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Abstract 
Boltzmann Correction Factor (BCF) !N  is used in Micro Canonical Ensemble (MCE) and Canonical Ensemble (CE) as 
a dividing term to reduce the over counting of the states while finding the number of states and partition function. For 
Grand Canonical Ensemble the indistinguishability was taken into account while deriving the Partition Function (PF) 
and hence generally the BCF doesn't appear for GCE. We show here that BCF comes as a multiplying factor for 
harmonic oscillators in GCE for entropy to be extensive. 
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Resumen 
El Factor de Corrección de Boltzmann (FBC) !N  se utiliza en Ensamble Micro Canónico (MCE) y Ensamble Canónico 
(CE) como un término divisorio para reducir el exceso de conteo de los estados, mientras encontramos el número de 
estados y la función de partición. Se ha tomado en cuenta la indistinguibilidad para el Gran Ensamble Canónico 
mientras se derivaba la Función de Partición (PF) y por lo tanto generalmente el BCF no aparece para la GCE. 
Mostramos aquí que ese BCF se presenta como un factor de multiplicación de osciladores armónicos en GCE para 
entropía extensiva. 
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I. INTRODUCTION 
 
Gibbs paradox is an unphysical situation developed when 
two ideal gases were mixed. When two samples of ideal 
gases of same temperature and particle density were mixed, 
it was found that the entropy of the mixed system is 
different from the sum of the entropies of individual 
system, which was unsubstantial because of the extensive 
property of entropy. This problem was resolved by Gibbs in 
an ad-hoc fashion by dividing the number of microstates of 
an ideal gas by N!. 

In this paper, we revisit the Gibbs paradox in the 
context of harmonic oscillators. Equivalence of ensembles 
is a fundamental requirement in statistical mechanics. At all 
temperatures CE and MCE are same while at high 
temperature and low density GCE must be equivalent to 
MCE and CE. Another fundamental concept is the 
extensiveness of entropy. In this short communication we 
show that for classical harmonic oscillators in MCE and CE 
formalism the extensiveness of entropy can be established 
without dividing the number of micro states and partition 
function by BCF. But in GCE we multiply the partition 
function by a factor to make the entropy extensive. Then we 
can get the same thermodynamics for the three ensembles 
without considering the concept of indistinguishability. It is 

the extensive nature of the entropy that makes the three 
ensembles equivalent. 

In section II the Jacobian transformation technique is 
used to obtain the number of microstates Ω. Then using the 
Boltzmann relation, S=k lnΩ the entropy was calculated. In 
section III, we obtained the partition function and from this 
partition function Helmholtz free energy was calculated. 
From Helmholtz free energy, entropy is obtained using the 
standard relation. In section IV, the grand partition function 
is obtained for both Fermi and Bose system and the value of 
the lnZ for both systems at high temperature is obtained. 
This makes the three ensembles equivalent. Then when the 
entropy was evaluated, using standard relation, it was found 
to be not extensive in nature. To make it extensive we used 
the Boltzmann corrective factor N!. The grand partition 
function is multiplied with BCF to make entropy extensive. 
 
 
II. MICRO CANONICAL ENSEMBLE 
 
The Jacobian transformation technique can be applied in 
the case of transformation in phase space. Phase space is a 
space spanned by generalized co-ordinates and generalized 
momenta. Hence the equation of transformation between 
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two phase space spanned by 'siq  and 'sip  and 'siQ  and 

'siP  is  
.i i i idq dp JdQ dP=                     (1) 

 
Consider N independent Harmonic oscillators. Each 
Harmonic Oscillator will have three degrees of freedom. 
Then energy 
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Rearranging 
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This is a transformation in phase space. Using the 
transformation equations we transform to a phase space 
spanned by 'siQ  and 'siP . Thus the volume between the 
two phase space is related by an equation 
 

3 3 3 3 3 .N N N N N
i i i id q d p J d Q d P=∫ ∫              (7)

 

 
If we denote 1 3i iX Q for i N= = 

3 1 3i N iX P for i N+ = = 

 the Eq. (6) can be 
represented as 
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Thus we get  
 

3 3 3 6N N N N
i i id q d p J d X=∫ ∫                       (9) 
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Where 6NV  is the volume of the sphere with unit radius in 
6N  dimensional space. J can be obtained from the 
transformation equation. 
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Using the relation 
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Hence the number of micro states Ω  becomes 
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where 

2
h
π

= ; h=Planck constant. Using the expression for 

Ω , the entropy of the system is  
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where k= Boltzmann constant. 

Using Stirling formula 
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Using the expression 
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we get 
 

          3E NkT= .                               (20) 
 
Hence 
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III. CANONICAL ENSEMBLE 
 
The thermodynamics for CE is obtained from the partition 
function 
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Using the usual techniques of SM we get 
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Helmholtz free energy 
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which gives S as 
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IV. GRAND CANONICAL ENSEMBLE 
 
There are large numbers of systems with classical energy 
exhibiting quantum properties. Hence we take the quantum 
statistics for finding the partition function in GCE which is, 
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for Fermi Dirac case and 
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for Bose Einstein case. 

Evaluating ln Z  we get 
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for Bose systems 
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for Fermi systems where 4 ( )g z  and 4 ( )f z  are Bose-
Einstein and Fermi-Dirac functions. For high temperature 

4 ( )g z  and 4 ( )f z  becomes z. Hence 
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for both systems. Using the basic expression for obtaining 
N 
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Helmholtz free energy 
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Using the expression for entropy we get  
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This equation is not equivalent to equations for S in MCE 
and CE and the most notable factor is that it is not 
extensive. To make it extensive we have to add ln !N  to 
the obtained entropy. Then 
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which is extensive and equal to the earlier equations 
obtained. 
 
 
V. CONCLUSIONS 
 
In this short communication we want to show that BCF 
comes in GCE contrary to the belief that they are necessary 
in MCE and CE only. The expression for the grand partition 
function must be modified for harmonic oscillators as 
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for Fermi Dirac case and  
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for Bose Einstein case. It is interesting to see that it is only 
necessary for harmonic oscillators and not for any other 
systems.  
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