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Abstract 
As it has been mentioned in a previous work, the starting point in the study of heat transfer problems is the heat 

diffusion equation, and their solution reflects not only the boundary conditions consistent to the experimental setup, but 

also the kind of modulation considered for the heat source. There, the solutions of the heat diffusion equation were 

found for Dirichlet, Neumann and Robin boundary conditions type, and for an arbitrary modulation function, which the 

only requirement that the modulation function had an expansion in Fourier basis. From these general solutions, the 

temperature distributions (as function of relative frequency and relative position) were calculated, under the assumption 

that the heat source had the sinusoidal modulation inherit from the modulation of the optical excitation, and for all three 

boundary conditions mentioned before, since this kind of modulation is usually used in the standard models in 

Photothermal Science and Techniques. However, this kind of modulation is in fact an approximation for the real 

experimental conditions, since mechanical modulators (choppers) are frequently used in Photothermal experiments with 

modulated light. In this present work, the temperature distributions are calculated, considering a square wave 

modulation for Dirichlet, Neumann and Robin boundary conditions, and in the case of Robin boundary conditions, the 

influence of different Biot numbers in the thermal response, are also presented and discussed. 

 

Keywords: Diffusion equation, homogenous solid, Photothermal techniques, square wave modulation, thermal 

diffusivity, thermal wave. 

 

Resumen 
Como se ha mencionado en trabajos previos, el punto de partida en el estudio de los problemas de transferencia de calor 

es la ecuación de difusión de calor, y su solución no solo refleja las condiciones de frontera compatibles con el sistema 

experimental, sino también el tipo de modulación tomado en cuenta para la fuente de calor. Así, las soluciones de la 

ecuación de difusión de calor fueron calculadas para las condiciones de frontera de los tipos Neumann, Dirichlet, y 

Robin, y para una función de modulación arbitraria, con el único requisito de que la función de modulación tuviera una 

expansión en base de Fourier. A partir de estas soluciones generales, la distribución de temperatura (como la función de 

la frecuencia relativa y la posición relativa) fueron determinadas, bajo la suposición de que la fuente de calor tuviera 

una modulación sinusoidal heredada de la excitación óptica, y para las tres condiciones de frontera antes mencionadas, 

ya que este tipo de modulación se utiliza generalmente en los modelos estándar en las Ciencias y Técnicas 

Fototérmicas. Sin embargo, este tipo de modulación es una aproximación a las condiciones experimentales reales, ya 

que los moduladores mecánicos (choppers) se utilizan frecuentemente en experimentos Fototérmicos con luz modulada. 

En el presente trabajo, las distribuciones de temperatura son calculadas, considerando una modulación de onda 

cuadrada para las condiciones de frontera Neumann, Dirichlet y de Robin, y en el caso de condiciones de frontera de 

Robin, la influencia de diferentes números de Biot en la respuesta térmica, también se presentan y discuten. 
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difusividad térmica, onda térmica. 
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I. INTRODUCTION 
 

When an experiment that involves heat transfer phenomena 

[1, 2], such as Photothermal (PT) measurement techniques 

does [3], is conceived to use modulated light as excitation, 

there are many ways to accomplish a useful modulation, i.e. 

a controllable modulation. In several measurement systems, 

photodiodes and laser diodes controlled by a signal 

generator are used to generate a modulated optical 

excitation, with the convenience of having various options 
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in the kind of modulation for the amplitude (even a very 

good approximation to a sinusoidal modulation). 

Nevertheless, the most common way to generate modulated 

optical excitation still is by means of a mechanical 

modulator (chopper), since it is a cheap option and easy to 

implement in any laboratory. The continuous light beam, 

becoming from the light source, emerges from the chopper 

as a square pulse train, this is, as a square wave. In Fig. 1, a 

comparison between the sinusoidal and the square wave 

modulations is presented. 

To include the square wave (SW) modulation into the 

heat diffusion equation (HDE), an expansion in Fourier 

basis can be carried out, and so, the coefficients Cm of the 

Fourier series of the SW were calculated to be: 

 

 2/iexp
2

)2/(Sinc
m

m
C

m
 .                      (1) 

 

Where the Sinc function, is the cardinal sine function [4]. 

From Eq. (1), is clear that only the odd harmonics will 

contribute to the SW function, and therefore, only the odd 

harmonics are relevant in the thermal response, for the SW 

case, calculated from the general solutions of the HDE by 

the Green’s function technique [2, 4]. 

 

 

 

 
FIGURE 1. Comparison between the sinusoidal modulation (red dotted line) and the square wave modulation (black solid line) of an optical 

excitation flux. 

 

 

 

II. SOLUTIONS OF THE HEAT DIFFUSION 

EQUATION 
 

Be a lineal, homogenous and isotropic slab, such that its 

geometry and the flux’s direction of the incident light beam 

sustain a cylindrical symmetry, as Fig. 2 schematizes. 

