

Lat. Am. J. Phys. Educ. Vol. 6, No. 1, March 2012 72 http://www.lajpe.org

Optimising digital combinational circuit using
particle swarm optimisation technique

Ushie, James Ogri, Obu Joseph Abebe Etim, Iniobong prosper
Department of Physics, Department of Physics, Department of Physics,
University of Calabar, University of Calabar, University of Calabar, Calabar.

E-mail: ushjames@yahoo.com, abebeobu@yahoo.com, ini2etim@yahoo.com.

(Received 28 November 2011, accepted 27 February 2012)

Abstract
Human methods of circuit minimisation are tedious and limited to systems with four or five numbers of inputs. In order
to save time and labour involved in designing digital combinational logic circuit, a standard algorithm that is suitable
for digital combinational logic circuit with little modification which handle circuit with more than five inputs variables
is developed. Employing MATLAB, the circuits were coded into particles using Particle Swarm Optimisation (PSO)
techniques. This was then used to optimise a full-adder circuit. The result obtained, after optimisation for full-adder
circuit using PSO technique is shown to have a minimum number of gates (five gates) compared to human designer
method which has six gates.

Keywords: Digital combinational logic circuit, Human designer method, MATLAB, Particle Swarm Optimisation.

Resumen
Los métodos humanos de minimización de circuitos son tediosos y se limita a los sistemas con cuatro o cinco números
de entrada. Con el fin de ahorrar tiempo y mano de obra involucrada en el diseño de circuitos digitales de lógica
combinatoria, se desarrollado un algoritmo estándar que es adecuado para el circuito digital de lógica combinatoria con
muy pocas modificaciones que se encarga del circuito con más de cinco variables de entrada. Con el empleo de
MATLAB, los circuitos fueron codificados en partículas usando técnicas de optimización por enjambre de partículas
(PSO). Este se utilizó entonces para optimizar un circuito sumador completo. El resultado obtenido, después de la
optimización de circuito sumador completo utilizando la técnica de PSO se demuestra que tienen un número mínimo de
puertas (cinco puertas) en comparación con el método de diseño humano que tiene seis puertas.

Palabras clave: Circuito digital de lógica combinatoria, método de diseño humano, MATLAB, Optimización por
enjambre de partículas.

PACS: 07.50.Ek, 07.05.Tp, 07.05.Mh ISSN 1870-9095

I. INTRODUCTION

In digital circuit, minimisation is required to reduce the
component count and size in a circuit, thereby reducing
cost, physical size and weight, and hence increase system
reliability and lowers power consumption, which is a prime
requirement in modern circuit. There are several methods of
circuit minimisation, examples, human methods (Boolean
algebra, Karnaugh Map, Quine’ McCluskey, etc.) and
computational intelligence method such as Genetic
Algorithm [1] Fuzzy Logic, Artificial Neural Network
(ANN) and Particle Swarm Optimisation (PSO), [2]. The
computational intelligence method has a significant
advantage over the human methods because it has the
ability being automated through programming.

The process of minimisation can be viewed as an
optimisation process in that they both seek the best solution
for a physical model [3]. In other words, it is a technique
used for improving or increasing the value of a model.

Examples of classical methods of optimisation include the
gradient method, steepest descent and simplex method.
They are useful in finding the optimum of continuous and
differentiable function. These techniques, however, have
limited scope in practical applications [4], since most day-
to-day practical problems involve objective functions that
are not continuous and differentiable. The limitation of the
classical methods of optimisation has necessitated the
development of modern optimisation methods.

Here, we have developed a code (see appendix) using
PSO techniques for digital minimisation (written in
MATLAB) and then used it to optimise a full-adder circuit.

