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Abstract 
The historic Brachistochrone problem is widely discussed in the literature. However, the discussion is primarily limited 
to the shape of the curve along which a particle will descend, under gravity, and in the absence of friction, from a point 
to another not directly below it, in the shortest amount of time. This study examines the various dynamical variables 
associated with this motion, including the velocity, acceleration and jerk vectors, along with kinetic, potential and total 
energies, curvature and centripetal force, as the particle undertakes its journey. The quantities are expressed as 
functions of the angular parameter. The acceleration and jerk vectors are found to have constant magnitudes and to 
rotate counter-clockwise, with the former trailing the latter by 90o. The velocity and centripetal force vectors also rotate 
counter-clockwise, but with half the angular velocity, with the former trailing the latter by 90o. This study further 
examines how the dynamical variables are affected when kinetic friction is present. 
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Resumen 
El problema histórico de la Braquistócrona es ampliamente discutido en la literatura. Sin embargo, la discusión se 
limita principalmente a la forma de la curva a lo largo de la cual una partícula descenderá, por gravedad, y en ausencia 
de fricción, de un punto a otro no directamente debajo de él, en el menor tiempo posible. Este estudio analiza las 
diferentes variables dinámicas asociadas con este movimiento, incluyendo los vectores de velocidad, aceleración y de 
jerk, junto con las energías cinética, potencial y energías totales, la curvatura y fuerza centrípeta, como la partícula lleva 
a cabo su trayectoria. Las cantidades son expresadas como funciones del parámetro angular. Los vectores de 
aceleración y de jerk son encontrados con magnitudes constantes y giran en sentido-antihorario, con la primera final de 
la segunda por 90°. La velocidad y los vectores de fuerza centrípeta también giran en sentido-antihorario, pero con la 
mitad de la velocidad angular, con la primera final de la segunda por 90°. Este estudio además examina cómo las 
variables dinámicas son afectadas cuando la fricción cinética está presente. 
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I. INTRODUCTION  
 
In 1696, Johann Bernoulli posed the Brachistochrone 
problem as a challenge to the other mathematicians of the 
day: To find the curve along which a particle will descend, 
under gravity, from a point to another not directly under it, 
in the shortest amount of time. The problem was correctly 
solved by his elder brother Jakob Bernoulli, as well as by 
Newton, Leibniz and L’Hospital, giving the segment of an 
inverted cycloid as the answer [1, 2, 3]. It is this historic 
problem which gave rise to the new branch of mathematics 
called the Calculus of Variations. Many textbooks have 
devoted pages to this famous problem, but invariably, the 
discussion ends abruptly upon finding the curve. In this 
paper, we examine the various dynamical variables 
associated with this motion, including the velocity, 
acceleration and jerk vectors, along with kinetic, potential 
and total energies, curvature and centripetal force, as the 
particle undertakes its journey.  

Among the dynamical variables, we include the jerk, 
which is the derivative of the acceleration vector, or the 
third derivative of the position vector, with respect to time. 
The jerk vector has recently been studied in projectile 
motion [4] and motion of charged particles [5]. As by-
products of the jerk, one obtains the curvature and torsion 
of the path. If the first three derivatives of the position 
vector in time, viz., the velocity, acceleration and the jerk 
vectors are j

r
, respectively, then the curvature 
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( )The reciprocal of the curvature furnishes the radius of 
curvature, which in turn, gives the centripetal force. 
 
 
II. THE BRACHISTOCHRONE PROBLEM 
 
Consider the problem of a particle descending under gravity 
from a point at the origin (0, 0) to another (x, y) in the x-y 
plane, not directly under the first (Fig. 1). Determine the 
path along which the particle will slide, without friction, in 
the shortest time. For the sake of later convenience, reckon 
y to be positive downwards. This is a conservative system, 
for which the total energy remains constant. Further, if the 
particle slides from the rest . In the usual 
notions, 

0=+= VTE
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The time of passage between the two points is: 
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with . For τ to be minimum, the integrand dxdyy /'=
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must satisfy the Euler-Lagrange equation: 
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When f does not contain x explicitly, the Euler-Lagrange 
equation reduces to Beltrami’s Identity:   
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Squaring and rearranging: 
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where A is another constant. One can verify that the 
following equations constitute the solution to Eq. (9): 
 

                                θθ sin−= Ax

( )

,                              (10) 
 
and 
                                θcos1−= Ay .                              (11) 

 
Remembering that y is positive downwards, Eqs. (10) and 
(11) are recognized as the parametric equations of an 
inverted cycloid, i.e., a curve traced out by a point on a 
circle of radius A rolling under the positive x-axis (Fig. 1).  
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FIGURE 1. Path of descent of particle in minimum time. 

 
 
III. DYNAMICAL VARIABLES IN THE 
BRACHISTOCHRONE PROBLEM 
 
Starting from the position vector, the velocity, acceleration 
and jerk vectors can be calculated by successive 
differentiation of the position vector with respect to time. 
We have 
 

( ) ( )yAxA ˆcos1ˆsinr                  = θ − θ −+ θ
r

.                  (12) 
 
Letting tθ ω= , where ω is the angular velocity of the 
rolling circle, one obtains: 
 

( ) yAxAv ˆsinˆcos1                   = ω − θ + ω θ
r

,                   (13) 
 

yAxAa ˆcosˆsin 22 θωθω +=
r

,                    (14)                     
 
and 

yAxAj ˆsinˆcos 33 θωθω −=
r

.                    (15)                     
 
The magnitudes of the above quantities are: 
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Also, 
                         ( )2 2 22 1 cosv A ω θ= − ,                         (19) 
 
and 
                      ( 3/23 3 32 2 1 cosv A ω θ= − ) ,                   (20) 

 
We have, further: 
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Eqs. (1), (20) and (23) give the value of the curvature κ and 
that of its reciprocal (the radius of curvature) R:  
 

                          
θ

κ
cos122

1
−

=
A

,                           (25) 

and 

                       θ
κ

cos1221
−== AR .                       (26) 

 
Eqs. (19) and (26) furnish the value of the centripetal force: 
 

               
2
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2
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Eqs. (2) and (24) indicate that the torsion of the path is 
zero. This is to be expected as the motion takes place in a 
vertical plane, and the torsion is rate of turning of the 
tangent vector out of the plane. 

The kinetic energy of the particle is obtained from Eq. 
(19): 

                 (2 2 21 1 cos
2

T mv mA )ω θ= = − .                    (28) 

 
Likewise, the potential energy is [from Eq. (12)]: 
 
                    ( )θcos1−−=−= mgAmgyV .                     (29) 

 

The conservation of total energy yields the value of the 
angular velocity of the rolling circle: gA /=ω . In the 
above equations, the dynamical quantities are conveniently 
expressed as functions of the angle θ. If the motion spans 
the entire cycloid, then θ runs from 0 to 2π, and the 
duration of the motion is 2π/ω. The horizontal length of the 
cycloid is 2πA and depth of the trajectory, midways, at the 
lowest point (θ = π), is y = 2A. The angular dependences of 
the dynamical variables are shown in Table I. 
 
 

TABLE I. Angular dependence of Dynamical Variables. 
 

Dynamical variable Formula θ-dependence 
Abscissa Eq. (10) sinθ θ−
Ordinate Eq. (11) cos1 θ−
x-component of velocity xvx &=  cos1 θ−

y-component of velocity yv y &= θsin

x-component of acceleration xax &&=  θsin

y-component of acceleration ya y &&= θcos

x-component of jerk xjx &&&=  θcos

y-component of jerk yj y &&&= sin θ−

Speed vv
r

 = θcos1−  
Magnitude of acceleration aa

r
=  constant 

Magnitude of jerk jj
r

=  constant 

Momentum vmp
rr

=  θcos1−  
Kinetic energy Eq. (28) cos1 θ−
Potential energy Eq. (29) 1cos −θ
Total energy E =T+V constant 0 
 
Curvature 

 
Eq. (25) θcos1

1
−

 

Torsion Eq. (2) 0 
Radius of curvature Eq. (26) θcos1−  
Centripetal force Eq. (27)  θcos1−
 
 
Eqs. (17) and (18) indicate that the acceleration and jerk 
vectors possess constant magnitudes throughout the motion. 
The speed of the particle, on the other hand, varies, being 
zero at the onset of the motion, reaching a maximum at the 
middle of the cycloid, and becoming zero again at the 
terminus. The angles the velocity, acceleration and jerk 
vectors make with the positive x-axis can conveniently be 
expressed in terms of the angle θ. Let the above angles be 
denoted by α, β and γ, respectively. Then, we have: 
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and 
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Since y is positive downwards, the angles are reckoned 
positive if clockwise. Thus the acceleration and jerk vectors 
rotate counter-clockwise with θ, with the former trailing the 
latter by 90o. The velocity vector, too, rotates counter-
clockwise, but with half the angular speed. Also, since the 
centripetal force is always perpendicular to the velocity, it 
too, rotates counter-clockwise with the same angular speed, 
leading the velocity vector by 90o. The velocity, 
acceleration and jerk vectors are depicted at intervals of 
90os in Fig. 2. 
 
 

 
FIGURE 2. Velocity, acceleration and jerk vectors at intervals of 
90o. 
 
 
IV. BRACHISTOCHRONE PROBLEM WITH 
KINETIC FRICTION 
 
When kinetic friction is included, the Brachistochrone 
problem becomes much more formidable. A closed form of 
solution was obtained, but the solution is quite intractable, 
and the equation of motion could not be integrated to give 
the velocity as a function of position [6]. An approximate 
solution was found, with neglect of the centripetal force [7], 
which was easy to work with. If μ is the coefficient of 
kinetic friction, we have, instead of Eqs. (10) and (11) (vide 
[7]): 
 
                  ,                   (33) ( ) ([ ]θμθθ cos1sin −+−= Ax )

)

 
and 
 
                  .                   (34) ( ) ([ ]θθμθ sincos1 ++−= Ay
 
Fig. 3 displays the trajectories given by Eqs. (33) and (34) 
for three values of μ equal to 0.1, 0.2 and 0.3.    
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FIGURE 3. Brachistochrone trajectories with various coefficients 
of kinetic friction. 
 
 
The dynamical variables are conveniently calculated using 
Eqs. (33) and (34) following the usual procedure. We have j j 
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V. CONCLUSIONS  The angular dependences of these variables are shown in 
Table II. All quantities are affected by friction but the 
magnitudes of the acceleration and jerk vectors remain 
constants. It is easy to verify that the entries of Table II 
reduce to those of Table I in the absence of friction. 

 
The historic Brachistochrone problem has been associated 
with the greatest mathematical minds of that time, including 
the Bernoulli brothers, Newton, Leibniz and L’Hospital, all 
of whom can be regarded as founders or co-founders of 
Calculus. This problem also gave birth to the new branch of 
mathematics called the Calculus of Variations. Quite 
surprisingly, the discussion of this problem in the literature 
is invariably related to finding the shape of the trajectory, 
and the dynamical aspects of the problem are completely 
ignored. It is hoped that this study fills an important void in 
the dynamical aspects of this fascinating problem. 

 
 
TABLE II. Angular dependences of Dynamical Variables with 
kinetic friction. 
 
Dynamical variable θ-dependence
Abscissa ( ) ( )θμθθ cos1sin −+−  
Ordinate ( ) ( θθμθ sincos1 ++− )  
x-component of velocity ( ) θμθ sincos1 +−  
y-component of velocity ( )θμθ cos1sin ++  
x-component of acceleration θμθ cossin +  
y-component of acceleration θμθ sincos −  
x-component of jerk θμθ sincos −  
y-component of jerk ( )θμθ cossin +−  
Speed  ( ) ( ) θμθμμ sin2cos11 22 +−−+

 
Magnitude of acceleration                     constant 
Magnitude of jerk     constant 
Momentum ( ) ( ) θμθμμ sin2cos11 22 +−−+  
Kinetic energy ( ) ( ) θμθμμ sin2cos11 22 +−−+  
Potential energy ( ) ( θθμθ sin1cos +−−
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