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Abstract 
The spring-mass experiment is a step in a sequence of six increasingly complex practicals from oscillations to waves in 

which we cover the first year laboratory program. Both free and forced oscillations are investigated. The spring-mass is 

subsequently loaded with a disk to introduce friction. The succession of steps is: determination of the spring constant 

both by Hooke’s law and frequency-mass oscillation law, damping time measurement, resonance and phase curve 

plots. All cross checks among quantities and laws are done applying compatibility rules. The non negligible mass of the 

spring and the peculiar physical and teaching problems introduced by friction are discussed. The intriguing waveforms 

generated in the motions are analyzed. We outline the procedures used through the experiment to improve students' 

ability to handle equipment, to choose apparatus appropriately, to put theory into action critically and to practice treating 

data with statistical methods. 
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Resumen 
El experimento resorte-masa es un paso en una secuencia de seis prácticas cada vez más complejas de oscilaciones a 

ondas en el que cubrimos el programa del primer año del laboratorio. Ambas oscilaciones libres y forzadas son 

investigadas. El resorte-masa se carga posteriormente con un disco para introducir la fricción. La sucesión de pasos es: 

determinación de la constante del resorte tanto por la ley de Hooke y la ley de oscilación frecuencia-masa, reducción 

del tiempo de medición, y representación de curvas de fase y resonancia. Todos los controles cruzados entre cantidades 

y leyes se realizan aplicando las normas de compatibilidad. Se discute la masa no despreciable del resorte y los 

problemas específicos de física y  enseñanza derivados de la fricción. Se analizan las formas de onda complejas 

generadas en los desplazamientos. Se describen en términos generales los procedimientos utilizados en el experimento 

para mejorar la capacidad de los alumnos para manejar los equipos, para elegir adecuadamente los aparatos, para poner 

de manera crítica la teoría en práctica, y para practicar el tratamiento de los datos con métodos estadísticos. 

 

Palabras clave: Teoría-prácticas en la educación experimental Masa-Resorte, Fricción y Resonancia, Formas de onda. 
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I. INTRODUCTION 
 

The spring-mass oscillator experiment is used worldwide in 

first year laboratory courses because it is physically and 

pedagogically rich, and its apparently simple contents lead 

students to face the gap between theory and practice, to 

program and master experimental techniques and to treat 

data statistically. In our course, the spring-mass is the 

second step in a sequence of six experiments, as follows: 

the pendulum, vertical oscillations with the spring-mass, 

spring-mass with two degrees of freedom, horizontal 

oscillations with two masses and three springs, vibrations in 

an elastic string, vibrations in a gas tube and the ripple-

tank. The idea is to evolve from the single oscillator to 

waves, given their importance in many fields such as 

electronics, accelerators, quantum-mechanics, etc. In this 

context, our mass and spring experiment is strictly 

connected to the development towards waves.  

The course organization is based on the idea of creating 

groups of about twenty students at a time in a laboratory, 

working together as in a research group studying a certain 

topic. As such, the group head guides the experimental 

research project: he presents the theory in a few lectures, 

describes the test strategy, defines steps and, very 

importantly, creates the occasions for discussions at crucial 

points. In the laboratory sessions sub-groups of three 

students are helped by assistants. 

Given that our first year students usually do not have a 

background in practical physics, we focus our attention 

only on the simplest damped harmonic oscillator during the 

theory lessons which preceed the practical sessions. In the 

laboratory, students start with the most common spring and 
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mass apparatus as described in so many textbooks. We try 

as much as possible to make it behave as a textbook 

damped simple harmonic oscillator. This means that the 

spring is assumed massless and friction is assumed velocity 

dependent. Nevertheless, neither assumption complies with 

our reality. The discussion about the gap between simple 

theory and rather more complex reality is postponed to the 

moment when this is noticed by students in the laboratory 

sessions. Then we bring up the various oscillating modes, 

so students notice that the initial mathematical model was 

inadequately simpler than reality. SHM is indeed far from 

simple. 

The spring force and the weight act in the spring-mass 

vertical system making the physics somewhat sophisticated, 

if not very-complex [1, 2]. The real spring-mass behavior 

cannot be treated as a textbook SHM; many authors discuss 

how, in practice, we must consider factors such as the 

torsional force [3], possible standing waves in the spring 

[4], loaded vertical oscillations [5, 6, 7] and multi-mode 

oscillations [8, 9], the mass of the spring if non-negligible 

with respect to the object mass attached to it [2, 8, 9].  