II. THEORY OF PSO

Particle Swarm Optimisation (PSO) is a population-based
stochastic optimisation technique developed by Eberhart
and Kennedy [5] following inspiration got from the social

Ushie, James Ogri, Obu Joseph Abebe Etim, Iniobong prosper

Lat. Am. J. Phys. Educ. Vol. 6, No. 1, March 2012 73 http://www.lajpe.org

behaviour of a flock of birds or school of fish [6]. In PSO,
population of potential solutions called particles “are
flown” in search of the required solution, and each particle
is updated in the process. The search and update process
resembles the social interaction of the swarm of birds or a
school of fish as they seek a common objective in a multi-
dimensional search space. Each particle in the swarm keeps
a record of the best “position” it has attained in the search
space with respect to the objective function called the
personal best (pbest), while the swarm keeps record of the
overall best “position” attained by any particles, called
global best (gbest). Each particle profit from the discoveries
and it previous experience of the other particle during the
exploration and search process, as they seek to achieve
higher objective function values.

PSO differ from traditional optimisation method in that
population of potential solution is used in the search, direct
fitness information is used instead of function derivatives,
and relative knowledge is used to guide the search, [7].

III. ALGORITHM FOR EVOLVING
COMBINATIONAL CIRCUIT USING PSO

The PSO algorithm used for evolution and minimisation of
digital combinational logic circuits was first implemented
by Venus and Ganesh [2]. It runs as follows:

i. Initialise a population of particles with random
“position” and “velocity” in n-dimensional of the
problem space i

ii. Evaluate the fitness of each particle in the swarm to
obtained pbest.

iii. Compare each particle’s fitness with its previous
best fitness obtained. If the current value is better
than pbest, then set pbest equal the current value and
pbest location equal to the current location in n-
dimensional space.

iv. Compare pbest of particle with each other and
update the swarm gbest location with the greatest
fitness.

v. Change velocity and position of the particle
according to Eqs. (1) and (2).

vi. Repeat step (ii) to (v) until convergence is reached
based on some designed multiple criteria or it
iteration limit expires.

The equation for updating particle’s velocity and position
are;

)(**)(*** 2211 ININININININ XPrandCXPrandCVWV −+−+= ,

(1)

INININ VXX += , (2)

where VIN and XIN represent the velocity and position of the
ith particle with n-dimensions respectively, rand1 and rand2
are two random functions, W is inertial weight which
controls the exploration and exploitation of the search space
because it dynamically adjust velocity (from 0.4 to 0.9m/s),
C1 and C2 are acceleration constants which change the
velocity of a particle towards pbest and gbest.

IV. EVOLUTION OF A DIGITAL LOGIC
CIRCUIT USING PSO

We used the particle swarm theory described above to
evolve digital logic circuits by implementing the basic
process of hardware evolution as illustrated in Fig. 1. The
“desired” circuit refers to the circuit required to map 100%
exactly the output for corresponding inputs typically given
by the truth table for digital circuits. After each generation,
the fitness is evaluated against the desired function to be
implemented, given by the truth table. If the output of the
circuit is equal to the output of the truth table for the
corresponding inputs, then the fitness is increased by one.
This is carried out for all inputs listed in the truth table.
This process is repeated until the fitness value of the gbest
particle is equal to the number of the truth table outputs.

In order for the system to know the function of each
gate the switch case selection of the MATLAB were used
and after each case, wordings such as AND gate, OR gates
etc were used and each switch case represent a gate, the
basic gate used in this study is comprised of AND, OR,
NOT, XOR and a wire. A wire means no gate.

FIGURE 1. “Desired” circuit hardware evolution.

The matrix shown in Fig. 2 represents a circuit with M rows
and N columns. The elements of the circuit are the logic
gates which are selected from a predefined library of 1 or 2-
input and 1-output gates. The inputs to the first column of
the matrix come from the truth table of the function to be
implemented. For all other columns, the input may come
from any of the previous column outputs.

Evaluate
fitness

Download evolved
“desired” circuit

Evaluate evolve
circuits and

compare with
desired circuit

Re-generate
circuits using PSO

A swarm of
circuit

Reconfigurable
hardware
platform

Optimising digital combinational circuit using particle swarm optimisation technique

Lat. Am. J. Phys. Educ. Vol. 6, No. 1, March 2012 74 http://www.lajpe.org

FIGURE 2. Structure of random matrix (inputs to each gate are obtained from gates in the previous columns), Venus and Ganesh [2].

