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Abstract 
From the relativistic equation of motion for the spin, known as the BMT equation, we derive the corresponding 

Lagrangian function. The Euler-Lagrange equations are then used to recover the BMT equation, taking into account the 

non-commuting property of the spin coordinates. We also obtain the interaction Hamiltonian. 
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Resumen 
A partir de la ecuación relativista de movimiento para el espín, conocida como la ecuación BMT, derivamos la función 

de Lagrange correspondiente. Las ecuaciones de Euler-Lagrange se utilizan para recuperar la ecuación de BMT, 

teniendo en cuenta las propiedades de no conmutatividad de las coordenadas de espín. Se obtiene también la 

Hamiltoniana de interacción. 
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INTRODUCTION 
 

In an analysis based on classical mechanics, Bargmann, 

Michel and Telegdi [1] derived in 1959, the relativistic 

equation describing the spin motion of particles in uniform 

and constant electric and magnetic fields [2]: 

 

𝑚
𝑑

𝑑𝜏
𝑆𝛼 =

𝑒

𝑚𝑐
 
𝑔

2
𝐹𝛼𝛽 𝑆𝛽 +

1

𝑐2  
𝑔

2
− 1 𝑈𝛼 𝑆𝜆𝐹

𝜆𝜇 𝑈𝜇   ,        (1) 

 

here 𝑚 and 𝑒 is the mass and charge of the particle, 𝑆𝛼  

denotes the components of the spin 4-vector in some 

inertial reference frame, 𝑈𝛼 is the particle´s 4-velocity, 𝐹𝛼𝛽  

is Maxwell electromagnetic field tensor, and 𝑔 and 𝑐 are the 

Landé factor and the speed of light. Eq. (1) is the relativistic 

version of the equation of motion for the spin in its rest 

frame 

 
𝑑

𝑑𝑡′
𝑆 =

𝑒𝑔

2𝑚𝑐
𝑆 × 𝐵  ′ .                            (2) 

 

Here primes denote quantities defined in the rest frame. 

The second summand in the right hand side of (1) is the 

anomaly of spin-1/2 particles, and is consequence of 

radiative corrections to the electromagnetic vertex. Shortly 

after the publication of Bargmann, Michel and Telegdi, Eq. 

(1) was named the BMT equation, and attempts were made 

to derive it from the Dirac equation in the limit of zero 

Planck constant [3]. The gyromagnetic ratio of a particle is 

the ratio of its magnetic moment to its intrinsic angular 

moment. For an elementary particle like the electron, the 

value 𝑔 = 2(1 +
𝛼

2𝜋
+ ⋯ ) is obtained in Quantum 

Electrodynamics, where  is the fine-structure constant, and 

the small correction to the result  𝑔 = 2 comes from 

radiative corrections.  

On the other hand, spin is an intrinsic degree of 

freedom, i. e. it is an internal coordinate necessary to 

describe a physical state. Then, in a classical description the 

coordinate space has to be enlarged to include the spin 

degree. An important property of spin is that it is a non-

commutative variable.  

The purpose of this short note is to deduce the 

Lagrangian function for a charged particle with spin in an 

external electromagnetic field, starting from the equation of 

motion (1), for the case of 𝑔 = 2. We use the same method 

as in [4], where the Hilbert Lagrangian is derived from 

Einstein´s equation. 

The starting point is Eq. (1) with 𝑔 = 2, written as 

 

 𝑆 𝜇 − 𝛼𝐹𝜇𝜈 𝑆𝜈 = 0,                              (3) 

 

with 𝛼 = 𝑒
𝑚2𝑐 . Multiplying (3) by 𝛿𝑆𝜇  and integrating 

over 𝑑𝜏 we obtain 

 

0 =  𝑑𝜏   𝑆 𝜇 − 𝛼𝐹𝜇𝜈 𝑆𝜈 𝛿𝑆𝜇 .                    (4) 
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Here 𝛿𝑆𝜇  is a variation of the spin coordinate and is 

assumed it vanishes on the boundary points in the varied 

trajectory. Now, we rewrite the term  𝑆 𝜇𝛿𝑆𝜇  as 

 

 𝑆 𝜇𝛿𝑆𝜇 =
𝑑

𝑑𝜏
 𝑆𝜇𝛿𝑆𝜇 − 𝑆𝜇 𝑑

𝑑𝜏
𝛿𝑆𝜇 .                  (5) 

 

Then, 

 

0 =  𝑑𝜏  
𝑑

𝑑𝜏
 𝑆𝜇𝛿𝑆𝜇 − 𝑆𝜇 𝑑

𝑑𝜏
𝛿𝑆𝜇 − 𝛼𝐹𝜇𝜈 𝑆𝜈𝛿𝑆𝜇  .      (6) 

 

The first term in square brackets vanishes after integration 

and evaluation in the boundary point. We interchange the 

time derivative and the variation, in the second term, 

arriving to 

 

0 = − 𝑑𝜏  𝑆𝜇𝛿𝑆𝜇
 + 𝛼𝐹𝜇𝜈 𝑆𝜈𝛿𝑆𝜇  .                 (7) 