  The spring-mass system can have a behaviour which is 

acceptably near a SHM only if proper ratios spring constant 

/mass, k/m, and spring constant/spring length, k/ℓ, are 

chosen [5, 9]. In addition, the choice of the mass m is 

connected to the damping constant γ and also to the 

resonance curve full width half maximum, FWHM; 

moreover, it should match the driving oscillator sensitivity. 

The main objects of discussion which appear during the 

lab work are: (1) the relevant action of the spring mass to 

be considered in the comparison of the two results on the 

spring constant obtained from the Hooke’s law and the 

frequency-mass oscillation law; (2) the damping of a 

system whose behavior depends also on the non-linear 

coupling between longitudinal and transverse oscillations; 

(3) the motion at the stat-up composed by the forced and 

self oscillations. 

The approach to treat and to discuss choices, problems 

and discrepancies between theory and experiment with 

students are presented. All choices about the system are 

discussed with students during the experimental work. 

Moreover, students have to try to understand and explain 

several unexpected experimental observations; therefore, 

they look deeply into the gap between theory and pratice 

and discuss it in small groups and, after that, in plenary 

sessions.  

 

 

II. THE TEACHING PLAN, ORGANIZATION 

AND SETUPS 
 

The theory of free and forced oscillations is presented in 

about 10 hours of lectures. In the first three we present the 

theory of free oscillations for the pendulum and springs. 

We also give guidelines to plan the very first experiments 

that follows suit. In the other six or seven hours we discuss 

damped oscillations and guide students towards planning 

the second spring-mass experiment. 

The SHM equations describing the free and forced 

motion are reported for convenience. 
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whose solutions are 

 

𝑥 𝑡 =  𝑥0𝑒
−𝛾𝑡 sin 𝜔′ 𝑡 𝛾 =  

1

𝜏
,              (3) 

 

𝑥 𝑡 =  𝐴(𝜔) sin 𝜔𝑡 +  𝜑(𝜔 ),                (4) 

 

where 

 

𝜔′2 =
𝑘

𝑚
−  

𝐶

2𝑚
 

2

=  𝜔0
2 −  𝛾2,                    (5) 

 

𝐴 𝜔 =
𝑐𝑜𝑠𝑡

  𝜔0−𝜔 2−𝛾2
,                            (6) 

 

tan 𝜑 =  −
2𝛾𝜔

𝜔0
2−𝜔2.                              (7) 

 

In these equations, F0 and ω are amplitude and frequency of 

the applied force, 𝛾 = 𝐶/(2𝑚) is the damping constant, C 

is the friction coefficient and φ is the phase difference 

between the applied force and the position x(t) and m is the 

mass attached to the spring. The damping time is 𝜏 = 1/𝛾. 

In the above equations, the gravitational force mg is 

opposed by the spring force 𝑘ℓ0. 

After that, when they come to practicals, students 

assemble the apparatus and follow their plan after an initial 

guiding plenary discussion. Before starting each sequence 

of measurements, we test the apparatus with a few values 

far apart from each other and compare practical results with 

theory. Assistance is given to help slower groups keep the 

pace. At regular intervals data of all groups are collected on 

the board for statistical treatment, discussion and 

conclusions. This procedure helps to show how to spot 

systematic errors and casual mistakes. 

In the first part of the experiment students observe and 

gather data directly, see Fig. 1, in the second part they work 

on line with electronic data systems, as shown in Fig. 2. 

Students start with the test of Hooke’s law by doing a set of 

force-distance measures and by doing in succession a linear 

fit with those data pairs to find the spring constant. Springs 

are long enough for precise measurement of force and 

distance. The same springs are used to check the relation 

𝜔2 = 𝑘/𝑚. The resonance frequency ω0 is measured via the 

period T with a chronometer. Then students do the linear fit 

of the data pairs(𝑚, 𝑇2) to get the spring 

constant.Compatibility between the two measured spring 

constants k is analyzed. Then students make a rough 

measure of decay time τ and, re-set the system for the 

resonance experiment section, they take measurements to 

obtain the two resonance curves as in equations. 6 and 7 

above, and obtain results similar to those shown in Fig. 3. 



The spring-mass experiment as a step from oscillations to waves: mass and friction issues and their approaches 

Lat. Am. J. Phys. Educ. Vol. 5, No. 2, June2011 411 http://www.lajpe.org 

 

The relation between the FWHM ∆𝜔of the resonance curve 

and the damping time τ should be checked: 

 

∆𝜔  𝐹𝑊𝐻𝑀 =  2 ∙  3 𝛾 𝐻𝑧 ∆𝜈 ≃ 0.55 𝛾 =
0.55

𝜏
 Hz  (8) 

 

The apparatus has been kept as simple as possible, just a 

spring, a weight and a CD-rom to increase air resistance, 

see Figs. 1 and 2.  

