of Bose-

Einstein condensation. 

 

 

The wave packets no longer follow the classical trajectories. 

At that point indistinguishability becomes important and we 

need quantum statistics. When quantum indistinguishability 

dominates, there is a transition to a new phase of matter. The 

particles come together in a single state and they behave as 

one big matter wave as shown in figure 4 (c). This is the onset 

of Bose-Einstein condensation. (𝑖𝑣) At T = 0, we get a pure 

Bose condensate or a giant matter wave. This is shown in 

figure 4(d). 
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It is now clear that the phenomenon of Bose-Einstein 

condensation, as demonstrated by Einstein, is a consequence 

of quantum statistics associated with indistinguishability of 

particles. Naturally, in this context, a very important question 

arose: What kind of particles obeys Bose statistics and is 

likely to undergo a phase transition leading to Bose-Einstein 

condensation? Immediately, after the demonstration of BEC 

by Einstein, Pauli exclusion principle was formulated. Only 

after one year the Fermi-Dirac statistics was proposed. Pauli 

and Dirac thought that all massive particles in the world obey 

Fermi-Dirac statistics and are fermions. If this was true, 

Bose-Einstein condensation would never be observed. This 

was a remark made by Pauli. Meanwhile, Dirac remarked that 

photons which obey Bose statistics have symmetric wave 

functions. Thus, particles which are likely to undergo Bose-

Einstein condensation at 𝑇 < 𝑇𝑐 must have symmetric wave 

functions. Understandably, elementary particles (not the 

carrier of energy) cannot have symmetric wave functions 

since they are fermions. But there is no bar for composite 

particles like atoms to undergo Bose-Einstein condensation 

provided these atoms have integral spins. The total spin of a 

Bose particle must be an integer, and therefore a boson made 

up of fermions must contain an even number of them. Neutral 

atoms contain equal numbers of electrons and protons, and 

therefore the statistics that an atom obeys is determined solely 

by the number of neutrons: if N is even, the atom is a boson, 

and if it is odd, a fermion. Since the alkalis have odd atomic 

number Z, boson alkali atoms have odd mass numbers A. 

Likewise for atoms with even Z, bosonic isotopes have even 

A. In Table I we list N, Z and the nuclear spin quantum 

number I for some alkali atoms and hydrogen. 

 
Table I. The proton number Z, the neutron number N, the nuclear 

spin I. 

 

Isotope Z N I 

1H 1 0 ½ 
6Li 3 3 1 
7Li 3 4 3/2 

23Na 11 12 3/2 
39K 19 20 3/2 
40K 19 21 4 
41K 19 22 3/2 

85Rb 37 48 5/2 
87Rb 37 50 3/2 
133Cs 55 78 7/2 

 
To date, most experiments on Bose-Einstein condensation 

have been made with states having total electronic spin 1/2. 

The majority of these have been made with atoms having 

nuclear spin I = 3/2 ( 𝑅87 𝑏, 𝑁23 𝑎, and 𝐿7 𝑖), while others have 

involved I = 1/2 (H) and I = 5/2 ( 𝑅85 𝑏). In addition, Bose-

Einstein condensation has been achieved for four species 

with other values of the electronic spin, and nuclear spin I = 

0: 𝐻4 𝑒∗ ( 𝐻4 𝑒 atoms in the lowest electronic triplet state, 

which is metastable) which has S = 1, 𝑌170 𝑏 and 𝑌174 𝑏 (S = 

0), and 𝐶52 𝑟 (S = 3). 

The ground-state electronic structure of alkali atoms is 

simple: all electrons but one occupies closed shells, and the 

remaining one is in s-orbital in a higher shell. In Table II we 

list the ground-state electronic configurations for alkali 

atoms. The nuclear spin is coupled to the electronic spin by 

the hyperfine interaction. Since the electrons have no orbital 

angular momentum (L = 0), there is no magnetic field at the 

nucleus due to the orbital motion, and the coupling arises 

solely due to the magnetic field produced by the electronic 

spin. 
 
Table II. The electron configuration and electronic spin for 

selected isotopes of alkali atoms and hydrogen. 

 

Element Z Electronic Spin Electronic Configuration 

H 1 1/2 1s1 

Li 3 1/2 1s22s1 

Na 11 1/2 1s22s2p63s1 

K 19 1/2 1s22s2p63s23p64s1 

Rb 37 1/2 (Ar) 3d104s24p65s1 

Cs 55 1/2 (Kr)4d105s25p66s1 

 

 

C. Steps towards experimental realization  

 

It is now appropriate to ask the question: What are the 

requirements for observing BEC in the laboratory? We have 

pointed out that alkali metal atoms are bosons. Thus, any 

experiment for observation of BEC should start with a gas of 

alkali metal atoms at the room temperature. The gaseous 

system should be precooled, trapped and cooled to a 

temperature preferably below the critical temperature and 

then imaged to get the signature of BEC. In fact, the first three 

experiments on BEC used dilute atomic gases of rubidium 

[8], lithium [9] and sodium [10]. It is true that BEC was first 

observed in these three experiments. However, it appears that 

superfluidity in helium was considered by London as early as 

1938 as a possible manifestation of BEC. However, evidence 

for BEC in helium was found much later from the analysis of 

momentum distribution of the atoms measured in neutron-

scattering experiment [25]. On the other hand, in a series of 

experiments hydrogen atoms were first cooled in a dilute 

refrigerator, then trapped by magnetic field and further 

cooled by evaporation. This approach has come very close to 

observing BEC. The main problem in observing BEC in this 

system comes from the fact that the hydrogen atoms, rather 

than being in atomic state, form molecules [26]. 

