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Abstract 
Using the numerical method of Runge-Kutta for systems of nonlinear ordinary differential equations of second order 
with initial conditions, we studied different systems: the simple pendulum, mathematical pendulum (without 
approximation of small angles), the damped pendulum (with damping constant ν), the physical pendulum (with moment 
of inertia I = ⅓ML2), the physical pendulum damped (with the same moment of inertia and damping constant ν), the 
physical pendulum with variable mass (considering only one case: linear dependence of mass with respect to time) and 
finally the damping physical pendulum with variable mass. In all systems were studied different initial conditions, 
show some solutions for the position, velocity and the phase plane, and discusses some cases of interest. 
 
Keywords: Physical Pendulum, Simulations, Variable Mass, Non Linear Differential Equations. 
 

Resumen 
Usando el método numérico de Runge-Kutta para sistemas de ecuaciones diferenciales ordinarias no lineales de 
segundo orden con condiciones iniciales, estudiamos sistemas diferentes: El péndulo simple, péndulo matemático (sin 
ninguna aproximación de ángulos pequeños) el péndulo amortiguando (con constante de amortiguamiento ν), el 
péndulo físico (con momento de inercia I = ⅓ML2), el péndulo de amortiguamiento físico (con el mismo momento de 
inercia y constante de amortiguamiento ν), el péndulo físico con masa variable (considerando solo un caso: 
Dependencia lineal de masa con respecto al tiempo) y finalmente el péndulo de amortiguamiento físico con masa 
variable (En todos los sistemas fueron estudiadas condiciones iniciales diferentes), muestra algunas soluciones para la 
posición, velocidad y el plano de fase, y se analizan algunos casos de interés. 
 
Palabras clave: Péndulo Físico, Simulaciones de Masa Variable, Ecuaciones Diferenciales No Lineales. 
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I. INTRODUCTION  
 
In regular courses of basic physics is taught the pendulum 
motion. A pendulum is an oscillating system which rotates 
about a fixed point. It consists of a point mass (m) 
suspended from a string of length (l) and negligible mass 
that can´t stretch. If the mass is moved to one side of its 
equilibrium position, the wire form an angle θ with respect 
to the vertical, when released, the mass m oscillates around 
of this position. The equations governing this motion are 
equations where the position, velocity and acceleration are 
time dependent. The motion equation is a nonlinear 
ordinary differential equation (NODE), which can be 
written as follows: 
 

( ) ( )( ) ,02 =+ tSin
ld

 
Usually in textbooks of both differential Eqs. [1, 2] such as 
those discussed numerical methods [3] for solving 
differential equations, only present the same case: the 
simple pendulum (SP), which is to assume that the angle θ 
is small and where can used the small-angle approximation: 
Sin[θ] ≅ θ. So we can say that the movement of the 
pendulum is simple harmonic and that in studying the 
dynamics of their movement will get the period and 
frequency dependent only on the length and value of 
gravity. 
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The other case studied in courses and in textbooks [4] 
correspond to the mathematical pendulum (MP), unlike SP, 

2 g
t

td θ θ                            (1) 



R. Espíndola-Heredia, G. del Valle and G. Hernández 

Lat. Am. J. Phys. Educ. Vol. 6, No. 2, June 2012 202 http://www.lajpe.org 
 

does not consider small angles and solves the NODE (1), 
the period of the pendulum depends not only on the length 
and value of gravity, but involves elliptic integrals of first 
kind. The analytical solution of Eq. (1) represents an 
academic exercise in the regular courses of intermediate 
physics.  

In the literature there are also a variety of texts related 
to pendulums [4, 5, 6, 7, 8, 9, 10], are theoretical [5], 
experimental [6] and numerical results [7], such as: forced 
pendulum [8], physical pendulums [9], pendulum with 
variable length [10], and some have studied the issue of 
pendulums of mass variable [8, 11, 12, 13, 14]. In this 
paper, our purpose is to present the numerical solution 
based on the Runge-Kutta method to solve the NODE (1) 
for damped physical pendulum with variable mass. We start 
with a fairly known as SP and we compounded the problem 
by passing the MP, then we treat the physical pendulum 
(PhP) and then enter the buffer and get the solution of 
damped physical pendulum, and finally set the numerical 
solution damped physical pendulum with variable mass. 
 