 

 

 
 
FIGURE 1. Left frame: layout scheme for the measurement of the 

spring constant k and free oscillation period T as function of 

different masses and of the damping time. Right frame: photo of 

the two springs and configurations used in the experiment, the 

bigger spring is used in the first section, the smaller one is used in 

the resonance experiment. The choice of a vertical setting makes 

the system simpler. 

 

 

 
 
FIGURE 2. Layout scheme for the measurement of the forced 

oscillation amplitude as function of the force frequency (resonance 

curve) and of the relative phase between the force and the motion 

oscillation (phase-curve). 

 

 

The unpredictable results obtained with the τ measurement 

are explained in a plenary discussion. In this occasion it is 

also observed that the heavy springs with the rather small 

hanging weights are not appropriate to get a wide enough 

resonance curve. Neither commercial oscillators nor our 

purpose built sources are sensitive enough to generate 

frequencies differing only by few MHz. These would be 

needed to get enough points near the resonance frequency. 

As a consequence, in order to get more points near the 

frequency of resonance, students have to use a lighter 

spring for forced oscillations. This choice is the focus of the 

discussion about matching variables such as masses and 

spring constants to the available apparatus used for 

generating and detecting oscillations.  

 

 
 
FIGURE 3. Plots of the resonance and phase relations 6 and 7. 

 

 

For the sake of thoroughness, Eq. 2 is further specified to 

the apparatus of our experiment shown in Fig. 2. 

 

𝑚
𝑑2𝑥

𝑑𝑡2 =  −𝑘 𝑥 −  𝛿𝑥 ′ −  𝐶
𝑑𝑥

𝑑𝑡
, 

 

=  −𝑘 [𝑥 −  𝑥0 sin 𝜔𝑡 ] −  𝐶 
𝑑𝑥

𝑑𝑡
 ,                (9) 

 

where 𝛿𝑥 ′  is the vibrator oscillation amplitude, see Fig. 2.  

Using the CD to increase friction is simple and 

inexpensive but poses questions with damping and 

resonance which are a challenge to manage with students. 

We will see that friction does not follow the law 𝐶 ∙ 𝑥  as 

assumed in the motion Eqs. 1 and 2. 

 

 

III. HOOKE’S LAW 
 

The relation to be tested is ΔFi = k ∙ ∆xi . As shown in Fig. 

2 the spring is stretched by a mass attached to its end. A 

ballast mass is put to get a linear graph even with a small 

spring extension. Students are strongly advised to draw 

graphs in real time to keep track on data and to avoid 

parallax errors. Lab work starts by checking the linear 

extension of the spring for three distant points. Afterwards, 

systematic data reading takes place. For the linear fit, 

students transfer the error of the x variable into the y 

variable by 𝜎𝑦 = 𝑘 ∙ 𝜎𝑥 , using for previously measured 

value ofk. The confidence level in this test comes out 

higher than 80 % and compatible with the origin. This is a 

simple and successful test to practice a straight line fit. 

 

 

IV. TEST OF 𝝎𝟐 = 𝒌/𝒎 
 

Eq. 5 is approximated at this stage of the experiment as  

 

𝜔′2 = 𝑘 ∙  
1

𝑚
=  𝜔0

2 𝜐′2 =  𝜐0
2 =   

1

𝑇
 

2

.   (10) 
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For convenience this equation is changed into the following 

one 

 

𝑚 = 𝑘 ∙  
𝑇2

4 𝜋2 .                                (11) 

 

Here k is the spring constant measured in the previous test.  

The apparatus is set with tight clamps and short rods to 

avoid spurious oscillations. The apparatus is tested 

comparing the values  𝑚𝑖 ∙ 𝜔0,𝑖
2  for three points set far 

apart.The three points  𝑚𝑖 , 𝑇𝑖
2  must be aligned and the line 

must pass though the origin. The minimum mass is 

determined by students' ability to measure the frequency 

once the system oscillates regularly. 

Students feel baffled when they start to calculate the 

value of k because the ratios ki come out un-compatible and 

the graph does not pass through the origin. The groups are 

then gathered for a plenary discussion with their data on the 

board. The data show that the heavier the mass the higher 

the k value. All the plots show straight lines, as expected, 

but all of them cross the y-axis at a negative point. We can 

trust these results because they are similar in all groups. 

From these first measurements and observations student are 

forced to conclude that data are not consistent with theory. 

As a conclusion, we have to revise the theory and the 

experimental apparatus, but the equipment is simple and 

works well, so the mistake cannot be there. We have to 

have a closer look at k, T and m. 