 

 
FIGURE 2. Scheme of the geometry of the system. 

Referring us to our previous work [5], where the method of 

solving the heat diffusion equation is described in detail, at 

next, the solutions under Dirichlet, Neumann and Robin 

boundary type conditions are described for the SW 

modulation. As well as the previous work, relative position 

z
*
 = z/ls and relative frequency  = f/fc are used to discuss 

the theoretical predictions, being ls the thickness of the slab, 

and fc the characteristic frequency [6]. 

 

A. Dirichlet boundary condition 

 

In this case Af = Ar = 1 y Bf = Br = 0. The restriction implies 

the continuity of the temperature distribution across the 

interfacial surfaces, therefore, the response on the 

frequency domain to be: 
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In the previous equations,s ≡ (1+i)/s is the complex 

thermal diffusion coefficient, defined by means of the 

thermal diffusion length [6, 7] s ≡ (2s/’)
1/2

, being s the 

thermal diffusivity of the sample (s). By means of the 

Inverse Unitary Fourier Transform of Eq. (2), the 

temperature distribution (under Dirichlet boundary 

conditions) in time domain is given by: 
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In the calculations values of ls = 300 (i.e. the sample is 

optically opaque) and were considered, and the results are 

presented in Fig. 3 for the SW modulation, and in order to 

make a comparison between the behavior of the thermal 

response for sinusoidal and the SW modulations, Fig. 4 

shows the theoretical calculations at z
*
 = 0.5, in relative 

frequency domain. 

 

 

 
 

FIGURE 3. Calculation of: (a) Amplitude of the temperature 

variations, and (b) Phase of the temperature variations, as function 

of relative position and frequency. Dirichlet boundary conditions 

were considered. 

 

 

 
 

 

 
 



J. B. Rojas-Trigos and A. Calderón 

Lat. Am. J. Phys. Educ. Vol. 6, No. 1, March 2012 62 http://www.lajpe.org 

 

 
 

 

 
 

FIGURE 4. Percentage difference in (a) Amplitude and (c) Phase 

difference of the temperature, as function of relative frequency, 

between the sinusoidal and SW modulations. Comparison between 

the thermal responses in: (b) Amplitude and (d) Phase Difference, 

as function of relative frequency, for sinusoidal (dotted line) and 

SW (solid line) modulations. Dirichlet boundary conditions were 

considered. 

 

 

 

From Fig. 4 it can be seen that for very small and very large 

values of the relative frequency, the behavior of the thermal 

response under the sinusoidal and SW modulations differs 

almost by a constant factor. This can be explained because 

the two models converge to each other when the thermal 

response of the sample lies in the thermally thin or thick 

regimes, since the contribution of the higher harmonics in 

the SW modulation are negligible. However, for values of 

0.37 to 3.7 for the relative frequency, the higher harmonics 

contribute to the temperature distribution in such way that 

their influence cannot be neglected. This range for the 

relative frequency can be associated to a transition from the 

thermally thin regime to the thermally thick regime. Also, 

from Fig. 4(a) it follows that the temperature difference 

reaches its greatest rate of change, with a change in its 

concavity, around fc, highlighting the importance of the 

characteristic frequency in the thermal response. 
 

 

 

 

 

 

B. Neumann boundary conditions 

 

In this second case, Af = Ar = 0 y Bf = Br = ks, and so, the 

continuity of the heat flux across the interfacial surfaces is 

guarantee. In such case, the response on the frequency 

domain will be: 
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In similar way, applying the Inverse Unitary Fourier 

Transform to Eq. (5), the temperature distribution (under 

Neumann boundary conditions) in time domain is given 

then by: 
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In the calculations a value of ls = 300 was considered. 
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FIGURE 5. Calculation of: (a) Amplitude of the temperature 

variations, and (b) Phase of the temperature variations, as function 

of relative position and frequency. Neumann boundary conditions 

were considered. 

 

 

In order to make a comparison between the behavior of the 

thermal response for sinusoidal and the SW modulations, 

Fig. 6 shows the theoretical calculations at z
*
 = 0.5, in 

relative frequency domain. Also, it shows that for values 

around of 1 to 10 for the relative frequency, the 

contributions of higher harmonics must be taken into 

account. In this range for the relative frequency, a transition 

from the thermally thin to thermally thick regimes occurs, 

and the difference of the model under the sinusoidal and 

SW modulations strongly depends on the frequency. Thus, 

for the Neumann boundary conditions, the transition 

interval between the thermally thin regime and the 

thermally thick regime is broader than the Dirichlet case. 

Also, from Fig. 6(a) it follows that the temperature 

difference reaches its greatest rate of change, with a change 

in its concavity, around v = 3.7. 

