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Abstract 
Non-commutativity of the Einstein velocity addition, in case of non-collinear velocities, seemingly gives rise to a 

conflict with reciprocity principle. However, Thomas rotation comes at a rescue and the paradox is avoided. It is 

shown that such a resolution of the so called Mocanu paradox is completely natural from the point of view of basic 

premises of special relativity.  
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Resumen 
La no-conmutatividad de la suma de la velocidad de Einstein, en el caso de las velocidades no-alineadas, al parecer da 

lugar a un conflicto con el principio de reciprocidad. Sin embargo, la rotación de Thomas llega como un rescate y la 

paradoja se puede evitar. Se demuestra que dicha resolución de la llamada paradoja de Mocanu es completamente 

natural desde el punto de vista de las premisas básicas de la relatividad especial. 
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I. INTRODUCTION  
 

It should be clear, after a hundred years of development of 

special relativity, that to search a logical contradiction or 

paradoxes in it is the same as to search a logical 

inconsistency in non-Euclidean geometry (in fact, special 

relativity is a kind of non-Euclidean geometry – the 

Minkowski geometry of space-time). Surprisingly, 

however, such efforts have never been abandoned. Some 

“paradoxes” are helpful nevertheless because their 

resolution reveals the roots of our confusion and, therefore, 

enhances our comprehension of special relativity. 

The Mocanu paradox [1, 2, 3] is an interesting paradox 

of this kind whose resolution makes clear some our 

misconceptions about space and time, deeply rooted in 

Newtonian intuition, which are notoriously hard to 

eliminate in physics students even after years of study of 

modern physics. 

Although the resolution of this “paradox” is already 

available in the literature (see [3, 4, 5, 6]), “their arguments 

and mathematical formulas in terms of coordinates do not 

give an evident physical explanation of the paradox, though 

it became clear that the paradox was related somehow to 

the Thomas rotation” [6]. 

It is the aim of this article to demonstrate by elementary 

means that there is nothing especially paradoxical about the 

Thomas rotation as far as it is considered with regard to the 

Mocanu paradox. To emphasize the physical concepts 

involved, rather than mathematical formalism, we consider 

not the most general case of the Mocanu paradox. However, 

the special case considered already involves all necessary 

ingredients. 

 

 

 

II. THE MOCANU PARADOX  
 

Suppose a reference frame S   moves with the velocity v  

with respect to the frame “at rest”, S , along its x-axis, and 

a frame S   moves with the velocity v  with respect to the 

frame S   along its y -axis. It is assumed that the 

corresponding axes of the frames S  and S   are parallel to 

each other, as do axes of the frames S   and S  . Then the 

velocity u  of S   relative to S  is given by the relativistic 

velocity addition law 
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where   is the Lorentz factor corresponding to the velocity 

v  
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According to the reciprocity principle [7], if S   moves 

relative to S with velocity v


, then S  moves relative to S 

with velocity v


 . Therefore, in the frame S  , the frame 

S   moves along the y  axis with the velocity v , while 

in the frame S  , the frame S  moves along the x  axis with 

the velocity v . Compared to the previous situation, the 

roles of the x and y axes are interchanged, as are the roles of 

v and v  (with additional change of sign). Therefore, the 

velocity addition formula gives the velocity u  of the frame 

S  relative to S   
 

             ,0,, 


 zyx uvu
v

u


                     (2) 

 

where    corresponds to the velocity v . 

Of course, it is possible to obtain all this by using the 

general formula for relativistic addition of non-collinear 

velocities [3]  
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from which a non-commutativity of this addition is clearly 

seen, but for our purposes even simpler particular case of 

this formula for the velocity v  collinear to the x-axis, (1), 

suffices if carefully used. 

According to the reciprocity principle, the velocity of 

S   relative to S  should be vvu


 , but it clearly 

does not equal to vvu

 . And this constitutes the 

content of the Mocanu paradox: what is the correct velocity 

of S   relative to S , vv

  or vv


 , and how we can 

account for the reciprocity principle in this case?  

We can discard a possibility that the reciprocity 

principle is violated from the very beginning. In fact, it is 

possible and even preferable to base special relativity on 

this intuitively evident principle, instead of highly counter-

intuitive second postulate (see [8] and references therein). 

III. RESOLUTION OF THE MOCANU 

PARADOX 
 

The key idea in resolution of the Mocanu paradox is the 

realization of the fact that space in special relativity is in 

fact more relative than space in the non-relativistic physics 

[6], although this can hardly be guessed by merely 

comparing the Galilean transformation vtxx  , which 

describes relativity of space for non-relativistic observers, 

to its relativistic counterpart )( vtxx   . In words of 

Minkowski, “space by itself, and time by itself are doomed 

to fade away into mere shadows, and only a kind of union 

of the two will preserve an independent reality” [9]. 

The vectors vv

  and vv


  are defined in different 

reference frames S  and S  , and, therefore, in different 

spaces. It makes no sense to compare them unless the axes 

of S  and S  are made parallel in some well defined way. 

Axes of the S and S  , as well as axes of the S   and S   

frames are assumed to be parallel, as mentioned above. 

What conclusion we can draw then about the mutual 

orientation of the S  and S   frames axes?  

In the frame S  , the x axis is given by the equation 

(we will drop z -coordinate as it is irrelevant in our planar 

case)  

 

.tvy   
 

Then, according to Lorentz transformations, we conclude 

that in the frame S  the x  axis is given by the equation  
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Therefore, from the point of view of S , the x  axis is 

inclined clockwise relative to the x axis by an angle   so 

that  

 

                              .tan                                   (4) 

 

There is nothing paradoxical in this change of inclination. 