The period T is measured with high accuracy, k refers to 

the same spring of the previous session where it worked 

perfectly well, so, we are led to conclude that the problem 

lies in the mass: what is really oscillating in our 

experiment? Let’s start from first principles: Newton’s law 

F = ma. The mass m in the equation refers to the mass of 

the moving body. Are we considering the whole moving 

mass in our system? No! The mass of the spring is moving 

as well. OK, we got the problem. But now we observe that 

the motion of the spring-mass is very complicated: the top 

part of the spring is at rest while its bottom part moves with 

the attached object. We may argue that the “motion” 

(acceleration, velocity) increases linearly from top to 

bottom. This is too difficult for the students at this stage but 

we may guess that we can write the total moving mass as 

the sum of the attached body mass and a fraction of the 

spring mass, which we call mspring. Eq. 11 can be written as 

 

𝑚 = 𝑘 ∙  
𝑇2

4 𝜋2 − 𝑚𝑠𝑝𝑟𝑖𝑛𝑔 .                         (12) 

 

The equation above explains the negative intersection at the 

y-axis. The general discussion leads to consider that the 

spring mass counts for 1/3 (Ref. 14) of its total mass as can 

be immediately confirmed from the rough graphs obtained 

so far. So, an estimate for k is calculated and it is closely 

compatible with the one found in the previous session.  

This discussion for students is an example of scientific 

method in physics: theory - experiment - discrepancy - 

criticism - new-model - new experimental observation and 

conclusion. 

After the discussion, students test relation 11 (time 

allows them to take readings only for a few points). The 

error on the x-variable is transferred to the y-variable, as 

done in the previous fit. 

The confidence level of the fit results 𝐶𝐿 ≃ 10%, the 

value of the k extracted from the fit is loosely compatible 

with the k value found by Hooke's law, the line is 

compatible with the origin, see Fig. 4. The compatibility 

between the spring constant measured with the two 

techniques is analysed. The results came out better in 

groups who chose heavier masses for the test.  

 

 
 
FIGURE 4. Typical graph 𝑚 = 468 ∙ 𝑇2 + 2  fitting the 

experimental data. We see that there is a small shift between 

points obtained with lighter and heavier masses. 

 

 

In the plenary discussion of the different group results it 

emerged that when using lighter masses students observed 

an irregular oscillation; initially, the motion was vertical, 

then it became lateral. It was not easy to get a clean motion. 

Larger masses gave smoother results, which will happen 

again laterwhen measuring damping constant γ and its 

effect on the frequency. Once again the discussion allows 

students to practice method and critical thinking. 

 

 

V. FREE OSCILLATION DECAY TIME τ 
 

By definition the decay time τ is the time required for the 

oscillation amplitude to decay to 1/e of its initial value.  

 

A. Direct measurement of τ 

 

Students start measuring the time with the chronometer and 

the reducing oscillation amplitude with the meter, see Fig. 

2. Different groups choose different masses from 80g to 

200 g, and try to produce neat vertical oscillations. The τ 

values span from 40s to 80s, the relative error is larger than 

20%. The results discussed in class lead to: (1) the higher 

the mass the longer the damping time, (2) that τ value 

corresponds theoretically to an expected frequency width of 

resonance, 𝐹𝑊𝐻𝑀 =  𝛿𝜐 ≃1/60∼ 0.017 𝐻𝑧. This 

frequency interval is too narrow for the sensitivity of the 

generator, 0.02Hz, which will subsequently drive the 

system. We need a damping time at least five times smaller 

in order to be able to measure a few points in the upper part 

of the resonance curve. 
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By adding a CD we just managed to double its value 

(judging by the lower decay time). Searching for a new idea 

we revised the initial equation 𝜏 = 2𝑚/C (Eq. 3) and 

observed that the higher the mass the longer the damping 

time. In order to obtain the adequate FWHM, the mass must 

be very small and as such it will be comparable to the 

spring mass. We concluded that only a lighter spring would 

give the required result. Students then take a softer spring 

and do a rough measurement of: (1) the new spring constant 

k, (2) the new frequency of resonance and (3) the new τ. 

The encouraging results with an applied mass 𝑚𝑜𝑏𝑗 𝑒𝑐𝑡 ≃

71 𝑔 and 𝑚𝑠𝑝𝑟𝑖𝑛𝑔 ≃ 4.8 𝑔 are: 

 

𝑘 = 8 ± 2%𝜈 ≃ 1.67 ∓ 2% 𝐻𝑧𝜏~12 ∓ 2 𝑠. 

 

This leads to the second section of the experiment, which is 

on-line. 

 

B. Measure of τ using the computer waveform 

 

An accurate measurement of the damping time is done 

using the graph on the computer screen. A typical 

waveform with a mass of 73g is shown in Fig. 5. 