A. Coding an input circuit

The gate selection for the circuit is done at random
according to Eqs. (1) and (2). After each generation the
expression is evaluated, approximated and compared to Fig.
2 to know the gate or input selected. A MATLAB program
was coded and simulated for the implementation of the PSO
algorithm. The MATLAB program is then applied to
modify the matrix of each particle. This process is repeated
until the gbest particle is equal to the number of the truth
table outputs. The program samples 3 inputs variable to a
circuit and gates from; AND, OR, NOT, XOR and WIRE to
evolve circuit of desired interest.

For circuit evolution with PSO one matrix is used to
represent gates/inputs interconnectivity. The size of the
matrix in this case is 7 by 3. Elements in first and third
column represent the inputs while the elements in the
second column represent the gates. As illustrated in Fig. 3,
gate is represented as: AND=1, OR=2, XOR=3, NOT=4
and WIRE=5.

The inputs are as well represented for convenience as
follows;
A=1 ~A=2 B=3 ~B=4 C=5 ~C=6 R1=7
R2=8 R3=9 S1=10 S2=11 S3=12

F1=F2=F3=FOUT third column output, R1, R2 & R3) first
column gate output.

(S1, S2 & S3) second column gate output

FIGURE 3. Gate/input interconnectivity representation.

This map illustrates the relationship between the coding of
the numbering of the elements in the matrix and its actual
interpretation in digital circuit as explain bellow. For
example, considering the circuit of matrix as presented x1 -
below. Individual elements of the matrix can be explained
as follow:

X (1, 1) = 1 indicates that the input at this point is A=1, X
(1, 2) =1 indicates an AND gate.
X (1, 3) = 3 in the third column shows that the second input
to the AND gate is B = 1.
X (2, 1) = 3 indicates that the input at this point is B=1, X
(2, 2) =2 indicates an OR gate.
X (2, 3) = 5 indicates that the second input to the OR gate is
C = 1.

When the input or gate in the matrix indicates 0, it
implies NO input or NO gate as in X (3, 1), X (3, 2), X (3,
3), X (5, 1), X (5, 2), X (5, 3), X (6, 1), X (6, 2), X (6, 3)
and X (7, 3). X (4, 1) =7 indicates that the input at this point
is R1 (R1 output of first column gate as indicated in Fig. 1),
X (4, 2) =3 indicates an XOR gate.

X (4, 3) = 8 indicates that the input at this point is R2
(R2 output of first column gate as indicated in Fig. 2).
X (7, 1) =10 indicates that the input at this point is S1 (S1
output of first column gate as indicated in Fig. 1). X (7, 2)
=4 indicates an NOT gate.

For implementation of the full adder circuit,
individually initialised circuit were presented in matrix
form as given in Eqs. (3 – 7) below:





























=

0 4 10
 0 0 0

0 0 0
8 3 7
0 0 0
5 2 3
3 1 1

1X

 (3)





























=

0 4 10
 0 0 0

0 0 0
8 2 7
0 0 0
5 1 3
5 1 1

2X

 (4)

R1

S3 F3

S2

F1

R2

0

U

T

P

U

I

N

P
U

T

F3 R3

F2

S1

2(~A)

7(R1)

9(R3)

11(S2)

5(C)

AND OR XOR NOT WIRE
1 2 3 4 5 1(A)

3(B)
4(~B)

6(~C)

8(R2)

10(S1)

12(S3)
13(F)

Ushie, James Ogri, Obu Joseph Abebe Etim, Iniobong prosper

Lat. Am. J. Phys. Educ. Vol. 6, No. 1, March 2012 75 http://www.lajpe.org





























=

0 4 10
 0 0 0

0 0 0
8 1 7
0 0 0
5 3 1
3 3 1

3X

 (5)





























=

11 3 7
 9 1 8
0 0 0
5 3 7
0 0 0
3 2 1
5 1 1

4X

 (6)





























=

10 3 9
 0 0 0

0 0 0
8 3 7
3 3 3

5 1 1
3 2 1

5X

 (7)

The full-adder truth table generally used for both human
design method and the PSO method is shown Table I.
However, the full-adder circuit obtained by human design
methods have three inputs and two outputs as are shown in
Fig. 4.

TABLE I. Full adder truth table.