In the 1980’s laser-based techniques were developed to 

trap and cool neutral atoms [27]. Technically, trapping and 

cooling in this approach go by the names magnetooptical 

trapping and laser cooling. Alkali metal atoms are well suited 

to laser-based methods because their optical transitions can 

be excited by available lasers and because they have a 

favorable internal energy-level structure for cooling to very 

low temperatures. Once they are trapped, their temperature 

can be lowered further by evaporative cooling. Let us first 

briefly outline what are the effects of trapping on the atomic 

system and how atoms are trapped. 
 
C.1 The effects of trapping 

 

The number of atoms that can be put into the trap is not truly 

macroscopic such that the thermodynamic limit is never 
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achieved. We, therefore, begin by considering the effect of 

finite particle numbers on 𝑇𝑐, the critical temperature for the 

onset of Bose-Einstein condensation. The expression for 𝑇𝑐 

in Eq. (74) refers to N (very large) number of particles 

confined in a three-dimensional box. If instead we consider  

the atoms to be confined in a three-dimensional harmonic 

well, the expression for 𝑇𝑐 modifies to 

 

                  𝑇𝑐 =
ℎ�̄�𝑁1/3

[𝜁(3)]1/3,                                 (75) 

 

where �̄� = (𝜔1𝜔2𝜔3)1/3, 𝜔 be the classical oscillator 

frequency. In this context we note that in most cases the 

confining traps are well approximated by harmonic 

potentials. When the number of particles is extremely high, 

we can neglect the zero-point energy in the harmonic trap. 

This is, however, not true when the system consists of finite 

number of atoms. The finiteness of the number of particles 

calls for zero-point energy to be taken into account. This 

reduces the critical temperature by an amount 𝛥𝑇𝑐 such that 

 

                
𝛥𝑇𝑐

𝑇𝑐
= −

𝜁(2)

2[𝜁(3)]2/3

𝜔𝑚

�̄�
𝑁−1/3.                   (76) 

 

where 𝜔𝑚 = (𝜔1 + 𝜔2 + 𝜔3)/3. Clearly, from Eq. (76) 
𝛥𝑇𝑐

𝑇𝑐
−> 0, as 𝑁−> ∞. Thus, we see that one of the effects of 

trapping is to lower the critical temperature by confining a 

finite number of atoms. Besides finiteness of the system 

trapping makes the Bose gas inhomogeneous such that 

density variation occurs on a characteristic length scale, 

𝑎ℎ𝑜 = √ℏ/(𝑚𝜔𝑚), provided by the frequency of the 

trapping oscillator. This is a major difference with respect to 

other systems like the super fluid helium where the effects of 

inhomogeneity take place on a microscopic scale in the 

coordinate space. Inhomogeneity of super-fluid helium, in 

fact cannot be detected in the coordinate space such that all 

observations are made in the momentum space. As opposed 

to this, the inhomogeneity of the Bose gas is such that both 

coordinate and momentum spaces are equally suitable for 

observations. 

In the above we talked about harmonic confinement. 

Physically such confinements are achieved by applying 

appropriately chosen inhomogeneous magnetic fields, often 

called magnetic trap. Magnetic traps are used to confine 

precooled gaseous system. We shall first discuss the method 

of precooling and then talk about the principle of magnetic 

trapping. 

 

C.2 Method of precooling 

 

Laser beams are often used to precool the atomic vapour and 

the method used goes by the name laser cooling. The physical 

mechanism by which the collision between photons and 

atoms reduces the temperature of the atomic vapour can be 

visualized as follows. 

If an atom travels toward the laser beam and absorbs a 

photon from the laser it will be slowed down by the photon 

impact. Understandably, totality of such events will lower the 

temperature. On the other hand, if the atom moves away from 

the photon, the latter will speed up resulting in the increase 

of temperature. Thus, it is necessary to have more absorptions 

from head on photons if our goal is to slow down the atoms  

with a view to lower the temperature. One simple way to 

accomplish this in practice is to tune the laser slightly below 

the resonance absorption of the atom. 

Suppose that the laser beam is propagating in a definite 

direction. An atom in the gaseous system can move towards 

the beam or it may move away from the beam. In both cases 
the frequency of the photon will be Doppler shifted. In the 

first case the frequency of the laser beam will increase while 

in the other case the frequency will be decreased. In the case 

of head on collision the photon will be absorbed by the atom 

via resonance only when the original laser beam is kept below 

the frequency of atomic resonance absorption. When the 

atom and photon travel in the opposite direction there cannot 

be momentum transfer from the photon to the atom because 

Doppler shift in this case produces further detuning of the 

already detuned laser beam. 

The explanation presented above provides only a simple-

minded realization of laser cooling. The physics of any 

typical experiment is much more complicated than that 

because the absorption of photon by atom is also 

accompanied by an emission process. The emission and 

absorption produce a velocity dependent force that is 

responsible for cooling. A technique of laser cooling based 

on velocity-dependent absorption process goes by the name 

Doppler cooling. Doppler cooling can also be used in an 

arrangement called optical molasses where cooling is done in 

all three-dimensions. There is still another variant of laser 

cooling that goes by the name Sisyphus cooling. The 

mechanism of Sisyphus cooling is somewhat sophisticated. It 

involves a polarization gradient generated by two counter 

propagating linearly polarized laser beams with 

perpendicular polarization directions. 

 

C.3 Basic principles of magnetic trapping 
 

Magnetic traps are used to confine low temperature atoms 

produced by laser cooling. These traps use the same principle 

as that in the Stern-Gerlach experiment. Otto Stern and 

Walter Gerlach used the force produced by a strong 

inhomogeneous magnetic field to separate the spin states in a 

thermal atomic beam as it passes through the magnetic field. 

But for cold atoms the force produced by a system of 

magnetic coils bends the trajectories right around so that low 

energy atoms remain within a small region close to centre of 

the trap. This can be realized as follows. 

