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Abstract 
This paper develops a conceptual framework for identifying the challenges and obstacles university students encounter 

when solving real-world problems involving Physics. The framework is based on viewing problem solving as a 

modelling process. In order to solve a real-world problem, the problem solver has to go through the steps and do the 

tasks of such a process. The paper presents a theoretical analysis of what it takes to solve three real-world problems, 

demonstrating how the framework presented captures the essential aspects of solving them. Moreover, it is argued that 

three steps critical for real-world problem solving – initial analysis of the problem situation, choice of relevant 

physical theory (the so-called paradigmatic choice) and mathematization – are not covered by existing models of 

problem solving in Physics. Finally, the existing research on student difficulties with problem solving in Physics is 

placed within the framework.  
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Resumen 
Este artículo desarrolla un marco conceptual para identificar los retos y obstáculos que los estudiantes universitarios 

encuentran en la resolución de problemas reales relacionados con la física. El marco está basado en la visualización de 

la solución de problemas como un proceso de modelado. Con el fin de resolver un problema del mundo-real, el 

solucionador de problemas tiene que pasar por los pasos y hacer las tareas de dicho proceso. El documento presenta un 

análisis teórico de lo que se necesita para resolver los tres problemas del mundo-real, demostrando cómo el marco que 

se presenta recoge los aspectos esenciales de su solución. Por otra parte, se argumenta que los tres pasos críticos para 

la resolución de problemas del mundo-real - análisis inicial de la situación del problema, la elección de la teoría de los 

aspectos físicos (la elección paradigmática llamada) y la matematización - no están cubiertos por los modelos 

existentes de resolución de problemas en física. Por último, la investigación existente sobre dificultades de los alumnos 

con la resolución de problemas en física se coloca en el marco.  

 

Palabras clave: Resolución de problemas, problemas del mundo-real, nivel universitario. 

 
PACS: 01.04. Fk, 01.40.E-, 01.40.ek                                                                                                        ISSN 1870-9095 

 

 

I. INTRODUCTION 

 
A major goal of Physics Education is to develop student 

competency in solving real-world problems using the 

concepts and theories of Physics. Since the 1960s, Physics 

educators and researchers have lamented that the type of 

problems so predominantly used in Physics education that 

they are called standard problems [1] are cleaned-up 

versions of real-world problems with much of the physical 

reasoning already done for the students due to the very 

formulation of the problems [2, 3, 4, 5]. Fig. 1 shows a 

typical example of a standard problem. In order to allow 

students to develop a broader problem-solving competency, 

other types of problems have been proposed [2, 3, 5, 6, 7]. 

As these problems supposedly simulate problems found in 

the real world, they are often called real-world problems. 

The process of solving standard problems has been 

studied extensively, but only a few studies exist on the 

challenges and difficulties students encounter when solving 

real-world problems. In their study of high school students 

solving astronomy problems, Shin, Jonassen and McGee [8] 

concluded that solving both well- and ill-defined problems 

required domain-specific knowledge, but ill-defined 

problems in unfamiliar contexts also required planning and 

monitoring skills. Fortus [9] investigated the approaches of 

individuals with different physics backgrounds to both 

well-defined and real-world problems. He found that the 

skills needed to solve a well- 
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FIGURE 1. A standard problem: The pendulum problem. 

 

 

defined problem in the domain of Newtonian mechanics 

were not sufficient to solve a real-world problem in the 

same domain that required making assumptions. Moreover, 

Fortus’ results indicate that the step in the problem solving 

process causing most difficulties for the subjects studied 

was making reasonable assumptions concerning the 

problem.  

Hence, real-world problems seem to present other 

difficulties for the problem solver than standard problems 

do. Unfortunately, we do not know much about what 

challenges and obstacles students encounter when solving 

real-world problems. The present paper is part of a general 

research program that aims at remedy this situation by 

identifying and characterizing these difficulties for 

problems posed by others and whose solutions require the 

use of Physics. This paper develops a conceptual 

framework that can be used in this endeavor. 

A research framework is, ‘a basic structure of the ideas 

(i.e. abstractions and relationships) that serve as the basis 

for a phenomenon that is to be investigated’ [10, p. 458]. It 

provides a structure that can be used for conceptualizing 

and designing empirical research studies, allows sense 

making of data, and enables us to go beyond common 

sense. Lester distinguishes between different kinds of 

research frameworks. A theoretical framework guides 

research activities with reference to formal theory, i.e. a 

theory that has been developed by using an established, 

coherent explanation of certain sorts of phenomena and 

relationships, e.g. Piaget’s theory of cognitive development. 

In contrast, conceptual frameworks, such as the one 

presented here, are put together from a number of sources, 

including various theories and aspects of practitioner 

knowledge. A conceptual framework is, ‘an argument that 

the concepts chosen for investigation, and any anticipated 

relationships among them will be appropriate and useful 

given the research under investigation’ [10, p. 460] and its 

aim is to contribute to both fundamental understanding and 

the development of teaching. 

In order to obtain such a framework for the present 

purpose, we need a detailed description of the problem 

solving process. For standard problems, several such 

models exist [11, 12, 13, 14, 15], but none of them focuses 

on the solving of real-world problems. Hence, the aim in 

this paper is to answer the following research questions: 

What stages are involved in solving real-world Physics 

problems? What are the tasks at each stage? 