S/N A B CIN S COUT
1
2
3
4
5
6
7
8

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
1
1
1
1
1

0
0
0
1
0
1
1
1

V. RESULTS

The summary of sum result for 1st, 50th, 100th, and 101st,
iterations for the gbest matrix [Eq. (8), Eqs. (9-11), Eqs.
(12-14), and Eq. (15), respectively], and their
corresponding circuit (Figs. 5 - 7) are as presented below.
Notice that the circuit for 1st and 50th iterations are the same
since they have the same number of fitness.

Summary of sum result for 1st iteration

Fout2 = [1 1 1 0 1 0 1 0]

best fitness = [4 5 4 3 4]
maximum fitness = [4 5 4 3 4]





























=

0 4 10
 0 0 0

0 0 0
8 2 7
0 0 0
5 1 3
5 1 1

2X

, (8)

Summary of sum result for 50th iteration

Fout1 = [1 1 1 0 1 1 0 0]
Fout2 = [1 1 1 0 1 1 0 0]
Fout3 = [1 1 1 0 0 0 0 0]
Fout4 = [1 1 1 0 1 1 0 0]
Fout5 = [1 1 1 0 1 1 0 0]
best fitness = [5 5 5 5 5]
maximum fitness = [5 5 5 5 5]





























=

0 4 10
 0 0 0

0 0 0
8 2 7
0 0 0
5 1 3
3 1 1

1X

 (9)





























=

0 4 10
 0 0 0

0 0 0
8 2 7
0 0 0
5 1 3
4 1 1

2X

 (10)





























=

0 4 10
 0 0 0

0 0 0
8 2 7
0 0 0
5 1 3
6 1 1

3X

. (11)

Summary of sum result for 100th iteration

Fout1 = [1 0 1 0 1 0 0 1]
Fout3 = [1 0 1 0 1 0 0 1]
Fout5 = [1 1 1 1 1 0 0 1]
best fitness = [6 6 6 6 6]
maximum fitness = [6 4 6 2 6]

FIGURE 5. gbest of initial sum circuit used.

A

B
C

C Fout2

FIGURE 4. Full-adder circuit by human design method.

S

COUT

A

B

CIN

Optimising digital combinational circuit using particle swarm optimisation technique

Lat. Am. J. Phys. Educ. Vol. 6, No. 1, March 2012 76 http://www.lajpe.org





























=

5 3 8
 0 0 0

4 1 4
4 1 4
2 2 1
4 2 2
5 1 1

1X

 (12)





























=

5 3 8
 0 0 0

4 1 4
4 1 4
2 2 1
4 2 2
5 1 1

3X

 (13)





























=

5 3 9
 0 0 0

4 0 4
4 1 6
3 3 1
5 1 1
5 2 1

5X

. (14)

Summary of sum result for 101st iteration

Fout5 = [0 1 1 0 1 0 0 1]
best fitness = [6 6 6 6 8]
maximum fitness = [6 6 6 2 8]





























=

5 3 9
 0 0 0

4 0 4
4 1 6
3 3 1
5 1 1
5 2 1

5X

. (15)

The summary of carry result for 1st, 100th, and 358th,
iterations for the gbest matrix [Eq. (16), Eqs. (17-21), and
Eq. (22), respectively], and their corresponding circuit
(Figs. 8 - 9) are as presented below.

Summary of carry result for 1st iteration

Fout4 = [0 0 0 1 1 1 1 1]
best fitness = [4 1 4 7 4]
maximum fitness = [4 1 4 7 4]





























=

11 3 7
 0 0 0

9 1 8
0 0 0
5 3 1
3 2 1
5 1 1

4X

. (16)

Summary of carry result for 100th iteration

Fout1 = [0 0 0 1 1 1 1 1], Fout2 = [0
0 0 1 1 1 1 1]
Fout4 = [0 0 0 1 1 1 1 1], Fout5 = [0
0 0 1 1 1 1 1]
best fitness = [7 7 6 7 7]
maximum fitness = [7 7 6 7 7]





























=

1 3 6
 0 0 0
2 1 10

2- 1- 2-
6 4 1
3 2 2
5 1 1

1X

 (17)





























=

11 3 7
 0 0 0

9 1 8
0 0 0
5 3 1
3 2 1
5 1 1

2X

 (18)





