 
II. THEORY 
 
The Eq. (1) can be solved analytically, which involves 
solving elliptic integrals. An alternative is to solve it 
through a numerical method. There are different algorithms 
that are used as integrators for the solution of an NODE, 
including the method of Euler where is necessary 
mentioned the Leap-Frog method, Taylor Series and 
Runge-Kutta, among many others. This latter are a set of 
iterative methods (implicit and explicit) to approximate 
NODE solutions specifically to initial value problem: 
 
 
 

(3) 
 
 
The Runge-Kutta method is not only a reality but is an 
important family of iterative methods used to approximate 
the solutions of NODE, which highlights the Runge-Kutta 
method of fourth order. That being the most used and 
known, is referred to as the "Runge-Kutta method". 
Defining the method for the problem of initial values given 
in Eq. (3), then: 

 
(4) 

 
Where 
 
 
 

(5) 
 
 
 

Thus, the next value (yi +1) is determined by this value (yi) 
plus the product of the interval size (Δh) for an estimated 
slope. The slope is a weighted average of slopes: k1 is the 
slope at the beginning of the interval, k2 is the slope at the 
midpoint of the interval, using k1 to determine the value of 
y at the point using Euler's method, k3 is again the slope of 
the midpoint, but now using k2 to determine the value of y, 
k4 is the slope at the end of the interval, with the value of y 
determined by k3. Averaging the four slopes, greater weight 
is assigned to the slopes in the middle: This form of the 
Runge-Kutta is a method of fourth order which means that 
the error per step is about ϑ(Δh5) while total accumulated 
error has order ϑ (Δh4). 
 
 
III. SIMULATION  
 
To carry out the simulation of the expression (1) was 
necessary to make a change of variable: 
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Thus obtains the following set of coupled equations: 
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where ω2=√(g/l) and initial conditions are determined by: 
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We have done simulations for various systems. I) Simple 
Pendulum, II) Mathematical Pendulum, III) Damped 
Pendulum, IV) Physical Pendulum, V) Physical Pendulum 
Damped, VI) Variable Mass Physical Pendulum and VII) 
Physical Pendulum with Damping and Variable Mass. In all 
cases we take the value of gravity as g = 9.81m/s2, the 
length l = 1.0m, 

( )1
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IV. RESULTS 
 
SP. We worked the case I) as a calibration form to verify 
that our results were consistent, and that the expressions 
were correctly programmed. Numerically solved by 
changing the Eq. (7) the expression Sin(u1(t)) by u1(t). The 
integration interval was 0 ≤ t ≤ 2.00607, we generated 
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N=500 steps in that range, the size of temporal 
displacement was Δh = 0.004012. Were evaluated n = 150 
different initial conditions, which were randomly generated 
for a range between the -15°-≤ ϕ ≤ 15°, and ξ = 0.0.  

We compared the solution given by the our simulation 
with the analytical solution, we find the same graph to the 
solution for the variables: θ(t) and v(t), also then the phase 
plane was plotted in both cases and the compared the two 
solution were find identical. It also we obtained the value of 
the period of the pendulum corresponding to the value: T = 
2π/ω. 

MP. The case II) was worked similarly, we solved 
numerically the Eq. (7) with the expression Sin(u1(t)). The 
integration interval was 0 ≤ t ≤ 4.5, we generate N = 1000 
steps in that range, the size of temporal displacement was 
Δh = 0.0045. We evaluated n = 80 different initial 
conditions, which were randomly generated for a range 
between -180o≤ ϕ ≤ 180°, and ξ=0.0. Were compared the 
solution obtained by the simulation with the analytical 
solution, which solved the equation for the total energy E = 
K + U, as the system is conserved. Then the energy is given 
by: 
 

(9) 
 
The solution was plotting, in the Fig. 1 shows the speeds as 
function of the angle v(θ), from Eq. (9), see Fig. 1, we 
found that the chaotic region is given to values higher 
mechanical energy E = 19.62J, and these were well 
reproduced by the simulation. In Fig. 1, the blue dots are 
the simulation results, while the curves with different colors 
corresponding to different values of the energy given by 
Eq. (9) 
 
 

 
 
FIGURE 1. Phase diagram of the system I. Shows the 
comparisons between simulation and the theoretical expression. 
 