A magnetic dipole moment 𝜇 in a magnetic field �⃗⃗� has 

energy 

 

                     𝑉 = −𝜇. �⃗⃗�.                                 (77) 

 

For an atom in a hyperfine state |𝐼𝐽𝐹𝑀𝐹⟩, V corresponds to a 

Zeeman energy 

 

              𝑉 = 𝑔𝐹𝜇𝐵𝑀𝐹𝐵,                            (78) 

 

where 𝜇𝐵= Bohr magneton and 

 

       𝑔𝐹 ≈ 𝑔𝐽
𝐹(𝐹+1)+𝐽(𝐽+1)−𝑆(𝑆+1)

2𝐹(𝐹+1)
.                   (79) 
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The magnetic force acting along 𝑧 – direction 

 

         𝑃 = −𝑔𝐹𝜇𝐵𝑀𝐹
𝑑𝐵

𝑑𝑧
.                             (80) 

 

We shall now make use of Eqs. (77) and (78) to indicate (i) 

why precooling is necessary for the use of magnetic trap? and 

(ii) what should be the nature of the magnetic field that 

produces a trap useful for confining BEC? From Eq. (77) the 

energy depth of the magnetic trap is determined by 𝜇𝑖𝐵. The 

atomic magnetic moment 𝜇𝑖 is of the order of Bohr magneton 

𝜇𝐵 which in temperature units ≈ 0.67 Kelvin/Tesla. Since 

laboratory magnetic fields are generally considerably less 

than 1 Tesla, the depth of magnetic traps is much less than a 

Kelvin, and therefore atoms must be cooled in order to be 

trapped magnetically. 

For confinement, Zeeman energy must have a minimum. 

We can consider two different cases for Eq. (78). Case 1: 

𝑀𝐹𝑔𝐹 >0. Here the Zeeman energy can be minimum if B has 

a local minimum. Case 2: 𝑀𝐹𝑔𝐹< 0. In this case V can have 

a local minimum if B has a local maximum. Maxwell’s 

equations do not allow a maximum of a static field. As a 

result, the trapping of atoms for 𝑀𝐹𝑔𝐹 < 0 is not allowed. In 

view of the above one can trap atoms only in a minimum of 

a static magnetic field. 

 

C.4 More details for magnetic trapping of neutral atoms 
 

We have noted the following.  

Confinement of neutral atoms depends on the interaction 

between an inhomogeneous magnetic field and atomic 

multipole moment. (Dipoles may be trapped by the local field 

minimum. Field configurations with a minimum in |�⃗⃗�| may 

be divided into two classes: (a) where the minimum of the 

field is zero, and (b) where it is non-zero. The original 

quadrupole trap as devised by Paul in NIST or the so-called 

Paul trap is shown in figure 5. It belongs to class (a). This trap 

consists of two identical coils carrying opposite currents and 

has a single center where the field is zero. It is the simplest of 

all possible magnetic traps. When the coils are separated by 

1.25 times their radius, such a trap has equal depth in the 

radial (x-y) plane and longitudinal (z - axis) directions. Its 

experimental simplicity makes it most attractive, both 

because of construction and of optical access to the interior. 

    The quadrupole trap suffers from an important 

disadvantage. The atoms assemble near the center where 𝐵 ≈
0. As a result, Zeeman sublevels (|𝐼𝐽𝐹𝑀𝐹⟩) have very small 

energy separation. The states with different magnetic 

quantum numbers mix together and atoms can make 

transition from one value of  𝑀𝐹 to another due to fluctuation 

in the field. These nonadiabatic transitions allow the atoms to 

escape and reduce the lifetime of atoms in the trap. There 

have been two major efforts to circumvent the disadvantage 

of using the simple quadrupole trap. In the first case one 

superimposes an oscillating biased magnetic field on the 

quadrupole trap. Admittedly, this makes the magnetic field  

�⃗⃗� time dependent. The time average of the resulting field 

remains nonvanishing at the center. An alternative approach, 

adapted by the MIT group of Ketterle, is to apply a laser field 

in the region of the node in the magnetic field. 

Instead of using traps having a node in the magnetic field, 

one can remove the hole by working with magnetic field 

configurations that have a nonzero field at the minimum. The 

schematic diagram of such a magnetic field configuration is 

given in figure 6. Here four parallel wires arranged at the 

corner of a square produces a quadrupole magnetic field 

when currents in adjacent wires flow in the opposite 

directions. The resulting radiation forces repel atoms from 

the vicinity of the node, thereby reducing losses. This field 

has a linear dependence on the radial coordinate 𝑟 and is 

given by 

 

                        |�⃗⃗�| = 𝑏′𝑟,                                (81) 

 

where 𝑏′ =
𝜕𝐵𝑥

𝜕𝑥
= −

𝜕𝐵𝑦

𝜕𝑦
 obtained from �⃗⃗�. �⃗⃗� = 0. Using Eqs. 

(78) and (79) 

 

                 𝑉(𝑟) = 𝑔𝐹𝜇𝐵𝑀𝐹𝑏′𝑟.                         (82) 

 

Variation of the quantity |�⃗⃗�| in Eq. (77) for the quadrupole 

 

 
 

Figure 5. Diagram of Paul trap. 

 

trap is shown in figure 6(b). Clearly, |�⃗⃗�| = 0 at r = 0. In the 

so-called Iofee trap this problem is circumvented by using 

two circular coils which enclose the parallel wires as shown 

in figure 7(a). In both coils current flow in the same direction. 

The magnetic field for this configuration if given by 

 

                 |�⃗⃗�| ≈ 𝐵0 +
𝑏′2𝑟2

2𝐵0
,                        (83) 

 

where 𝐵0 is a magnetic field in the z direction produced by 

currents in the circular coils. For |�⃗⃗�| in (83) a plot similar to 

that in figure 6(b) looks like the plot in figure 7(b). Clearly, 

this field has a nonzero value at 𝑟 = 0. 

