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Abstract 
In the study of thermodynamics, the first law is usually presented after studies on temperature, heat and work. Here, we 

deduce the 1st law of thermodynamics from the concept of entropy. Although it is not normally treated this way, it is 

relevant to note how the laws of thermodynamics are interdependent. To proceed, we carried out a thorough 

bibliographic research, using deductive reasoning. The 1st law remains valid under the adopted perspective. 
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Resumen 
En el estudio de la termodinámica, la primera ley suele presentarse tras estudios sobre temperatura, calor y trabajo. 

Aquí deducimos la primera ley de la termodinámica a partir del concepto de entropía. Aunque normalmente no se trata 

de esta manera, es relevante señalar cómo las leyes de la termodinámica son interdependientes. Para proceder, llevamos 

a cabo una exhaustiva investigación bibliográfica, utilizando un razonamiento deductivo. La primera ley sigue siendo 

válida bajo la perspectiva adoptada. 
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I. INTRODUCTION 
 

We consistently cross paths with thermodynamics in daily 

life; we are surrounded by thermodynamic phenomena. The 

laws of thermodynamics are evident in automotive 

engineering, thermoelectric and thermonuclear power plants, 

heat engines, meteorology, and even the human body. 

It is customary to study this part of physics in a 

hierarchical fashion; in particular, the 1st law follows studies 

on temperature, heat and work. Here, however, we carry out 

a mathematical deduction of the 1st law from the concept of 

entropy. We employ deductive reasoning, which, according 

to Gil [1, p.8], “starts from principles recognized as true and 

indisputable and makes it possible to reach conclusions in a 

purely formal way, that is, by virtue of its logic alone.” 

 

 
II.ENTROPY AND THE 1ST LAW OF 

THERMODYNAMICS 
 

Entropy is a measure of the irreversibility of physical 

processes. According to Callen [2] “… entropy S is a state 

property of the system; that is, it depends only on the state of 

the system and not on the way in which the system reaches 

that state” [p. 260]. The second law of thermodynamics is an 

extension of the existence of entropy, whereby the change in 

entropy of the universe, after some process, increases or 

remains constant. 

Thermodynamics understands entropy as a measure of the 

irreversibility of physical processes. Entropy can be defined 

by considering a thermodynamic process, which starts in a 

state I (initial) and reaches a final state F while exchanging 

matter and energy under the forms of heat and work with the 

surroundings. If such a process is reversible, it can be 

operated in reverse (FI) and the parameters will be preserved. 

But if such a process is irreversible, the reverse operation (F-

I) will not be possible or, if possible, the amounts of matter 

and energy will be transformed and an irreversible loss will 

occur. 

Mathematically, then, for a system that depends on the 

variables energy (E) and volume (V), Entropy (S) will be a 

function of both energy (E) and volume (V), S = S(E,V), as 

follows [3]: 

 

𝑆(𝐸, 𝑉) = 𝑘𝑏   𝑙𝑜𝑔Ω( 𝐸, 𝑉),                       (1) 

 

where kb is Boltzmann's constant and is approximately Ω(𝐸), 

1.381𝑥10−23 𝐽/𝐾 −1 is the number of states with energy E, 

and the number of states is on the order of Ω(E) ~ 𝑒𝑁. Thus, 

entropy is proportional to the number of particles in the 

system, 𝑆 ~ 𝑁. 

In a system with many particles, energy levels can be 

treated as a continuum. So when we consider that Ω(𝐸) is the 

number of states with energy E, it means that Ω(𝐸) has the 
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number of states with energy between E and E + E, where 

E is small. We analyze that as follows. Given “an isolated 

system in equilibrium, all accessible microstates are equally 

probable” [3, p. 4]. Then, it is reasonable to consider that all 

states have the same energy E, which is equivalent to all 

states being reachable by small perturbations in the system, 

i.e., the probability that the system is in an energy state other 

than E is zero (E'≠ E = 0). This probability distribution, 

relevant for systems with fixed energy, is known as the 

microcanonical set [3], or “a statistical ensemble that 

represents the possible states of a mechanical system whose 

total energy is exactly specified.” [5] 