 
DP. For the case III) enter into the Eq. (7) the damping 
factor given by -bv. The integration interval was 0 ≤ t ≤ 3.5, 
were generated N = 500 steps in that range, the size of 
temporal displacement was Δh = 0.007. Were evaluated n = 
100 different initial conditions, which were randomly 

generated for a range between -25o ≤ ϕ ≤ 25o, and ξ = 0.0. 
Fig. 2 shows the case where the damping constant b is 
given by b = 2.0√(g/l), which describes the case of critical 
damping. 
 
 

 
 
FIGURE 2. Phase diagram of system II with critical damping. b= 
2.0√(g/l). 
 
 
The same way as for the case I, the phase plane was 
generated for this system with initial conditions above, not 
show the presence of the chaotic. Then we generate initial 
conditions for a wider range:-180o ≤ ϕ ≤ 180°. Fig. 3 shows 
the relationship between the angle and time, there are 
curves representing a chaotic state.  
 
 

 

[ ]21
2 1 0 ( ( )) .E mv mgl . Cos tθ= + −

 
FIGURE 3. θ(t), for the case of critical damping initial conditions 
in a wider range. 
 
 
The phase plane is presented in Fig. 4, also for 100 different 
initial conditions, it is possible to observe the chaotic 
regions and the existence of a stable region for the 
movement of the pendulum that describes a harmonic 
motion.  
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FIGURE 4. Phase diagram of the case shown in Fig. 3. 
 
 
PhP. For the case IV) the Eq. (7) is unchanged with respect 
to the previous cases the equations used are as follows 
 
 

(10) 
 
 
So that in Eq. (7) the value of the angular velocity ω2 is 
replaced by Mgd/I, where M is the mass of physical 
pendulum, d is the distance from the center of mass to the 
axis of rotation, I is the moment of inertia a straight 
cylinder I =ML2/3, L is the length of the cylinder. The 
integration interval for this case was 0 ≤ t ≤ 3.5, we 
generate N = 350 steps in that range, the size of temporal 
displacement was Δh = 0.01 and n = 500 different initial 
conditions were evaluated, which were randomly generated 
for a range between -35o≤ ϕ ≤ 35o and -1.5Mgd/I ≤ ϕ ≤ 
1.5Mgd/I. The value of the length of the cylinder was taken 
as L=2, so that the distance d is equal to unity. Fig. 5 shows 
the phase plane generated for this system. Which preserves 
the structure of the case II) as it should be. 
 
 

 
 

FIGURE 5. Diagram of the physical pendulum phase. 
 
 

PhPD. For the case V) in Eq. (7) again introduce the 
damping factor given by -bv, the damping constant in this 
case has a value of b = 0.75kg/s, then introducing a weak 
buffer case. We solve the system with the integration 
interval 0 ≤ t ≤ 15, we generated N = 1000 steps in that 
range, the size of temporal displacement was Δh = 0.015. 
We evaluated n =100 initial conditions randomly that were 
generated for a range: -95o≤ ϕ ≤ 95o, and for speed: -Mgd/I 
≤ ξ ≤ Mgd/I.  
 
 

 
 
FIGURE 6. Angle versus time for the Physical Pendulum with 
Damping. 
 
 
The Fig. 6 shows the graph of the angle versus time. There 
are 5 different equilibrium states where different paths 
converge. It also shows the damping of the system, because 
the oscillation is decaying. Fig. 7 shows the phase space 
where there are these 5 regions of stability are presented as 
system attractors and chaotic regions as well. 
 
 

 
 

FIGURE 7. Phase diagram of the damped physical pendulum. 
 