 

 

 
 

Figure 6. (a) Linear quadrupole trap and (b) Magnetic field with 

radial coordinate r. 

 

 

 



Satyendra Nath Bose: Quantum statistics to Bose-Einstein condensation 

Lat. Am. J. Phys. Educ. Vol. 17, No. 2, June 2023 2301-13 http://www.lajpe.org 
 

C.5 Optical trapping 

 

Magnetic traps provide an efficient method to confine cold 

atoms. The basic principle of optical trapping is as follows. 

The interaction between an atom and the electric field is 

given by 

 

                 𝐻′ = −𝑑. 𝜀,                                  (84) 

 

where 𝑑, electric dipole moment and 𝜀,  the electric field 

vector. Perturbation 𝐻′changes the ground-state energy by 

 

               𝛥𝐸𝑔 = −
1

2
𝛼𝜀2,                              (85) 

 

where 𝛼 = static atomic polarizability. Expression in Eq. (85) 

refers to an energy change produced by a static electric field. 

The electric field in laser light is time-dependent.  For a time-

dependent electric field the expression in Eq. (85) modifies 

to 

  

        𝛥𝐸𝑔 = −
1

2
𝛼(𝜔)⟨𝜀(𝑟, 𝑡)2⟩,                       (86) 

 

where 𝛼(𝜔) is the frequency-dependent polarizability. 

An atom excited by the electric field is likely to decay by 

spontaneous emission. If this fact is taken into account, the 

frequency dependent polarizability becomes a complex 

quantity such that 𝛥𝐸𝑔 (86) could be written as 

  

            𝛥𝐸𝑔 = 𝑉𝑔 − 𝑖ℏ𝛤𝑔/2,                           (87) 

 

where the real part Vg corresponds to a shift in energy of the 

ground state while the imaginary part represents the finite 

lifetime 1/𝛤𝑔of the ground state due to the transition to the 

excited state induced by the radiation. In more detail, 

 

       𝛼(𝜔) ≈
|⟨𝑒|�⃗�.�̂�|𝑔⟩|

𝐸𝑒−𝑖ℏ𝛤𝑒/2−𝐸𝑔−ℏ𝜔
.                         (88) 

 

Here 1/𝛤𝑒= lifetime of the excited state. Using Eq. (88) in Eq. 

(86) and comparing the result with (50) we get 

 

           𝑉𝑔 = −
1

2
𝛼𝑅(𝜔)⟨𝜀(𝑟, 𝑡)2⟩𝑡 ,                    (89) 

 

with the real part of 𝛼(𝜔) 

 

            𝛼𝑅(𝜔) =
(𝜔𝑒𝑔−𝜔)|⟨𝑒|�⃗�.�̂�|𝑔⟩|

2

ℏ[(𝜔𝑒𝑔−𝜔)
2

+(𝛤𝑒/2)2]
,                   (90) 

 

where 𝜔𝑒𝑔 = (𝐸𝑒 − 𝐸𝑔)/ℏ. The force corresponding to the 

potential in Eq. (89) is given by 

 

              𝐹𝑑𝑖𝑝𝑜𝑙𝑒 =
1

2
𝛼𝑅(𝜔)�⃗⃗�⟨𝜀(𝑟, 𝑡)2⟩𝑡.                 (91) 

 

From (90) we see that if 𝜔 > 𝜔𝑒𝑔, 𝛼𝑅(𝜔) is negative and if 

𝜔 < 𝜔𝑒𝑔,  𝛼𝑅(𝜔) is positive. In the first case the laser beam 

is called blue detuned while in the second case we have red 

detuning. For red detuning the force acts along the higher 

field. On the other hand, for blue detuning the force acts along 

lower field. By focusing a laser beam it is possible to create 

a radiation field whose intensity has a maximum in space. If 

the frequency of the light is detuned to the red, the energy of 

the ground-state atom has a spatial minimum, and therefore 

it is possible to trap atoms. 

 

 
 

Figure 7. (a) Iofee trap: combination of a linear magnetic 

quadrupole and an axial biased field. (b) Magnetic field that 

provides radial confinement of atoms. 

 

C.6 Evaporative cooling 

 

The temperature reached by laser cooling is quite low, but not 

low enough to produce Bose-Einstein condensation in gases 

at densities that are realizable experimentally. A very 

effective technique of reducing the temperature of the 

magnetically trapped laser cooled atoms goes by the name 

evaporative cooling. In the experiment performed to date, 

Bose-Einstein condensation of alkali gases is achieved by 

using evaporative cooling. The basic physical effect in 

evaporative cooling is that, if particles escaping from a 

system have an energy higher than the average energy of 

particles in the system, the remaining particles are cooled. 

Evaporative cooling could be carried out by lowering the 

strength of the trap. But this reduces the density and 

eventually makes the trap too weak to support atoms against 

gravity. However, this method has been successfully used for 

Rb and Cs atoms in dipole-force traps. There is another 

important method for evaporative cooling. Here precisely 

controlled evaporation is carried out by using radio frequency 

radiation that changes the spin state of an atom from a low  

field seeking one to a high field seeking one, hereby expelling 

atoms from the trap. 

 

D. Observing the BEC in the laboratory 

 

In a BEC the observable quantity is the density profile. There 

are two important methods to observe the density profile. The 

first one is called absorptive imaging while the second one 

goes by the name phase-contrast imaging. 

 

 
 

Figure 8. Velocity distribution of 87Rb condensates where red 

colour represents the region having lower number of atoms while 

white colour represents region of larger number of atoms [10]. 
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D.1 Absorptive imaging 

 

Light at a resonant frequency for the atom will be absorbed 

on passing through an atomic cloud. Thus, measuring the 

absorption profile one can obtain information about the 

density distribution. The spatial resolution can be improved 

by allowing the cloud to expand before measuring the 

absorptive image. A drawback of this method is that it is 

destructive, since absorption of light changes the internal 

states of atoms and heats the cloud. An observation of Bose-

Einstein condensation by absorption imaging is displayed in 

figure 8. It shows absorption vs. two spatial dimensions. The 

Bose-Einstein condensate is characterized by its slow 

expansion observed 6 ms after the atom trap was turned off. 