The fact that entropy is proportional to the number of 

particles N in the system results in it being an additive 

quantity. Considering two systems that do not interact and 

have energies 𝐸1 and 𝐸2, the total number of states of these 

systems is given by 

 

Ω(𝐸1, 𝐸2)  =  Ω1(𝐸1) Ω2(𝐸2),                (2) 

 

and the entropy of the systems will be 

 

𝑆(𝐸1, 𝐸2)  =  𝑆1(𝐸1)  + 𝑆2(𝐸2).                (3) 

 

Considering the entropy of a composite system as a function 

of energy and volume, we have 

 

𝑆(𝐸1, 𝑉1)  =  𝑆1(𝐸1, 𝑉1)  + 𝑆2(𝐸2, 𝑉2);            (4) 

 

that is, it is extensive and means that all extensive features of 

the system are multiplied by a constant lambda , and entropy 

is multiplied by this same constant S ( E, V) = λS (E, V) [4] 

as 

 

𝑆(𝐸, 𝑉) = 𝑆(𝐸, 𝑉),                            (5) 

 

𝑆(𝐸, 𝑉) =
𝜕𝑆

𝜕(E)

𝜕(E)

𝜕𝐸
+

𝜕𝑆

𝜕(V)

𝜕(V)

𝜕𝑉
 .               (6) 

 

Since E and V do not depend on λ, we have the following 

relationship: 

 

𝑆(𝐸, 𝑉) =
𝜕𝑆

𝜕(E)
 𝐸 +

𝜕𝑆

𝜕(V)
𝑉.                    (7) 

 

Equation (7) must hold for any value of λ; making λ = 1, we 

have 

 

𝑆(𝐸, 𝑉) =
𝜕𝑆

𝜕E
 𝐸 +

𝜕𝑆

𝜕V
𝑉.                        (8) 

 

In a differential form, we rewrite equation (8), as follows: 

 

𝑑𝑆 =
∂S

∂𝐸
 𝑑𝐸 +  

∂𝑆

∂𝑉
 𝑑𝑉                       (9) 

 

Using the statistical definition of temperature, we have 

 
1

𝑇
=

∂S

∂E
.                                    (10) 

 

The validity of equation (10) can be verified by dimensional 

analysis. By having 𝑆 =  [
𝐽𝑜𝑢𝑙𝑒(𝐽)

𝐾𝑒𝑙𝑣𝑖𝑛(𝐾)
]   𝑒  𝐸 =  [𝐽𝑜𝑢𝑙𝑒], we 

will, in turn, have, 

 

𝑆

𝐸
 =  [

𝐽
𝐾⁄

𝐽
]  =  [

1

𝐾
]  =  

1

𝑇
.                         (11) 

 

In statistical physics, pressure is defined by equation (11). 

 

𝑝 = 𝑇
𝜕𝑆

𝜕𝑉
.                                    (12) 

 

Also using dimensional analysis, we can demonstrate the 

validity of equation (12). Considering 𝑆 =  [
𝐽𝑜𝑢𝑙𝑒

𝐾𝑒𝑙𝑣𝑖𝑛
]   𝑒  𝑉 =

 [𝑚3], we have 

 

𝑇.
𝑆

𝑉
 =  [𝐾.

𝐽
𝐾⁄

𝑚3]  =  [
𝐽

𝑚3].                         (13) 

 

However,  𝐽 =  [𝐾𝑔.
𝑚2

𝑠2 ]. Substituting the equivalent of 

Joule in the analysis, we will have 

 

𝑇.
𝑆

𝑉
 =  [𝐾𝑔.