At least nothing more paradoxical than the lack of absolute 

simultaneity from which it stems. Note that such a change 

of inclination is used to resolve some pole-and-barn type 

paradoxes [10, 11]. 

Analogously, y  axis is given in the frame S   by the 

equation 0x , which in the frame S  transforms into  

 

.0)(  vtx  
 

Therefore, y  axis is given in the frame S  by the equation 

vtx   and, consequently, remains parallel to the y axis. 

Fig. 1 summarizes the orientations of the x  and y  axes 

as seen by an observer in the S reference frame.  
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FIGURE 1. Orientations of the S   axes as perceived in the frame 

S . 

 

We need some refinement here. Because of the finite speed 

of light, we should distinguish between what Rindler calls 

[12] world-picture and world-map. World-picture is what 

an observer actually sees at any given moment of time, a 

snapshot which records distant objects at different moments 

of the past. World-map, on the contrary, is the set of events 

that the observer considers to have occurred in the world at 

that instant of time. Special relativity operates with world-

maps, Lorentz transformation being an instrument which 

relates two world-maps of different inertial frames. 

Therefore, when we speak rather loosely about what an 

observer sees or perceives, actually we have in mind the 

world-map of this observer. With this caveat, let us 

continue and find how the situation described by Fig. 1 is 

transformed in the frame S  .  

 

 
FIGURE 2. Orientations of the S   axes as perceived in the frame 

S relative to the x~  and y  axes.  

First of all, let us introduce another set of axes yx ~,~  and 

yx  ~,~ , so that x~  and x ~  are parallel to u  and, therefore, 

S  and S   equipped with these axes are in a standard 

configuration. In these new axes, Fig. 1 is changed into Fig. 

2. 
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Therefore, the equation which defines x axis in the frame 

S looks like  

 

                       ),~(~
2

utxy 
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
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while the equation for the y  axis is  
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Let us apply now the Lorentz transformation  
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to change world-map from S to S  . As a result, we get 

from (5)  
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where at the last step we have used  

 

.1
2

 






 
 

c

vv
vvu




 
 

Analogously, (6) transforms into  
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Equations (7) and (8) show that, from the point of view of 

an observer in the frame S  , x  and y  axes are inclined 

with respect to the x  axis (and, hence, with respect to the 
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line of relative motion) with angles    and  2  

respectively, as shown in Fig. 3.  

 

 

 

 

FIGURE 3. Orientations of the S   axes x  and y as perceived 

in the frame S   relative to the x  and y  axes.  

 

 

At that 
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While naively one should expect the inclination angle    
to be the same angle   by which the x axis is inclined with 

respect to the x~  axis in the frame S, as it would be in the 

case of parallel x and x  axes of non-relativistic situation, 

it is not, because 

 

                             .tan






                                    (10) 

 

As we see, although axes of the frames S and S  , as well as 

S  and S  , were rendered parallel, the very same axes of 

the frames S and S   turned out not to be parallel in any 

meaningful way. Space for relativistic observers are more 

relative than for non-relativistic observers and we should be 

very careful while interpreting the results of several 

consecutive non-collinear boosts. 

The difference    is the notorious Thomas 

rotation and it provides a ready explanation of the Mocanu 

paradox: an observer in the frame S   really perceives u


  

as the velocity of the frame S, in agreement with the 

reciprocity principle, but projects this vector of relative 

velocity onto x  and y  axes to get its components. 
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where we have used 
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As we see, Thomas rotation resolves the Mocanu paradox 

and reconciles the reciprocity principle with the non-

commutativity of relativistic velocity addition. 

 

 

IV. CONCLUDING REMARKS  
 

Thomas rotation and Thomas precession are often 

considered as obscure relativistic effects which have 

generated a huge, sometimes confusing literature [13]. 

Nevertheless, this phenomena “can be quite naturally 

introduced and investigated in the context of a typical 

introductory course on special relativity, in a way that is 

appropriate for, and completely accessible to, 

undergraduate students” [14]. I think the Mocanu paradox 

provides a very useful possibilities in this respect. 

The resolution of the paradox presented in this article 

was essentially given by Ungar [3] years ago. I hope, 

however, that the above presentation is simpler and clarifies 

some confusion. For example, it is claimed in [3] that an 

observer in S sees the axes of S   rotated relative to his own 

axes by a Thomas rotation angle . However, this is not 

correct. The observer in S “sees” what is depicted in Fig. 1. 

Thomas rotation angle,  , emerges when we compare the 

orientation of S   axes, as actually seen by an observer in 

S  , to the naive expectation of the observer in S what the 

observer in S   should see if the transitivity of parallelism 

is assumed between different inertial reference frames.  

Thomas rotation is very basic phenomenon in special 

relativity which follows quite naturally from its basic 

premises, as was demonstrated above. It is as basic as the 

time dilation and length contraction and is no more 

paradoxical than these well known effects of special 

relativity. Of course, this does not mean that it is trivial. It 

took years before “evidence that Einstein’s addition is 

regulated by the Thomas precession has come to light, 

turning the notorious Thomas precession, previously 

considered the ugly duckling of special relativity theory, 

into the beautiful swan of gyrogroup and gyrovector space 

theory” [15]. At this more advanced level, you can enjoy 

also other non-Euclidean facets of relativistic velocity space 

[16], from which the geometrical meaning of Thomas 

rotation, first discovered by the famous French 
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mathematician Émile Borel long before Thomas found the 

precession effect [17], becomes evident. 
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