 

 

 

 

FIGURE 6. Percentage difference in (a) Amplitude and (c) Phase 

difference of the temperature, as function of relative frequency, 

between the sinusoidal and SW modulations. Comparison between 

the thermal responses in: (b) Amplitude and (d) Phase Difference, 

as function of relative frequency, for sinusoidal (dotted line) and 

SW (solid line) modulations. Neumann boundary conditions were 

considered. 

 

 

C. Robin boundary conditions 

 

This third case, also known as impedance boundary 

conditions, Ar = Af = h, and Br = Bf = ks. In this kind of 

boundary conditions, h represents the overall heat exchange 

coefficient, and depends on the surrounding medium as 

well the physical properties of the sample. So, the 

homogenous Robin boundary condition states that the total 
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heat flux is conserved, taking into account the conductive, 

convective and radiative heat fluxes. 

If we considered that the Biot number is ≡ hlsks
-1 

[8, 9] 

is a simple index of the ratio of the heat transfer resistance 

of and at the surface of the sample (and therefore qualifies 

the ability of it to exchange heat through their surfaces), it 

is possible to define a coefficient es as: 

 

s s
s

s

Bi
exp( i / 4).

2
e

l


                             (8) 

 

The coefficient es is a dimensionless quantity, being a 

function not only of the solid sample and its surroundings, 

but also a function of the modulation frequency, 

diminishing at the time that the modulation frequency gets 

larger. The response on the frequency domain to be: 
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In Eq. (9), , denotes the function composition operator, and the following definitions were used: 
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The temperature distribution, under Robin boundary 

conditions, in time domain is written finally as: 
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For Robin boundary condition, values of ls = 300 and Bis 

= 0.5 were considered for the calculation of the temperature 

variation surface, showed in Fig. 7. 

 

 

 

 

 
 

FIGURE 7. Calculation of: (a) Amplitude of the temperature 

variations, and (b) Phase of the temperature variations, as function 

of relative position and frequency. Robin boundary conditions 

were considered. 
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FIGURE 8. Percentage difference in (a) Amplitude and (c) Phase 

difference of the temperature, as function of relative frequency, 

between the sinusoidal modulation and SW. Comparison between 

the thermal responses in: (b) Amplitude and (d) Phase Difference, 

as function of relative frequency, for sinusoidal (dotted line) and 

SW (solid line) modulations. Robin boundary conditions were 

considered. 

 

Figure 8 shows an even more strong dependency on the 

relative frequency of the percentage difference between the 

sinusoidal and SW modulations (especially in the phase 

difference calculations), since the contribution to the 

thermal response due to the overall heat exchange depends 

on the modulation frequency. 

Again, the influence of Bis appears through the 

coefficient es, modulated by the thermal diffusion length, 

which is a function of the modulation frequency. In Fig. 9, 

different values of Bis number are used for the calculation 

of the temperature distribution (at z
*
 = 0.5), and the results 

are compared to the solutions under Neumann boundary 

condition, in the relative frequency domain, and for the SW 

modulation. 

 

 
 

 
 

FIGURE 9. Comparison of the behavior of: (a) Amplitude and (b) 

Phase of the temperature variations as function of relative 

frequency, for Square wave modulation. The solid black line 

represents the solutions under Neumann boundary conditions. The 

calculations under Robin boundary conditions were performed for 

different values of Bis: 0.05(dotted red line), 0.5 (blued plus sign) 

and 5 (pink diamonds).  
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There are some differences in the influence of Bis for a SW 

modulation, in comparison to the sinusoidal modulation. As 

before, the thermal response for different Bis numbers tends 

to equalize at greater relative frequencies, but the behavior 

of the phase difference is quite distinctive from the 

calculated for the sinusoidal modulation, and these 

differences are strongly dependant to the relative frequency, 

due to the contributions of the higher harmonics for the SW 

results [10]. 

 

 

III. CONCLUSIONS 
 

From the previous analysis, a carefully selection of the 

frequency range must be done in consideration to 

approximate the current modulation by a sinusoidal 

modulation, when a mechanical modulator is used in the 

experimental set up. If the modulation frequency guarantees 

that the thermal response is near or lies into one of the 

thermal regimes, there is not loss of reliability on the 

comparison between the experimental data with a model of 

PT generation signal based in a sinusoidal modulation. But, 

when there is a strong possibility that the frequency range is 

so that the sample makes a transition to one thermal regime 

to another, the correct modulation function must be used in 

the PT signal generation model, otherwise, the difference 

between the model and the experimental data will strongly 

depend on the modulation frequency, which is of course, an 

undesirable situation. Also, when the thermal response is 

suitable to be influenced by convective and radiative 

components to the heat flux, it is not sufficient to take into 

account the value of the Biot number alone, because its 

significance, speaking on terms of the thermal regime, is 

mixed to the thermal diffusion length, which is dependant 

of the modulation frequency [11]. 
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