 

 
 
FIGURE 5. Typical recorded damping signal with its FFT 

analysis. This ``well-shaped'' waveform is obtained with a very 

careful initial displacement to start the motion. This must remain 

perfectly vertical (even with a small deviation other oscillation 

modes are excited). 

 

 

The frequency ν can be immediately obtained from the 

computer waveform using the software FFT (Fast Fourier 

Transform). The frequency results compatible within one 

percent error with the result obtained directly using the 

period.    

The measurement of the frequency ω and the decay time 

τ is done by fitting the waveform with the expected curve 

𝑓 𝑡 = 𝑎 0 ∙ exp  −
𝑡

𝜏
 ∙ sin 𝜔0 + 𝜑 + 𝑏 putting in the 

first trial a(0), τ, ν obtained in the above direct 

measurement. Before this procedure, students are told to get 

τ from the waveform by measuring the time from the start 

to 1/e of the initial amplitude. The decay time with the 

waveform method gives much longer values because the 

oscillation does not decay as fast as we expected, especially 

towards the end. This second result was completely un-

expected. The fit turns out to be impossible, only partial fits 

are feasible using parts of the decay pattern. The FIT using 

the first 10 seconds gives𝜏~12𝑠, the FIT in the range ∆t = 

0-20s is 𝜏~17𝑠, the FIT in the range ∆t = 10-30s 𝜏~20𝑠, 

the FIT in the range ∆t = 20-60 is 𝜏~30𝑠.The frequencies 

in the different curve sections differ coherently with the 

measured τ: longer τ higher frequency. Students observed 

that the stronger the excitation the shorter the measured τ. 

The persistence of the oscillation exceeded 100s. The fitting 

curves showed a tail amplitude thinner than the recorded 

waveform. The frequency of the waveform was 𝜔0 =
10.50Hz. 

The waveforms with 50 and 60g effective masses come 

out “worse” than that depicted in the above figure, while 

with 80 and 90g masses the waveform results are even 

better. To give an idea of the waveform complexity with a 

small mass, we report the waveform obtained with a 

hanging mass of 40g in Fig. 6. The second ω’ turns out to 

be about two times higher than the fundamental one. 

 

 

 
 

FIGURE 6. Damping signal with its FFT analysis with a mass of 

40 g. The FFT signal shows the presence of two frequencies, as 

suggested by a modulated amplitude. 

 

 

C. Plenary discussion about characteristics of damped 

waveforms  

 

The experimental observations indicate that we are facing 

something much more complicated than initially expected 

from the motion equation 1: the damping decreases notably 

at the beginning, then the rate of decay diminishes and 

ultimately the small oscillations continue for a long time. 

From this behavior we may guess that friction decreases 

with smaller amplitudes and, when the amplitude is small 

enough, there should be a kind of oscillations' feeding given 

that friction is smaller but not yet negligible. 

Several authors have discussed the modes of resonance 

in which a vertically oscillating spring spontaneously 

oscillates between spring-bouncing and pendular-swinging 

[1, 2, 10, 11]. We start observing that the real physical 

spring-mass system shown in the photo of Fig. 1 cannot 

have a perfect axial symmetry (the spring and mass hanging 

systems, the spring deformations at the extremes, the rather 

irregular mass shape and setting). Then, we observe that 

there is a coupling (non-linear) between longitudinal and 

transverse oscillations, due to the ``natural'' presence of an 
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axial and transverse force components in the motion. In this 

connection we observe that the ratio between the transverse 

and vertical motion frequencies in our setup for the 73g 

effective mass is 

 

𝜔 𝑙𝑜𝑛𝑔

𝜔𝑡𝑟𝑎𝑛𝑠
=  

𝑘/𝑚

𝑔/ℓ0
 

8/(7.3 10−2)

9.8/0.14
≃ 1.2. 

 

This ratio, not so far from one, suggests a possible energy 

transfer between the two motions. We would like to stress 

here that the length ℓ0can be approximated constant only 

when the oscillation amplitude becomes small enough.It is 

worth remembering that when the ratio between the 

pendulum and longitudinal frequency is two, Walkinshow 

resonance occurs, there is a total energy transfer between 

the two motions. In Ref. [1, 10] the observation of the 

autoparametric resonance behavior is reported. In this 

connection, we may also argue that the decreasing damping 

shown by the waveform could be due to the energy transfer 

from the longitudinal to transverse motion. In summary, the 

damping decrease seems to have two causes, the decrease 

of the friction coefficient γ with the oscillation amplitude 

and the feeding of the transverse oscillation. We are not 

able, at this stage, to separate the two causes. We note that, 

since friction in the transverse motion is much lower than in 

the longitudinal one, the transverse motion can feed the 

longitudinal one at small oscillation amplitude.  