 
PhPMV. For the case VI) was necessary to introduce time 
dependence in the properties: mass, inertia moment and 
distance from the axis of rotation to mass center, which in 
previous cases have been constant. We follow the treatment 

( ) ( )
2

2 0.
d t

I Mgd Sin t
dt
Θ

− Θ⎡ ⎤⎣ ⎦ =
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done by G. del Valle and coworkers [14] and, assuming that 
the mass change is a linear dependence given as follows: 
 

 
(11) 

 
 
 
Where we assume that Mg is the mass of granular medium 
which is filled with the cylinder, the initial time t = 0, Mg= 
Mo it is the mass of granular material at the beginning, at 
time t = I √(2.0L/g) is the time we assume that the cylinder 
is emptied so Mg = 0. The moment of inertia is given by 
the following expression: 
 
 
 

(12) 
 
 
 
Where Mc is the mass of the cylinder which will assume 
once ranging has been reached at time t = I√(2.0L/g). On 
the other hand have the expression for the mass-center 
distance to the axis of rotation. 
 
 
 

(13) 
 
 
 
 
These three terms are shown in Figs. 8, 9, 10, for three 
different values of granular mass Mg = 1.0, 2.0 and 5.0g. 
The angular frequency is expressed as follows: 
 

(14) 
 
 
So the period of the pendulum is T = 2π/ω. Shown in Fig. 
11. 
 
 

 
 
FIGURE 8. Granular mass as a function of time, expression 
number (11). 

 
 
FIGURE 9. Moment of inertia as a function of time, expression 
expression (10). 
 
 

 
 
FIGURE 10. Distance from the mass center to the rotation axis as 
function of time, expression (11). 
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FIGURE 11. Period as function of time for the case of variable 
mass. 
 
 
With the expressions (11-14) we done the simulation for the 
two cases VI) the integration interval for the first case was 
0 ≤ t ≤ 1.3, were generated N = 500 steps, the size of 
temporal displacement was Δh = 0.0026. Were evaluated 
the n = 100 randomly initial conditions for a range between 
-35o≤ ϕ ≤ -35o and -1.5A ≤ ξ ≤1.5A, and for the case VII) 
the integration interval to the second case was 0 ≤ t ≤ 2.6, 
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were generated N = 700 steps, the size of the temporary 
displacement was Δh = 0.0037. Were evaluated the n = 100 
randomly initial conditions for a range between the -15o-≤ 
ϕ ≤ 15°, and -1.5A ≤ ξ ≤ 1.5A, where A is the amplitude of 
the oscillation. 
 
 

 
 
FIGURE 12. Phase diagram to damped pendulum with variable 
mass. 
 
 
The Fig. 12 shows the phase space generated for the case 
VI), clearly shows the critical region and the chaotic to this 
more complex system, however, appear very similar phase 
diagrams. Fig. 13 shows the phase plane variable mass 
damped pendulum, given the conditions we see that this 
diagram shows only the region of stable equilibrium of the 
system. However, Fig. 14 shows the case again the case of 
a critical oscillation, in this case b = b(t) = 2.0 ω(t) shows a 
very rapid damping, and in this case the buffer also variable 
as other time dependent variables. 
 
 

 
 
FIGURE 13. Phase diagram of the damping pendulum with mass 
variable, only stable region. 
 

 
 
FIGURE 14. Critical damping in the case VII damping pendulum 
with mass variable. 
 
 
V. CONCLUSIONS 
 
There has been a very cursory study of pendulums on 
different systems, starting from simple approaches to 
complicate the problem to obtain the solution of the 
damping physical pendulum with variable mass, academic 
problem that not has been treated rigorously, and for which 
there aren’t literature that present results to compare with 
our results. The results of these simulations allow us to 
have a computational point of view to be used to compare 
experimental results. It is also possible to develop a more 
comprehensive analysis on the chaotic regions, stable and 
unstable regions, branching points and different conditions 
for various pendulum systems presented in this work. 
Comparisons with experimental results are necessary but 
the evidence that is presented is sufficiently consistent to 
implement them, It is also possible propose another kind of 
dependence of mass flux with respect to time and 
oscillation to understand best the movement of pendulum. 
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