 

The next step is to judiciously add and subtract terms 

leading to 

 

0 = − 𝑑𝜏 [𝛿(𝑆𝜇𝑆 𝜇 ) − (𝛿𝑆𝜇 )𝑆 𝜇 + 𝛿(𝛼𝐹𝜇𝜈 𝑆𝜈𝑆𝜇 ) 

−𝛿 𝛼𝐹𝜇𝜈 𝑆𝜈 𝑆𝜇 ].                             (8) 

 

This can be grouped as 

 

 0 = − 𝑑𝜏 𝛿(𝑆𝜇𝑆 𝜇 + 𝛼𝐹𝜇𝜈 𝑆𝜈𝑆𝜇 ) 

+  𝑑𝜏   𝛿𝑆𝜇 𝑆 
𝜇 + 𝛼𝐹𝜇𝜈 (𝛿𝑆𝜈 𝑆𝜇 .                  (9) 

 

Notice that term 𝛼𝐹𝜇𝜈 𝑆𝜈𝑆𝜇  does not vanish, since 𝑆𝜈𝑆𝜇 =

−𝑆𝜇𝑆𝜈 , and 𝐹𝜇𝜈  is an anti-symmetric tensor. This fact is 

used to write  

 

𝟎 = − 𝒅𝝉𝜹𝑳 +  𝒅𝝉  𝜹𝑺𝝁  𝑺 
𝝁 − 𝜶𝑭𝝁𝝂𝑺𝝂 .          (10) 

 

The last term is zero because the equation of motion itself, 

and the Lagrangian function L is identified with 

 

𝐿(𝑆𝜇 , 𝑆 𝜇 ) = 𝑆𝜇  𝑆 
𝜇 − 𝛼𝐹𝜇𝜈 𝑆𝜈 ,                 (11) 

 

a function identically zero but still allows one to derive the 

equations of motion [5].  

To show that the equation of motion follows from (11), 

we use Lagrange equations 

 
𝑑

𝑑𝜏

𝜕

𝜕𝑆𝜆 
𝐿 −

𝜕

𝜕𝑆𝜆
𝐿 = 0.                           (12) 

 

From (11) we compute the different derivatives: 

 

 
𝜕

𝜕𝑆𝜆 
𝐿 = −𝑆𝜆 ,                                 (13a) 

 
𝜕

𝜕𝑆𝜆
𝐿 = 𝑆 𝜆 − 2𝛼𝐹𝜆𝜈𝑆𝜈 .                        (13b) 

 

The minus sign in (13a) is a consequence of the anti-

commuting character of the spin variables. That is, to 

operate 𝜕
𝜕𝑆 𝜆

  over L we must jump the factor 𝑆𝜇 , giving a 

minus sign [6]. Besides, 

 
𝑑

𝑑𝜏

𝜕

𝜕𝑆 𝜆
𝐿 = −𝑆 𝜆 .                               (14) 

 

A substitution of (13) and (14) in (12) gives 

 

−2(𝑆 𝜆 − 𝛼𝐹𝜆𝜈𝑆𝜈) = 0. 

 

This is Eq. (3), except for a factor. 

The non-relativistic limit of (3). 

 

𝑆𝑖
 − 𝛼𝜖𝑖𝑗𝑘 𝑆𝑗𝐵𝑘 = 0,                         (15) 

 

and of (11) 

 

𝐿 𝑆𝑖 , 𝑆 𝑖 = 𝑆𝑖 𝑆 𝑖 − 𝛼𝜖𝑖𝑗𝑘 𝑆𝑗𝐵𝑘 ,               (16) 

 

may be obtained noticing that, in the system of reference of 

the particle, 𝑆𝜇 =  0, 𝑆𝑖  and the only non-zero components 

of the Maxwell tensor are the magnetic field components 

𝐹𝑖𝑗 = 𝜖𝑖𝑗𝑘 𝐵𝑘 .  

We can construct the Hamiltonian function from the 

definition 

𝐻 = 𝑆 𝜇
𝜕𝐿

𝜕𝑆𝜆 
− 𝐿, 

 

to obtain  

 

𝐻 = 𝑆 𝜇  −𝑆𝜇  − 𝑆𝜇  𝑆 𝜇 − 𝛼𝐹𝜇𝜈 𝑆𝜈  

             =  −𝑆𝜇  (−𝑆 𝜇 ) − 𝑆𝜇  𝑆 
𝜇 − 𝛼𝐹𝜇𝜈 𝑆𝜈  

        = 𝛼𝐹𝜇𝜈 𝑆𝜇𝑆𝜈 .                                            (17) 

 

Again, we have used the anti-commuting property of the 

spin coordinates. In particle’s system of reference (17) 

reduces to 

𝐻 = 𝛼𝐵  ∙ 𝑆 .                                (18) 

 

This is the expression for the Hamiltonian of interaction 

between particle’s magnetic moment and the external 

magnetic field. 
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