The left picture shows an expanding cloud cooled just above 

the critical temperature; middle: just after the condensate 

appeared; right: after further evaporative cooling has left an 

almost a pure condensate. 

 

D.2 Phase-contrast imaging 
 

This method exploits the fact that the refractive index of a gas 

depends on its density. Therefore, the optical path length is 

changed by the medium. Here a light beam is passed through 

the cloud. This is allowed to interfere with a reference beam 

that has been phase shifted. The change in optical path length 

as evident from the interference pattern is then converted into 

intensity variation for observation. 

 

 

VI. CONDENSED ATOMIC GASES 
 

A. A new platform for studying condensed-matter 

physics 
 

Dilute atomic gases in BECs are distinguished from the 

condensed-matter systems by the absence of strong and 

complex interaction. Despite that, studies in these quantum 

gases have become an interdisciplinary field of atomic and 

condensed matter physics. Topics of many-body physics can 

now be studied with the methods of atomic physics. In this 

way, BEC provides a new subfield that can confidently be 

used to simulate properties condense-matter systems [28]. 

 The observation of the condensate’s density distribution can 

be regarded as a direct visualization of the microscopic wave 

function. The time evolution of the squared wave function of 

a single condensate has been recorded non-destructively in 

real time [29, 30]. In a recent article Hannaford and Sacha 

[31] reviewed the case of a BEC of ultracold atoms bouncing 

resonantly on an oscillating atom mirror such that the period 

of the bouncing atoms is equal to an integer multiple of the 

period of the driving mirror. The bouncing BEC can exhibit 

dramatic breaking of time-translation symmetry, allowing the 

creation of discrete time crystals. 

 

B. Problem to inject spin-orbit coupling in BECs 

 

The ultracold atoms which form the condensates are 

electrically neutral. Consequently, the intrinsic physics 

relevant to the charge degrees of freedom is absent in these 

systems. Ever since Bose-Einstein condensation (BEC) was 

achieved in atomic gases, one of the main tasks for both 

theory and experiment has been to introduce charge physics 

into neutral atoms creating gauge fields by artificial means.  

Experimentally, the first artificial magnetic field was 

synthesized in a harmonically trapped BEC through the 

rotation of the external trapping potential [32]. In the rotating 

frame, this leads to a Lorentz force and an antitrapping 

potential for atoms, where the amplitude and frequency of the 

anti-trap are proportional to the rotational frequency. 

However, this technique is limited because the strength of the 

anti-trap cannot exceed that of the trapping potential, which 

implies that it cannot be used for spatially homogeneous 

BECs. In this case, the magnetic field has to be generated 

artificially. 

 

C. Way to artificial gauge field 

 

In the last few years there have been several attempts [33] to 

realize artificial gauge fields for quantum gases and thus 

overcome the problem arising due to neutrality of atoms to 

introduce spin-orbit interaction in an atomic cloud. One of 

these schemes relies on the notion of geometric phase [34] 

acquired by a quantum mechanical wave function while 

evolving in a parameter space of the Hamiltonian. The phase 

angle is defined in terms of an integral over a vector valued 

function often called the Berry connection. The Berry 

connection corresponds to an artificial vector potential for 

neutral atoms. To implement this idea the researchers from 

NIST and from University of Maryland exploited the space-

dependent coupling of the atoms with a properly designed 

configuration of laser beams. The synthetic gauge field arises 

when the system adiabatically follows one of the local 

eigenstates of the light-atom interaction Hamiltonian [35]. 

Since 2009 several experiments have been successful in 

realizing ultra-cold atomic gases coupled to artificial gauge 

fields. For instance, a space dependent atom-light coupling 

was employed to generate an effective magnetic field to exert 

a Lorentz-like force on neutral bosons [36]. This procedure 

has also been used to generate quantized vortices in BECs. 

 

D. Spin-orbit coupled BECs 

 

After engineering gauge fields in BEC the same group of 

workers attempted to simulate the coupling between an 

atom’s spin and its motion with a view to realize the effect of 

spin-orbit coupling (SOC) in ultra-cold atomic systems. In 

atomic physics, SOC is an interaction between the electron’s 

spin and its motion about the nucleus. For solids, SOC 

provides a link between the electron’s spin and its motion in 

the crystal lattice. In both cases the SOC arises due to 

interaction of electrons with the electric fields that exist 

inside atoms and solids. But there is no charge field for atoms 

moving in a BEC. Consequently, Spielman and his group 

[37] sought a way to link the internal spin of an atom to its 

momentum. They had chosen to work with a BEC of 87Rb 

atoms and focused their attention on the atom’s electronic 

ground state, 5S1/2  F=1. In a typical experiment, a degenerate 

cloud of 87Rb is prepared in a crossed optical dipole trap. 
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Figure 9. Level diagram. Two Raman lasers couple the two states | 

𝐹 = 1, 𝑚𝑓 = −1 > and |𝐹 = 1, 𝑚𝑓 = 0 > of the F = 1 hyperfine manifold 

of 87Rb, which differ in energy by a Zeeman splitting. The lasers 

have frequency difference Δ𝜔𝐿 = 𝜔𝑍 + 𝛿, where 𝛿 is a small detuning 

from the Raman resonance. The state | 𝐹 = 1, 𝑚𝑓 = +1 > can be 

neglected since it has a much larger detuning, due to the quadratic 

Zeeman shift. 