=

11 3 7
 0 0 0

9 1 8
0 0 0
5 3 1
3 2 1
5 1 1

3X

 (19)





























=

11 3 7
 0 0 0

9 1 8
0 0 0
5 3 1
3 2 1
5 1 1

4X

 (20)





























=

11 3 7
 0 0 0

9 1 8
0 0 0
5 3 1
3 2 1
5 1 1

5X

. (21)

Summary of carry result for 358th iteration

Fout1 = [0 0 0 1 0 1 1 1]
best fitness = [7 7 8 7 7]

FIGURE 6. Sum gbest Circuit for 100th Iteration.

fout

B
A

B

FIGURE 7. Sum gbest Circuit for 101ST Iteration.

fout

B
A

C

fout

A

B

C
A

A
C

FIGURE 8. Carry gbest for the Initial Circuit

Ushie, James Ogri, Obu Joseph Abebe Etim, Iniobong prosper

Lat. Am. J. Phys. Educ. Vol. 6, No. 1, March 2012 77 http://www.lajpe.org

maximum fitness = [7 7 8 7 7]





























=

11 3 7
 0 0 0

9 1 3
6 0 0
5 3 1
3 2 1
5 1 1

3X

. (22)

VI. SUMMARY AND CONCLUSION

We have minimised a full-adder circuit using PSO method,
from six gates (2 XOR, 3 AND and 1 OR gates) obtained
from human-designer method to five gates (3 XOR, and 2
AND gates). The five components designed, evolved circuit
using PSO satisfies the “desired” circuit in this case that is
expected to have a fitness of eight. From our work, we
determined that the gbest of the carry circuit evolved for the
358 generations and the gbest of the sum evolved for the
101 generations.

After the simulation of PSO-designed circuit on an
electronic work bench, it was seen that the PSO approach is
an improvement over the human designer method because
it has minimum number of gates as summarised in the truth

table illustrated in Table II. The result presented in the truth
table shows that the output of the simulated circuit are the
same with that of full-adder truth table.

TABLE II. Simulated outputs for corresponding input.

S/N A B
C

SU
M

CARRY

1 0 0 0 OFF OFF
2 0 0 1 ON OFF
3 0 1 0 ON OFF
4 0 1 1 OFF ON
5 1 0 0 ON OFF
6 1 0 1 OFF ON
7 1 1 0 OFF ON
8 1 1 1 ON ON

TABLE III. Comparing PSO and human designer for full adder
circuit.

HD2 PSO
6 GATES 5 GATES
2 XOR, 3 AND and 1 OR
gates

3 XOR, and 2 AND gates

REFRENCES

[1] Sulshil, J. L., Genetic Learning for Combinational
Logic Design (2003),
sulhi@csunr.edu/htt.//www.cs.unr.edu/~sushil 05/08/2006.
[2] Venus, G. G. and Ganesh, K. V., Evolving Digital
Circuit Using Particle Swarm (2003),
http://www.ieee+plore.ieee.org 12/12/2005.
[3] Beale, E. M., Introduction to Optimisation, (John Wiley
Sons, New York, 1988), pp. 1-2.
[4] Rao, S. S., Optimisation: Theory and Application,
(Wiley, Delhi, 1978), pp. 1, 284-289, 193 and 298.
[5] Kennedy, J. and Eberhart, R. C., Particle Swarm
Optimisation (1995),
[6] Hu, X., Particle Swarm Optimisation Tutorial (2002),
www.ncbi.nlm.nih.gov 11/05/2005.
[7] Paquet, U. and Engelbrecht, A. P., Training Vector
Machine with Particle Swarm (2003),
http://www.ieee+plore.ieee.org 15/12/2006.

fout

B

C
A

FIGURE 9. Carry gbest Circuit after 358th

FIGURE 10. Minimised Full Adder Circuit using PSO.

CO

S

B

C

A

mailto:sulhi@csunr.edu/htt.//www.cs.unr.edu/~sushil�
http://www.ieee+plore.ieee.org/�
http://www.ncbi.nlm.nih.gov/�
http://www.ieee+plore.ieee.org/�

