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Abstract 
The habit of not writing a multiplicative factor of dimension one leads to equations, which, though dimensionally 
correct, can pose some problems to most students as for the analysis of the units of measurement of the written physical 
quantities. The proposed analysis of the derivation of the equations for a simple oscillator and a forced oscillator with 
damping shows how to handle with the units of measurement. Similar considerations can be done for the formula of 
error propagation for oscillating functions. 
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Resumen 
El hábito de no escribir un factor multiplicativo de una dimensión conduce a las ecuaciones, las cuales, aunque de 
dimensiones correctas, pueden plantear algunos problemas a la mayoría de los estudiantes como para el análisis de las 
unidades de medida de las cantidades físicas escritas. El análisis propuesto de la derivación de las ecuaciones para un 
oscilador simple y un oscilador forzado con amortiguamiento muestra cómo controlar a las unidades de medida. Se 
pueden hacer consideraciones similares para la fórmula de propagación de errores para funciones oscilantes. 
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I. INTRODUCTION 
 
The study of oscillatory motions in the most common 
physics textbooks used in undergraduate courses (see, e.g., 
[1, 2, 3, 4, 5]) is based on definitions and laws described in 
previous chapters (e.g.: Cinematic, Newton’s laws) and on 
theorems and their applications studied in calculus courses. 
Dimensional analysis and the use of the S.I. units of 
measurement are commonly explained in one of the 
introductory chapters. In later chapters, the students’ 
attention is usually drawn only to the units of measurement 
of the newly introduced physical quantities, whereas very 
few words if any are spent about the dimensional analysis 
of physical equations. In the study of the oscillatory 
motions, the radian is used as the S.I. unit of measurement 
of angle, which is a physical quantity of dimension one. 
Because of the habit of not explicitly writing a 
multiplicative factor of 1rad, most students experience 
problems in completing the analysis of the units of 
measurements of the oscillatory motion equations. A 
careful analysis of the step-by-step derivation of the 
equations of motion for any case of simple oscillators 
shows how to face this kind of problems. The case of a 
forced oscillator with damping can be handled with in a 
similar way. 

II. A PROBLEM WITH THE UNIT OF 
MEASUREMENT OF THE ANGULAR 
FREQUENCY 
 
The frequency ν of an oscillatory motion is defined as the 
number of oscillation cycles per time. Its S.I. unit of 
measurement is therefore the cycle per second (usually 
called hertz). The period of oscillation T is defined as the 
inverse of the frequency. It is the duration of one complete 
oscillation cycle. Its S.I. unit of measurement is the second 
(per cycle). The angular frequency ω can be defined as a 
function of the frequency (or of the period) as ω = 2πν, 
where the proportionality factor is 2π radian per cycle. Its 
S.I. unit of measurement is the radian per second. If we 
make use of the mathematical tool of considering an 
oscillatory motion as the projection of a uniform circular 
motion on one axis, then the angular frequency can be 
considered as the angular speed of the uniform circular 
motion. The S.I. unit of measurement of angular speed is 
also the radian per second. 
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The angular frequency can be calculated as a function of 
some opportunely chosen physical properties of the 
particular oscillator under consideration. Let us consider a 
mass-spring system as an example of a simple oscillator. In 
this case ω2 = k/m, where k is the spring elastic constant 
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(measured in newtons per meter), and m is the mass 
attached to the spring (measured in kilograms). Since the 
newton is defined as 1N = 1kg m s-2, when we try to 
determine the S.I. unit of measurement of the angular 
frequency from ω2 = k/m we find that it is the reciprocal 
second, and not the radian per second. 

At this point, most students are not able to understand 
why the radian disappears and where it is hidden. The 
BIPM suggests the habit to generally omit the symbol “rad” 
when it concerns the unit one with physical quantities of 
dimension one. This explanation is not considered a 
satisfactory one by most students. To help them face this 
problem, we suggest to see in deeper detail how a relation 
such as ω2 = k/m is obtained. 

Similar considerations can be done with simple 
oscillators of other kinds: the simple pendulum ω2 = g/l, the 
physical pendulum ω2 = mgr/J, the LC-circuit ω2 = 1/LC, 
etc., which all give the reciprocal second as unit of 
measurement of the angular frequency. 
 
 
III. THE SIMPLE OSCILLATOR 
 
Newton’s law F = ma for the mass-spring system can be 
written, using Hooke’s law for the elastic force, as ma = –
kx, where m is the mass (measured in kilograms), a is the 
acceleration (in meters per second squared), k is the 
elasticity constant (in newtons per meter), and x is the 
position (in meters). 

The acceleration a is, by definition, the second time-
derivative of the position x. We can therefore write 
Newton’s law for the mass-spring system as: 

 
d 2x
dt 2 = −

k
m

x .                                     (1) 

 
We require that the function x = x(t) is limited in space. The 
general solution of Eq. (1) is a linear combination of sine 
and cosine functions. Without loss of generality, let us 
consider, for simplicity, the following solution of (1): 

 
x(t) = A cos ωt +ϕ( ).                              (2) 

 
The amplitude A has the same unit of measurement of x; in 
our example, it is therefore measured in meters. The 
angular frequency ω is measured in radians per second. The 
phase ϕ is measured in radians. 

The use of the radian as the unit of measurement of the 
cosine function argument is due to the fact that the 
derivative formula 

 
d cos
dθ

(θ ) = − sin(θ ) ,                          (3) 

 
is valid only if θ is measured in radians, and not in other 
non-S.I. units of measurement of angle such as the 
sexagesimal degree. The corresponding formulae for other 

trigonometric functions can be found in any calculus 
textbook. 

Once we know the value of θ in radians, we can 
calculate cos(θ) and sin(θ), which have dimension one and 
have no unit of measurement. At this point, both cos(θ) and 
its derivative –sin(θ) have no unit of measurement. At the 
same time, both sides of (3) must be measured with the 
same unit of measurement, so that it is better for our 
purposes to explicitly consider the unit of measurement of –
sin(θ) to be the reciprocal radian. 

In order to make the students better understand this 
point, we might consider writing (3) using step-by-step the 
definition of derivative itself as the limit of an incremental 
ratio: 

 
d cos
dθ

(θ ) = lim
h →0

cos(θ + h) − cos(θ )
h

sin(
=

− θ )
1

,         (4) 

 
where the ratios’ denominators θ, h and 1 are all measured 
in radians. At this step, students can be invited to consider 
that the unit of measurement of the derivative of the cosine 
and sine functions is therefore the reciprocal radian. 

It we calculate the first and second time-derivative of 
(2), we obtain the velocity and acceleration, which are 
commonly written as: 

 

v(t) =
dx
d

,                     (5) 
t

(t) = −ωA sin(ωt +ϕ )

a(t) =
d

 
v .                   (6) 

dt
(t) = −ω 2 A cos(ωt + ϕ )

v(t) =
dx
d

 
If we ignore the previous considerations on the unit of 
measurement of the derivative of the cosine and sine 
functions, we get from (5) and (6) that the unit of 
measurement of the velocity v is the radian meter per 
second, and that of the acceleration a is the radian squared 
meter per second squared. These derivatives should be 
better considered as (with θ = ωt + ϕ): 

 
d

t
(t) =

dx
dθ

θ
dx

(t) = −ωA sin(ωt + ϕ )
1

,          (7) 

 
with 1 measured in radians and 

 
v v da(t) =

d
dt

(t) =
d
dθ

θ
dt

(t) = −ω 2 A cos(ωt + ϕ )
1

,       (8) 

 
with 1 measured in radians squared. In this way, the unit of 
measurement of the velocity v is the meter per second, and 
that of the acceleration a is the meter per second squared. 

If we insert (2) and (8) in (1), we get: 
 

−ω 2 A cos(ωt k+ ϕ )
1

,              (9) A cos(ωt + ϕ )= −
m

 
with 1 measured in radians squared. After the simplification 
of the common factors, we get: 
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ω 2

1
=

k
m

,                                    (10) 

 
so that the angular frequency squared is now: 

 

ω 2 = 1×
k
m

.                                   (11) 

 
The unit of measurement of the right side is now the radian 
squared per second squared, therefore the unit of 
measurement of the angular frequency is the radian per 
second and not the reciprocal second as derived in §II. 
 
 
IV. THE FORCED OSCILLATOR WITH 
DAMPING 
 
The more general case of a forced oscillator with damping 
is described by the following equation: 

 

m d 2x
dt 2 + c dx

dt
+ kx = F ,                        (12) 

 
which is usually re-written as: 

 
d 2x
dt2 + γ dx

dt
+ ω0

2x =
F
m

,                        (13) 

 
where the damping constant γ is measured in the reciprocal 
second, and the proper angular frequency is actually the 
ratio ω0/1 measured in the reciprocal second. 

If the driving force is an oscillatory function with 
angular frequency ω, (13) is more easily solved with the 
help of the complex exponential function as in Euler’s 
formula: 

 
eiθ = cos(θ) + i sin(θ).                        (14) 

 
The exponential function exp(x) can be calculated only for 
real values of x which must be a physical quantity of 
dimension one and with no unit of measurement. 
Furthermore, exp(x) is also of dimension one and with no 
unit of measurement. 

Since the result of a measure can only be expressed by a 
real (more precisely a rational) number, only real functions 
of the complex solution can be directly tested by an 
experiment. The right side of (14) shows that the unit of 
measurement of θ is the radian and that the imaginary unit i 
has no unit of measurement. 

The analysis of the first and second derivatives of the 
complex exponential function introduces the same 
multiplicative factors seen in the case of the simple 
oscillator: 

 
deiθ

dθ
= lim

h →0

ei(θ +h ) − eiθ

h
=

ieiθ

1
,                   (15) 

 

with θ, h and 1 measured in radians, and 
 

d 2ei
=

i 2eiθ θ
,                               (16) 

dθ 2 1
 

with 1 measured in radians squared. 
The complex solution of (13) is: 
 ) 

F (t)
m ω0

2 − ω2 + iγω( )
 

) x (t) = .                       (17) 

 
The real part of (17) is: 

 

x(t) =
F cos(ωt +ϕ )

m ω0
2 − ω 2( )2

+ γ 2ω 2
.                  (18) 

 
As we have considered in (11), ω0

2 is better written as 
ω0

2/1, ω2 from the second derivative (16) as ω2/1, and γω 
from the first derivate (15) as γω/1; they are all measured in 
the reciprocal second squared. 

With these considerations on the derivatives, the 
students can combine together the units of measurement of 
all the physical quantities in (12) or (13). 

 
 

V. ERROR PROPAGATION FOR 
OSCILLATING FUNCTIONS 
 
Similar considerations can be done as for the calculations of 
error propagation. The most common textbooks on the 
statistical analysis of physical measurements (see, e.g., [6, 
7, 8]) are not usually concerned with units of measurement 
and dimensional analysis, besides stating that any physical 
quantity and its error must have the same physical 
dimension and unit of measurement. 

The general formula for error propagation in the case of 
independent variables is: 

 

σ y =
∂y

∂xn
x 1, x 2, ..., x N( )σ n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

n=1

N

∑ ,                 (19) 

 
where x1, x2, …, xN are the measured independent variables; 
σ1, σ2, …, σN are their respective errors; y is the dependent 
variable to be evaluated in the mean values of the 
independent variables, and σy is its calculated error. The 
case of dependent variables requires the use of a more 
general formula with the covariance of the independent 
variable. This fact is irrelevant in the problem under 
consideration. 

Let us suppose that the functional relation contains a 
simple oscillatory function, such as y(θ) = cos(θ). If we 
measure the argument θ, we get a value of the argument 
with its error, both measured in radians. Eq. (19) gives the 
following error for the calculated variable y: 
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σ y = sin(θ )σ θ .                                (20) 

 
With Eq. (20), the students must face the same problem 
seen in the previous paragraphs: the left side is the error of 
a cosine and has no unit of measurement; the right side is 
instead measured in radians. The calculation of the 
derivative of y, as done above, leads to the relation: 

 

σ y =
sin(θ )

1
σθ ,                               (21) 

 
with the function –sin(θ)/1 measured in the reciprocal 
radian. Both sides of (21) have now no unit of 
measurement. 
 
 
VI. CONCLUSIONS  

 
The analysis of the units of measurements in a step-by-step 
derivation of the oscillatory motion equations can help the 
students in understanding the role played by the radian. 
Even if it is a unit of measurement with dimension one, 
which does not cause any particular problem in the 
dimensional analysis of the physical quantities involved, an 
explicit mention of the radian should be considered when 
taking into account the units of measurement of derived 
quantities. An analysis of this kind can also help the 
students in considering from a physical point of view the 
derivative of the above-considered trigonometric functions 

as the limit of the incremental ratio of physical quantities, 
as it is usually done when treating velocity and acceleration 
in cinematic. 
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