 

By applying a homogeneous magnetic bias field along the x -

direction (as shown in figure 9), the F=1 ground state is split 

into three energy levels, 𝑚𝑓 = 0, ±1. Two Raman lasers whose 

projections on the x-direction point oppositely are used to 

couple the energy levels |𝐹 = 1, 𝑚𝑓 = −1> and |𝐹 = 1, 𝑚𝑓 = 

0>, and |𝐹 = 1, 𝑚𝑓 = 0> and |𝐹 = 1, 𝑚𝑓 = 1>. These energy 

levels can be interpreted as pseudo-spins. However, to 

simulate spin ½ systems, the third energy level have to be 

moved out of resonance. This can be done by applying a large 

magnetic field so that quadratic Zeeman effect shifts the 

energy splitting between |𝐹 =1, 𝑚𝑓 = −1> and |𝐹 = 1, 𝑚𝑓 = 0> 

to a larger value than that of the |𝐹 = 1, 𝑚𝑓 = 0 > and |𝐹 = 1, 

𝑚𝑓 = 1>. Choosing an appropriate frequency between the 

Raman Lasers then allows one to address only the |𝐹 = 1, 𝑚𝑓 

= −1> and |𝐹 = 1, 𝑚𝑓 = 0> transitions. This is how, by 

dressing two spin states with a pair of lasers, Spielman et al 

could engineer SOC with equal amount of Rashba [38] and 

Dresselhaus [39] coupling in a neutral atomic Bose-Einstein 

condensate. The synthetic spin-orbit coupling for neutral 

atoms was subsequently realized in other laboratories [40-

43]. Thus, it became quite urgent to investigate theoretically 

how does the SOC affect the properties of usual BECs 

(without spin-orbit coupling) [44, 45, 46].  
 

E. Effect of spin-orbit coupling on the condensates 

 

The behaviour of Bose-Einstein condensates is studied in the 

first-order of approximation by using Gross-Pitaevskii 

equation (GPE) [47, 48] which is, in fact, the well-known 

Schrödinger equation plus a nonlinear term that takes into 

account of the interaction between atoms forming the 

condensates. The self-trapped localized states can be 

considered both in one-dimensional or higher-dimensional 

geometries. In multidimensional settings, stability of these 

states becomes a major issue due to critical and supercritical 

collapse [49, 50]. As opposed to this, in the one-dimensional 

case we have stable soliton states in diverse systems [51]. For 

a one-dimensional model of the BEC we assume that we have 

a dilute Bose gas and the radial trapping frequency of the 

condensate is much larger than the axial frequency, i. e. the 

BEC is cigar shaped. In this case the GPE is given by 

 

            𝑖ℏ
𝜕𝜓

𝜕𝑡
= (−

ℏ2

2𝑚
𝜕𝑥

2 + 𝑉𝑡𝑟(𝑥) − 𝑔|𝜓|2) 𝜓,          (92) 

 

where 𝑚 stands for the mass of atoms in the condensate and  

𝜓for the complex order parameter or wave function of the 

condensate. The quantities 𝑉𝑡𝑟 and 𝑔 represent the trapping 

potential and coupling constant of the atom-atom interaction. 

It is well known that for attractive inter-atomic interaction 

(𝑔 > 0), Eq. (92) supports soliton solution such that we have 

a highly stable condensate. 

Equation (92) governs the dynamics of the BEC in the 

absence of spin-orbit coupling. A BEC with experimentally 

realized SOC is characterized by a spinor order parameter 

𝜓 = (𝜓↑, 𝜓↓) where 𝜓↑ and 𝜓↓ are related to the two 

pseudospin components of the BEC. The dimensionless 

equations of motion for 𝜓↑↓ can be written as [52] 

 

  𝑖𝜕𝑡𝜓↑ = (−
1

2
𝜕𝑥

2 − 𝑖𝑘𝐿𝜕𝑥 + 𝑉𝑡𝑟(𝑥) − |𝜓↑|2 −

𝛽|𝜓↓|2) 𝜓↑ + Ω𝜓↓,                  (93) 

 

𝑖𝜕𝑡𝜓↓ = (−
1

2
𝜕𝑥

2 + 𝑖𝑘𝐿𝜕𝑥 + 𝑉𝑡𝑟(𝑥) − 𝛽|𝜓↑|2 −

𝛾|𝜓↓|2) 𝜓↓ + Ω𝜓↑.                    (94)  

 

Here 𝑘𝐿 is the wave number of the Raman laser which 

couples two atomic hyperfine states and Ω, the Raman or 

Rabi frequency. The quantities 𝛽 and 𝛾 related to the s-wave 

scattering 𝛼𝑖𝑗(𝑖, 𝑗 = 1, 2). In an interesting paper Xu, Zhang 

and Wu [53] made use of equations similar to those given 

above to study the properties of bright solitons (𝛼𝑖𝑗 < 0 ) and 

observed that the stationary bright solitons which are the 

ground states of the system have nodes in their wave function.  

For a conventional BEC without SOC its ground state must 

be nodeless. This is consistent with the so-called ‘no node’ 

theorem for the ground state of bosonic system [54]. In fact, 

the soliton in SOC-BEC is fundamentally different from the 

conventional one since the spin-orbit coupling breaks the 

Galilean invariance of the system. This lack of invariance 

was experimentally demonstrated [55] by studying the 

dynamics of SOC-BEC loaded in a translating optical lattice. 

Optical lattices use standing wave patterns of counter-

propagating laser beams to create a periodic potential for 

ultracold atoms. In most experiments [56, 57, 58] optical 

lattices act as external potentials and thus introduce a state- 

independent intrinsic periodicity in the system. We shall refer 

to these type lattices as linear optical lattice (LOL). Besides 

LOL, it is possible to consider a nonlinear optical lattice 

(NOL). The latter possess symmetry properties that depend 

on the wave function representing the state of the system [59]. 

The BECs loaded in optical lattices (OLs) are known to 

exhibit many interesting physical phenomena such as Bloch 

oscillation, Landau-Zener tunnelling, Mott Transition etc. 

