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Abstract 
In this paper, we present an analytical proof of the reflective property of a parabolic mirror that uses the laws of light 

reflection and an interesting method for solving the resulting non-linear differential equation. We emphasize that within 

the framework of this approach, students find the sought-for shape of the mirror surface by “discovering”. 
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Resumen 
En este artículo, presentamos una prueba analítica de la propiedad reflectante de un espejo parabólico que utiliza las 

leyes de la reflexión de la luz y un método interesante para resolver la ecuación diferencial no lineal resultante. 

Destacamos que en el marco de este enfoque los estudiantes encuentran la forma buscada de la superficie del espejo 

"descubriendo". 
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I. INTRODUCTION  
 

A parabolic mirror is a reflective surface used to collect or 

project energy such as light, sound, or radio waves. Its shape 

is part of a circular paraboloid, that is, the surface generated 

by a parabola revolving around its axis. The parabolic 

reflector transforms an incoming plane wave travelling along 

the axis into a spherical wave converging toward the focus. 

Conversely, a spherical wave generated by a point source 

placed in the focus is reflected into a plane wave propagating 

as a collimated beam along the axis. 

A parabolic reflector pointing upward can be formed by 

rotating a reflective liquid, like mercury, around a vertical 

axis [1]. This makes the liquid-mirror telescope possible. The 

same technique is used in rotating furnaces to make solid 

reflectors. 

Unlike a spherical mirror, a parabolic mirror is free of 

spherical aberrations, that is, all rays parallel to the axis of 

such a mirror are collected after reflection at a single point. 

This property of the paraboloid was first noticed by ancient 

Greek scientist Diocles [2]. 

There is a plenty proofs of the reflective property of a 

parabolic mirror. Most of these proofs are purely geometric 

[3]. Some of the approaches are based on testing a trial 

solution in the form of a quadratic function in the basic 

differential equation of the theory (see equation (3) of the 

present paper). In this paper, we present an analytical proof 

of this property that uses the laws of light reflection and an 

interesting method for solving the resulting non-linear 

differential equation. We emphasize that within the 

framework of this approach, students find the sought-for 

shape of the mirror surface by “discovering” (the uniqueness 

of this shape). The issues outlined in this article will be useful 

for undergraduate students studying the advanced topics of 

geometrical optics. 

 

 

II. THE PROBLEM 
 

Let us consider a curved mirror surface that is constructed as 

follows. We start with a curve, denoted by the 𝑥 − 𝑦  plane, 

that is symmetrical under a reflection through the y axis; i.e. 

𝑦(−𝑥) = 𝑦(𝑥). The 𝑦-axis is thus the symmetry-axis of the 

two-dimensional curve 𝑦(𝑥). The three-dimensional curved 

mirror surface is then obtained by rotating the curve about 

the y-axis, thereby producing a “surface of revolution” 

corresponding to the surface of the mirror. The projection of 

this surface onto the 𝑥 − 𝑦  plane yields the original curve 

𝑦(𝑥). We also assume that our mirror is concave everywhere 

(the derivative 𝑦′(𝑥) = 𝑑𝑦/𝑑𝑥 > 0), that is, it is able to 

transform a parallel beam of light into a converging one. 
 

Due to the symmetry of the three-dimensional surface, it 

is sufficient to examine the light rays propagating in the 𝑥 −
𝑦  plane. Let us consider the ray which is initially propagating 

in a direction parallel to the 𝑦-axis (figure 1). It then strikes 

the mirror with an angle of incidence 𝜃 with respect to the 

normal to the curve 𝑦(𝑥) at the point 𝑃, labeled by 

coordinates (𝑥, 𝑦). 
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Figure 1. Geometry of the problem. 

 

 

Using the law of reflection, the angle of reflection of the 

resulting reflected ray is equal to the angle of incidence 𝜃. 

The simple geometrical considerations imply that the angle 

the tangent line makes with the 𝑥-axis is also given by 𝜃. 

Thus,   
tan 𝜃 = 𝑦′(𝑥).                                (1) 

 

In addition, the angle 𝐹𝐶𝑃 is also equal to 𝜃 (as the two 

initial light rays are parallel), from which we conclude that 

the angle 𝑄𝐹𝑃 is equal to  2𝜃, as indicated in the above 

figure. Hence, the distance 𝑂𝐹 is given by: 

 

𝑂𝐹 = 𝑦 +
𝑥

tan 2𝜃
= 𝑦 +

𝑥(1−tan2 𝜃)

2 tan 𝜃
.                 (2) 

We need to find such a function 𝑦(𝑥) that the distance 𝑂𝐹 

(the focal distance 𝑓) would be fixed, that is, it would not 

depend on 𝑥 and 𝑦. 

 

 

III. THE SOLUTION 
 

Using equation (1) and (2), we have: 

 𝑦 +
𝑥(1−𝑦′2)

2𝑦′ = 𝑓 = 𝑐𝑜𝑛𝑠𝑡.                      (3) 

This is a non-linear differential equation with respect to the 

function 𝑦(𝑥), but it can be easily reduced to a separable 

variable equation. Solving equation (3) with respect to 

function 𝑦′(𝑥), we get: 

𝑦′ = −
𝑓−𝑦

𝑥
± √(

𝑓−𝑦

𝑥
)

2

+ 1.                     (4) 

Since, we are only interested in the positive solutions of 
equation (2), in what follows we should consider only the 
solution corresponding to sign ”+” before the square root. 

Now, we introduce new function 𝑧(𝑥), so that 

 

𝑦 = 𝑥𝑧 + 𝑓.                                   (5) 

 

In this case, equation (4) reduces to 
 

𝑥𝑧′ = √𝑧2 + 1.                              (6) 
 
Equation (4) is a separable differential equation. Separating 
the variables in it and integrating, we get: 
 

ln(𝑧 + √𝑧2 + 1) = ln(𝐶𝑥).                    (7) 

 

where 𝐶 is the integration constant. Solving equation (7), 

we obtain: 

 

(𝑥) =
(𝐶𝑥)2−1

2𝐶𝑥
.                                (8) 

 

Then, using equation (5), we derive: 

 

𝑦(𝑥) =
(𝐶𝑥)2−1

2𝐶
+ 𝑓.                             (9) 

 

If we require that 𝑦(0) = 0, then 𝐶 = 1/2𝑓 and, finally  

 

𝑦(𝑥) =
𝑥2

4𝑓
                                 (10) 

 

Thus, we discover that the generating curve is a parabola. 

Moreover, the focus of the parabola coincides with the focus 

of the mirror 𝐹. 
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