We decide to stop discussing the very detailed 

experimental observations at this point and to continue the 

discussion after further data about the forced oscillations. 

Groups were told to hang different masses to allow 

comparisons. 

At the end, we decided to assume as a damping time the 

value obtained at the first 10s interval, which we call 

𝜏10 .This because it is reasonable to assume that within that 

time interval the vertical oscillatory motion is not yet 

combined with the transverse one, and, the amplitude after 

that time is reduced by a factor greater than 2. 

We want to stress that with heavier masses the 𝜏10  is 

nearer to 𝜏1/𝑒 , that is to the time measured at 1/e of the 

original amplitude. 

 

 

 

VI. FORCED OSCILLATION  
 

The second part of the experiment is about resonance and it 

aims at reproducing and comparing the two theoretical 

curves of Fig. 3. From the damped waveform analyzed 

before the two expected analytical curves come out to be 

 

𝑦𝑙𝑜  𝜔 =
𝑎

 (𝜔−𝜔0)2+(1/𝜏)2
=

𝑎

 (𝜔−10.5)2+(1/12)2
, (13) 

 

𝑡𝑎𝑛𝑝 𝜔 = −
2𝛾𝜔

𝜔0
2−𝜔2 = −

0.1666  𝜔

10.502−𝜔2.    (14) 

 

The amplitude of the Lorentzian curve will depend on the 

applied force.   

 

A. Resonance curve measurements  

 

Students assemble the system and set the generator 

frequency within the frequency interval predicted in the 

free motion analysis, set the generator amplitude so as to 

have an oscillation amplitude at resonance near to the 

maximum of the observed free oscillation. They read the 

relative oscillation amplitude a(ωi) at each frequency ωi for 

the resonance curve and the two times tg and ts at the crests 

of the generator and signal sinusoids (for the ∆𝜑𝑖 = 𝜔𝑖∆𝑡𝑖  
atan phase-curve). Students were advised to wait for the 

oscillation to arrive at a steady state after each change in 

frequency, typically it would be three times longer than the 

decay time. In fact, after any change in the system 

parameters, there is a transitory behavior. The data and the 

graphs for one set of values (for the system with 70g mass) 

are shown in Fig. 7. The fitting curve of the 

resonanceamplitude (Lorentzian) is very near the expected 

one (but with the decay time measured at 10s). This does 

not occur in the expected phase curve: in Fig 7, we can see 

that (i) the upper data has a steeper slope than the lower 

data and (ii) the tail data are not fitted at all by the fitting 

curve. A better fitting curve has the expression. 

 

 
 

 
 
FIGURE 7. The ylo analytical curve matches the data fairly well, 

as opposed to the analytical atan phase curve. A slightly better 

atan fit curve leads to τ=16s instead of 12s. The main observation 

is that the upper and lower sections of the atan curve (data) have 

two different slopes: the upper section is much steeper than the 

lower one. The depicted fit is a kind of compromise between the 

two, but, anyway, the upper section is worse fitted. 

 

 

𝑎𝑟𝑐𝑡𝑎𝑛𝑝 𝜔 = −
0.122

10.492−𝜔2 𝜏 = 16.4𝑠. 
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It is worth noticing that a certain amplitude modulation was 

observed at all forcing frequencies. It appeared more 

pronounced outside the resonance frequency, but it should 

simply be due to the increase of the ratio modulation to 

oscillation amplitude. This observation confirms a similar 

observation in the free motion.  

 

B. Discussion: Free and forced motion results 

 
In summary, the Lorentzian curve fit is to a good extent 

compatible with the two motion parameters τ and ω0 

measured from the free motion waveform (assuming the τ10 

of that waveform). The phase curve resonance is not really 

satisfactory mostly because the tail data do not fit. Some 

observations are due: one is that the tail data do not match 

the Lorentzian curve either; in both cases the tail data 

would lead to a notably longer τ; a second observation is 

that the discrepancy between data and the fitting curve in 

the atan phase curve looks very large (this happens because 

atan function is very sensible to small data deviations); 

another subtle but important observation is that there is a 

kind of switch in the motion when crossing the resonance 

frequency, at lower frequencies the slopes of curves and 

data are steeper than those at the higher frequencies: since 

in that passage a transition from the in-phase to counter-

phase between the force and the motion occurs, we may 

argue that there is an interference between the vibrator and 

the spring-mass and it is such that the energy absorption is 

higher when they are in counter-phase. One more 

observation is that both resonance and phase tests confirm 

the friction reduction at reduced oscillation amplitude 

observed in the free waveform, this indicates that friction 

depends on the oscillation amplitude and is not directly 

proportional to velocity as assumed in the model.  

The discrepancies observed between expected 

behaviour and the observed data are mostly due to friction 

because the initial assumption showed to be wrong. The 

point is that we have not yet succeeded in creating a 

relatively simple and inexpensive friction force directly 

proportional to velocity for this experiment.  

Students in the lab do not have time for the large set of 

data the authors used to support the discussion of the fitting 

curves in this section. We gathered the data and added them 

here to look deeper into the matter and to offer suggestions 

for further investigation. 

 

 

VII. COMPARING DATA WITH DIFFERENT 

MASSES 
 

We measured the decay time and repeated the resonance 

curve using masses from 50g to 90g at 10g steps. Our aim 

was to investigate how mass and the relevant friction 

influenced conditions of resonance. Table I and Fig. 8 

summarize the results obtained by changing the frequency 

around the value of resonance.  

 

 

TABLE I. Values of the decay times obtained from the damped 

waveform fitting analysis at the time 10s, τ10 and at 1/e amplitude 

reduction, τ1/e, obtained from the Lorentzian curve τlo, and from 

the phase curve τph as function of mass. 

 

mass 𝜏10  s 𝑡1/𝑒  s 𝜏𝑙𝑜  s 𝜏𝑝  s 

50g 10.5 11.8 7.8 8.5 

60g 12 12.6 10.2 10.9 

70g 12.8 14.4 12.5 15.5 

80g 15.5 17.5 15 17.5 

90g 17.4 20 18 22 

 

From the table and figure we see that the decay times τ10 

and τlo begin to converge from a 70g mass (they start 

overlapping at 80g), while τ1/e turns out to be on average 

almost two seconds higher . The system with 50g and 60g 

shows higher discrepancies between the two τ and also a 

different slope.  

The model for friction γx = (C/m)x  states that the ratio 

between the τ of two systems is equal to the ratio between 

the two relative masses. This is verified by the τ listed in 

the Table 1 with more than 90% accuracy and by the nearly 

straight line which refers to the forced system in Fig. 8. The 

reason is that in the forced configuration the system is, in 

fact, forced to a neat motion, hence its behavior is better 

represented by the model. 

From all these observations, we may guess that the 

different behavior of the 50g and 60g mass systems and the 

other higher masses is due to the different coupling between 

the vertical and transverse motions: the heavier the mass, 

the neater the oscillation. The free motion has always a 

coupling between the two motions which makes τ1/e longer 

that τlo .  

 

 
 
FIGURE 8. Evolution of the relative relaxation times extrapolated 

from the free-oscillation waveforms, τ10 and τ1/e, and form the 

resonance and phase fitting curves, τlo and τph. 

 

 

VIII. TRANSIENT 
 

Three typical waveforms observed near the resonance 

frequency are shown in Fig. 9. the smooth amplitude 
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increase is observed at frequencies very near resonance, the 

last one is observed at the tail frequency.  

In physics books, an amplitude modulated sinusoidal 

signal implies the sum of two sinusoidal signals having two 

similar frequencies, which is easily checked with a 

computer. The phenomenon is called beats (treated in the 

next programmed experiment). 

Looking carefully at our system we suggest that the 

general mathematical solution of the motion Eq. 2 is 

 

x = A sin ωt + φ + Bet/τsin(ω0t),  (15) 

 

where the two frequencies involved are the vibrator and the 

self-system frequencies respectively: our mass-spring 

forced oscillator has two superimposed sinusoids at the start 

of the excitation, the persistent (particular solution) one and 

the decaying one (homogeneous solution). In fact, the 

signal modulation decays in the previously measured 

damping time. 

The first waveform in Fig. 9 occurs when the two 

particular and homogeneous frequencies are almost equal or 

strictly equal to the natural frequency: the system drifts 

towards the maximum amplitude. The second waveform is 

obtained when the forcing frequency is not far from the 

natural one: beats die in a time longer than two damping 

times as obtained in Fig. 5. The last waveform is observed 

when the forcing frequency is far enough from resonance: 

the amplitude of the particular solution does not increase 

withtime (it remains with a small amplitude) hence it shows 

wide beats with the natural vibration. From the modulated 

waveforms we could measure and thus check the different 

frequencies. In addition, the systems with a relatively low 

mass showed a superposition of longitudinal and transverse 

oscillations.  

Careful inspection of the spring action explains both 

motions because it applies either a longitudinal force or a 

small torque (due to the helicoidal shape of the spring). The 

two motions have different frequencies and lead to a 

modulated waveform. As a final observation we note that 

the natural frequency is continuously excited because the 

system is not mechanically isolated from the surroundings. 