[60]. In view of this, there has been a great deal of activities 

for studying dynamics of BEC solitons in OLs.  

It will be interesting to study the effect of optical lattices 

on the structure of the bright soliton in the quasi-one-

dimensional SOC-BEC. Recently, it has been found that 

parameters of the lattice potentials can be used to provide 

useful control over the number of nodes of the bright soliton 

and thereby make attempts to restore the Galilean invariance 

[61]. In this context, we note that studies on restoration of 

Galilean invariance of physical systems are of relatively 



G.A.Sekh and B.Talukdar 

Lat. Am. J. Phys. Educ. Vol. 17, No. 2, June 2023 2301-16 http://www.lajpe.org 
 

recent origin and have mainly been undertaken for nuclear 

force problem [62, 63]. While looking for control over the 

number of nodes it has been seen that the soliton with large 

number of nodes is less stable compared to one having fewer 

number of nodes. This indicated that the synthetic spin-orbit 

coupling induces instability in the ordinary matter-wave 

soliton. In the following we shall study how the synthetic 

spin-orbit affect the atomic density distribution in the BEC. 

As is well known that in atoms the spin-orbit coupling is 

the interaction between the electron’s spin and its orbital 

motion around the nucleus. When an electron moves in the 

finite electric field of the nucleus, the spin–orbit coupling 

causes splitting in the electron’s atomic energy levels thus 

leads to new spectroscopic phenomena.  Spin-orbit 

coupling also lies at the core of condensed matter. In the 

presence of strong SOC, there can appear a wide variety 

exotic physical phenomenon in solid-state systems. For 

example, the coupling between an electron’s spin and its 

momentum is crucial for topological insulators [64, 65] as 

well as for Majorana fermions [66]. In this context we also 

note that magnetic fields influencing the motion of electrons 

in a semiconductor are at the base of quantum Hall effect 

[67]. The spin electronics also called spintronics is an 

emerging field of basic and applied research in physics that 

aims to exploit the role played by electron spin in solid 

materials with a view to develop semiconductors that can 

manipulate the magnetic property of an electron [68]. 

Ultracold atomic gases are good candidates to investigate 

the above interesting quantum phenomena. In this respect, as 

already noted, the main difficulty arises from the fact that 

atoms are neutral particles, and consequently, like electrons, 

they cannot be coupled to gauge fields so as to exhibit any 

coupling between their spin and their center of mass motion. 

But the experimental realization of synthetic spin-orbit 

coupling [37] has removed this stumbling block and opened 

the door for simulating many observed phenomena in 

condensed-matter physics. In this respect a very important 

problem consists in studying the response of condensates’ 

density profile to changes in the strength of the tuneable 

synthetic spin-orbit coupling. As regards the density profile 

of a quasi-one dimensional SOC-BEC we focus our attention 

on the solution of the coupled Eqs. (93) and (94). From these 

equations it is clear that the dynamics of SOC-BEC, in 

addition to the parameters of the trapping potential and 

strength of the inter-atomic interaction, depends crucially on 

the spin-orbit coupling parameter 𝜅𝐿 and the so-called Rabi 

frequency Ω. The parameter 𝜅𝐿 physically represents the 

wave number of the Raman laser that inject spin-orbit 

coupling in the condensate. Depending on the choice for the 

values of 𝜅𝐾  and Ω one can distinguish two different regions 

in the linear energy spectrum of the system. In region I, 

characterized by 𝜅𝐿
2 < Ω has a single minimum and the 

associated GPE with attractive atom-atom interaction 

supports bright soliton solution [69] of the nonlinear 

Schrodinger equation. On the other hand, in region II with 

𝜅𝐿
2 > Ω, the dispersion curve posses two minima say, ±𝑘0, of 

the system.  Two different solutions corresponding to these 

minima have also been given in ref. 52. In addition, we can 

have a linear superposition of these solutions that form a strip 

phase [40, 70]. These wave functions can be used to obtain 

results for corresponding normalized to unity probability 

density distributions. Information theoretic measures of such 

probability densities have been found to provide a useful 

basis to examine the effect of any perturbation in the system 

[71, 72]. In our case the synthetic SOC perturbs the density 

distribution of the conventional BEC. We now discuss below 

how such measures have recently been used [73] to study the 

perturbative effect of our interest. 

Two popular information measures of a normalized to 

unity probability density 𝜌(𝑥) are given by the so-called 

Shannon entropy [74]                                                 

 

                  𝑆𝜌 = − ∫ 𝜌(𝑥) 𝑙𝑛 𝜌 (𝑥)𝑑𝑥
∞

−∞
                       (95) 

 

and Fisher information [76] 

 

   𝐼𝜌 = ∫ 𝜌(𝑥) [
𝑑

𝑑𝑥
𝑙𝑛 𝜌 (𝑥)]

∞

−∞

2

𝑑𝑥.              (96) 

 

In the momentum space, results corresponding to the one-

dimensional quantities in Eqs. (95) and (96) are given by  

 

          𝑆𝛾 = − ∫ 𝛾(𝑝) 𝑙𝑛 𝛾 (𝑝)𝑑𝑝
∞

−∞
                (97) 

 

and    

 

  𝐼𝛾 = ∫ 𝛾(𝑝) [
𝑑

𝑑𝑝
𝑙𝑛 𝛾 (𝑝)]

2∞

−∞
𝑑𝑝,             (98) 

 

The results of the above information theoretic quantities are 

subject to the constraints 

 

            𝑆𝜌 + 𝑆𝛾 ≥ 2.14473                      (99) 

 

and  

 

             𝐼𝜌𝐼𝛾 ≥ 4.                             (100) 

 

The relation in Eq. (99) represents a stronger version of the 

uncertainty relation introduced by Bialynicki-Birula and 

Mycielski [76] while that in Eq. (100) is due to Hall [77]. The 

Fisher based uncertainty relation has been re-derived by 

Dehesa et al. [78]. 