𝑚2

𝑠2  .
1

𝑚3]  =  [
𝐾𝑔

𝑠2.𝑚
],               (14) 

 

and by the simplest definition, the pressure at a given point is 

the ratio of the force applied over a given area; that is, 𝑝 =  
𝐹

𝐴
, 

so 

 

𝑝 =  [
𝑁

𝑚2]  =  [
𝐾𝑔.𝑚

𝑠2⁄

𝑚2 ]  =  [
𝐾𝑔

𝑠2.𝑚
],           (15) 

 

which proves, by dimensional analysis, that: 𝑝 = 𝑇
𝜕𝑆

𝜕𝑉
. 

Returning to equation (9) for the second term, by equation 

(12), we will have 

 
𝜕𝑆

𝜕𝑉
=

𝑝

𝑇
.                                 (16) 

 

Substituting into equation (9), equations (10) and (16), we 

have 

 

𝑑𝑆 =  
1

𝑇 
 𝑑𝐸 +

𝑝

𝑇
 𝑑𝑉, 

 

𝑑𝑆 =  
1

𝑇
(𝑑𝐸 + 𝑝𝑑𝑉), 

 

𝑇𝑑𝑆 = 𝑑𝐸 +  𝑝 𝑑𝑉, 
 

𝑑𝐸 = 𝑇𝑑𝑆 −  𝑝 𝑑𝑉.                        (17) 

 

Using the relationship of entropy with heat transferred, we 

have the change of entropy dS, an exact differential, between 

two states, arising from the heat transferred 𝑑′𝑄, an inexact 

heat differential, divided by the system temperature T, as 
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𝑑𝑆 =
 𝑑′𝑄

𝑇
.                                (18) 

 

Substituting equation (18) into (17), we have 

 

𝑑𝐸 = 𝑇
𝑑′𝑄

𝑇
 −  𝑝 𝑑𝑉, 

 

𝑑𝐸 = 𝑑′𝑄 −  𝑝 𝑑𝑉,                           (19) 

 

where p dV is the work done by the system 𝑑′𝑊. Thus, we 

can rewrite equation (19) as 

 

𝑑𝐸 = 𝑑′𝑄 −  𝑑′𝑊.                           (20) 

 

The differences 𝑑′𝑄 and 𝑑′𝑊are inexact, as they do not 

represent variations of heat and work, respectively, between 

two states. They represent the dependence of such parameters 

on the thermodynamic process involved. For example, it is 

necessary to know whether the thermodynamic process is 

isobaric, adiabatic, isochoric or other in order to calculate the 

quantities 𝑑′𝑄 and 𝑑′𝑊. On the other hand, the quantity dE 

is an exact differential, as it represents the variation of the 

internal energy of the system between two states (initial and 

final) and is independent of the thermodynamic process. 

Equation (20) represents the 1st law of thermodynamics 

when a system undergoes an infinitesimal change in its state 

whereby a small amount of heat transfer and a small change 

in work take place. 

The change in the internal energy of the system ∆𝐸 =
 𝐸𝑓 – 𝐸 𝑖 is equivalent to the change in the amount of heat 

absorbed by the system and the work done. Therefore, 

Equation (21) is the first law of thermodynamics for finite 

processes, or 

 

∆𝐸 = ∆𝑄 − ∆𝑊.                            (21) 

 

We can conclude that equation (9) is a combination of the 

first and second principles of thermodynamics. 

 

 

III. FINAL COMMENTS 
 

While the 1st law of thermodynamics is typically based on 

temperature, heat, and work, we herein proposed a 

differentiated analysis of the 1st law through an unusual 

route: the concept of entropy. As determined through 

bibliographic research, this deduction is novel as it is not 

found in the Brazilian literature.  

We used definitions of partial derivatives and the 

definitions of temperature and pressure and demonstrated 

from the concept of entropy that it is possible to deduce the 

first law of thermodynamics. This approach is relevant 

because in addition to clearly observing how the laws of 

thermodynamics are interdependent, it can be demonstrated 

that the 1st law remains valid under the adopted perspective. 

This demonstration allows us to observe that the quantities of 

the thermodynamic state (pressure, volume and temperature) 

are articulated in a manner independent of their analysis. 
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