 

 

 

 

 
 

FIGURE 9. The left signal is obtained at resonance frequency: the 

continuous amplitude increase up to saturation indicates the 

energy filling into the system. The right signal is obtained with a 

forcing frequency near resonance: The beat occurs between the 

free and the forced oscillation, at the stating the amplitudes of the 

two signals are almost equal, therefore the modulation is 

complete, afterwards the free oscillation goes to die while the 

forced one increases up to its maximum. The damping time of the 

free oscillation comply with its previously measured value.  

 

 

IX. DISCUSSION AND CONCLUSIONS  
 

The experiment highlights the strong discrepancy between 

theory and practice as regards the spring mass: in the 

equation the spring is assumed massless, but it cannot be 

neglected at all. We have planned the need to change the 

heavy spring to a lighter one in the course of the 

experiment, forcing students to realize the necessity of 

designing a system compatible with the lab instrumentation.  

The problem of the mass came up quite naturally while 

testing ω2 = k/m. Calculations and graphs lead the way to 

determine the additional mass due to the real spring 

operating in the system. The problem of the spring 

characteristics came up programming the resonance section 

of the experiment. 

A spring-mass system oscillating vertically with a CD to 

increase air resistance turns out to be quite complex as a lab 

experiment in a first year physics course because its friction 

is not directly proportional to velocity. It is easy to set up 

and rich in Physics but, as a challenge, it is not identical to 

textbook explanations of damped oscillations and 

resonance. Therefore it requires careful teaching and 

strategic organization. The very low friction, ≈ 10−3N, 

compared to the 1N spring force, causes that the reaction of 

the spring-mass on the driving generator is not negligible, 

furthermore, the work is not constant in the frequency range 
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of the resonance amplitude and phase curves. The 

Lorentzian curve shows a left-right dissimetry, while the 

phase curve shows a top-down dissimetry with respect the 

center of the data distribution. We have ascribed this 

behavior to higher work on the generator when in counter 

phase whereas the reverse happens when they are in phase. 

Other experimental observations related to friction are 

the non-exponential decay of the damped free-motion 

amplitude and the shape variation of the two resonance 

curves. The three curves, the theoretical decaying sinusoid, 

Loretzian and atan curves, do not fit at all the experimental 

data: the decay time τ increases by a factor greater than two 

when the oscillation amplitude is reduced by a factor two. 

The cross correlation between the free and forced motion 

data lead to conclude that there are two contributions to that 

reduction of friction: (i) the decrease of the oscillation 

amplitude (reasonably because a variation in the air 

turbulence with the speed) and (ii) the coupling between the 

vertical and horizontal motions. This observation indicates 

that, as the system vibrates, the physics in the middle and at 

the edges in the resonance curves is different, thus the data 

should not be treated as homogeneous.  

Hence, both the mathematical model for friction and the 

experimental outcomes are much above students’ level at 

this point. There is a risk of conveying a message of lack of 

rigour and neatness, which is damaging at this stage. 

Students must be guided step by step in this experiment 

through data analysis and plenary discussions. 

The relevant problem of the mathematical model for the 

friction must be stressed at the beginning. It would be very 

difficult to set the experiment horizontally with simple 

means and to obtain friction directly proportional to 

velocity.  While observing the computer graphs of 

modulating amplitude, caused by the particular and 

homogeneous solutions of the linear differential equation, 

with a near-delta Dirac function, and when they plot the 

phase-shiftgraph, students concentrate on fundamental 

physics concepts. In addition, many times both free and 

forced motion waveforms on the computer screen show un-

expected complicated shapes, especially if the masses are 

relatively small with respect the spring-mass. This happens 

also when the system is not set with a good axial symmetry 

and when the excitation is not well centred. In these cases, 

many modes develop and superimpose. These experimental 

observations can puzzle and confuse students, causing 

frustration and consequently a lack of concentration. 

Teachers have to convince them that a real physics system 

has always more forces and reactions than idealized 

textbook situations; moreover, forces and reactions are not 

completely described by the assumed models. We have 

tried to prepare a setup where students experience that with 

patience,  rigor and method, laboratory work becomes 

neater and clearer while bridging the gap between theory 

and practice. 

Throughout the various measurements and cross checks 

required in this experiment students are obliged to revise 

the bases of data treatment in depth. With the modern 

instrumentation students practice organization and time 

management.  

This is, over all, a dense, sophisticated, complex and 

also a bit “tricky” practical, and therefore rather difficult, 

more so when it is carried out looking carefully at all 

conceptual and experimental passages. Students need time 

to absorb it; we have found that three half-days sometimes 

are not enough for them to understand all the operations 

and the whole physics content. 
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