The information measures defined in Eqs. (97) and (98) 

provide complementary descriptions of disorder in the 

system. From mathematical point of view, one is a convex 

while the latter is concave [80]. When one grows the other 

diminishes. The larger values of the position-space Shannon 

entropy are associated with delocalization of the underlying 

densities while the smaller values imply localization 

Understandably, the opposite is true for the Fisher 

information. In view of this properties of 𝑆 and 𝐼 can be 

gainfully used to investigate how does the density 

distribution of a quantum many-body system respond to 

external perturbations. 

Thus, numbers for both Shannon entropy and Fisher 

indicate  that by increasing the strength of the spin-orbit 

coupling constant we go from a delocalized to localized 

atomic distribution in the condensate. The corresponding 

momentum -space quantities 𝑆𝛾(𝐼𝛾) increase(decrease) as 𝜅𝐿 
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become large. The results for position - and momentum - 

space information measures never violate uncertainty 

relations in Eqs. (99) and (100). In region II (𝜅𝐿
2 > Ω), 

𝑆𝜌, 𝑆𝛾,   𝐼𝜌 and 𝐼𝛾 as a function of 𝜅𝐿 exhibit opposite behavior 

as observed for these quantities in region I. This establishes 

that for 𝜅𝐿
2 > Ω the atomic distribution in the condensate 

becomes delocalized as we increase the strength of the SOC. 

This is just opposite to what we observed for the condensate 

in spectral region I. For the BEC in the stripe phase the results 

for 𝑆 and 𝐼 exhibit similar behavior as that of the condensate 

in region II i. e. BEC becomes more localized as we increase 

the strength of the SOC. At the lowest admissible value of 𝜅𝐿 

under the constraint  𝜅𝐿
2 > Ω  the result for 𝐼𝜌 has been found 

to be rather inconsistent. This implies that the strip phase 

cannot exist in BECs unless the synthetic spin-orbit coupling 

is strong enough. In general, the numbers for 𝐼𝜌 are greater 

than the corresponding values of 𝐼𝜌 in spectral region II by an 

order of magnitude. Very high values of  𝐼𝜌 tend to establish 

that in the stripe phase the density distribution is highly 

localized. This is quite expected since this phase 

characterizes the supersolid properties of the SOC BEC. 

From the results for 𝐼𝜌  and 𝐼𝛾 it is seen that values of the 

uncertainty 𝐼𝜌𝐼𝛾  are very large for all admissible values of 𝜅𝐿. 

It is, therefore, tempting to infer that supersolidity is a purely 

quantum mechanical Phenomenon. 
 

 

VII. CONCLUDING REMARKS 
 

The present work is a modest attempt to pay homage to the 

great Indian scientist Satyendra Nath Bose. His pioneering 

work came from India when the center of intense scientific 

activity was Europe. We began by noting that Bose’s 

intellectual development was unusual and he was destined to 

play an inspiring role in the scientific and cultural life of our 

country. He was well versed in Bengali, English, French, 

German and Sanskrit. Bose always had wanted science to be 

taught in mother language and he tried his best to achieve the 

goal. In recognition of Bose’s effort to popularize science 

through the mother language, poet Rabindra Nath Tagore 

invited Bose to Santiniketan and dedicated the book ‘Visva-

Parichaya’ to him [80]. This book gives an elementary 

account of cosmic and microcosmic world in Bengali. We 

noted in the text that, in honor of S. N. Bose, the British 

physicist P. A. M. Dirac, the originator of the relativistic 

electron theory, coined the term ‘boson’ for particles which 

obey Bose statistics.  

Next, we focused our attention on the statistics introduced 

by Bose and its application to derive Planck’s law of 

radiation, which opened a new window into the quantum 

world and made him immortal in the history of science. In 

fact, Bose read Planck’s paper on the distribution of energy 

in blackbody radiation to teach this material in his class.  He 

was disturbed by the ad hoc assumptions of Planck as were 

used to derive the law. In 1924, Saha stayed with Bose in 

Dacca (now called Dhaka) and pointed out the papers of 

Wolfgang Pauli, Paul Ehrenfest and their relation to 

Einstein’s 1917 paper. This led him to develop the so-called 

Bose statistics - a new method to count the states of 

indistinguishable particles - and apply it to his derivation of 

Planck’s law. After the publication of Bose’s work by the 

recommendation of Albert Einstein, Einstein himself 

extended the work of Bose to material particles. This led to 

the birth of Bose-Einstein statistics and theoretical prediction 

of a macroscopic quantum phenomenon - Bose-Einstein 

condensation (BEC). Since then, there were many attempts to 

observe BEC in the laboratory. Now we know that BECs are 

produced by cooling a dilute atomic gas to nano kelvin 

temperature using laser and evaporative cooling. We have 

tried to briefly outline the series of events that ultimately led 

to the experimental realization of BECs. 

There has been a growing interest in the physics of cold 

atoms. For example, the NIST group generated Abelian 

gauge fields to introduce a synthetic spin - orbit interaction in 

the electrically neutral cold atoms of the Bose-Einstein 

condensates. Such interactions have been found to drastically 

affect properties of the conventional condensates without 

spin-orbit coupling. We have provided here two examples in 

respect of this. In the first one we studied the interplay 

between the spin-degrees of freedom and nonlinear atomic 

interaction by loading a one-dimensional SOC BEC in an 

optical lattice. In the second one we made use of two 

information theoretic measures to critically examine the 

effect of spin-orbit coupling on the density profiles of a quasi-

one-dimensional condensate with attractive inter - atomic 

interaction. Interestingly enough, it was found that the BEC 

in the stripe phase exhibits supersolid properties and 

supersolidity is a purely quantum mechanical phenomenon. 
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