A systematic and sufficiently detailed description of 

these stages and tasks would give us an account of the 

challenges that solving a real-world problem poses for 

students. Whether these challenges are in fact obstacles for 

the students is a question that will be studied empirically in 

subsequent papers. 

The research question is investigated theoretically by 

solving the three real-world problems presented in Fig. 2 

and by analyzing the stages and tasks involved in the 

solutions. In order to systematically identify the stages and 

tasks required in the problem solving process, the problem 

solving process is seen as a modelling process, where the 

solution to a problem is obtained via a mathematical model 

that is either constructed for the purpose or selected from 

the physicists’ arsenal of models. This perspective allows 

us to draw on the research on modelling in Physics 

Education, in particular the work of Hestenes and Halloun. 

The justification of the framework is based on a theoretical 

argument that the model actually captures the essential 

steps in solving the three problems. 

 

 

 

II. STANDARD AND REAL-WORLD 

PROBLEMS 
 

Standard problems can be characterized as follows [1]: A 

situation is described for which certain information is 

provided, typically as numerical values for the variables of 

the situation. The job of the problem solver is to determine 

the value of one of the other variables of the situation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2. The real world problems considered in the paper. The 

cannon problem is taken from Højgaard Jensen (2003), the power 

plug problem from Højgaard Jensen (2004) and the water tap 

problem is an unpublished exam problem posed by Jens Højgaard 

Jensen. 

 

 

The power plug problem 

A power plug is connected to a water heater. Heat is 

generated in the power plug due to a loose 

connection. How much heat can possibly be 

generated in the power plug? 

 

The cannon problem 

How does a cannon’s firepower depend on the length 

of the cannon barrel? 

The water tap problem 

How does the width of a column of water from a tap 

change down the column?  

 

A pendulum consists of a small ball attached to one end of 

a light string of length L. The other end of the string is 

attached to hook fastened to the ceiling. A fixed peg is 

located vertically below the hook at a distance smaller than 

L. The ball is initially held at rest, with string taut and 

horizontal, and is then released. What must be the 

minimum distance between the hook and the peg so that 

the string is still taut when the ball reaches a point directly 

above the peg? 
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Moreover, the problems are well-defined with the sought-

after variable explicitly stated and only relevant variables 

appear in the problem statement. 

To what extent are the so-called ‘real-world problems’ 

in the Physics Education literature (see, e.g. the problems in 

[4, 9]) related to problems found in real-world situations? 

On the one hand, the problems have some artificial features. 

For example, they are not set by the problem solvers 

themselves but by others, e.g. the teacher. This means that 

the problem framing stage of the problem solving process 

that some researchers emphasize as important in real-world 

problem solving (see, e.g. [18]) has already been done 

when the problem is presented to the solver. Consequently, 

‘real-world tasks’ would perhaps be a more accurate name 

than ‘real world problems,’ but since the latter is used in the 

literature, it will also be used here. In addition, as the 

problems are set in a school context, they carry some 

connotations with them. Students can safely assume that the 

Physics of the problems has been covered in the classroom, 

that they can in fact be solved and that this can be done 

within a reasonable amount of time, etc. On the other hand, 

the problems also simulate aspects of problems in the real 

world. First, they refer to an authentic context: (A) The 

event described has taken place or has a fair chance of 

taking place; (B) the question posed in the task might 

actually be asked in the real-life event; (C) the 

data/information given in the problem is realistic in terms 

of the problem; and (D) the solution is consistent with what 

is regarded as an appropriate solution in the corresponding 

out-of-school situation.
1
 Many standard problems do not 

fulfill points (A) and (B), e.g. who would like to know the 

answer to the problem in Fig. 1? Second, the steps required 

to solve the real-world problems correspond to those of 

solving a real-world task (except, of course, for the problem 

framing). More precisely, for a real-world problem the 

problem solver must make several decisions about (1) 

which specific variable(s) would be useful to answer the 

question; (2) which Physics concepts and principles could 

be applied to determine that variable; (3) what information 

would be needed; and (4) where or how that information 

could be obtained or estimated [2, 3, 20]. Moreover, the 

problem solver needs to make assumptions, approximations 

and idealizations of the problem situation [2, 9, 21, 22]. In 

contrast, standard problems do not require that the solver 

performs all or even most of these steps.  

The three problems discussed in the present paper are 

formulated in everyday language; the situations described 

belong to the real world rather than an artificial physics 

world; their questions might actually be posed in the real-

world situation, and their solutions require the application 

of Physics. 

 

                                                 
1
 This is an adaptation of a framework proposed by Palm [19] for 

describing the concordance between word problems in 

mathematics education and tasks in the real world beyond the 

mathematics classroom. 

 

III. THE EXISTING MODELS OF THE 

PROBELM SOLVING PROCESS 

 
Several models of the problem solving process in Physics 

exist. One dominant model is that of Reif and colleagues 

[11, 12, 21] which concerns effective human problem 

solving in general. The procedures contained in their model 

should be used in conjunction with a domain-specific 

knowledge base, such as mechanics. The model, as 

expounded in [12], divides problem solving into four 

stages: 

1. Problem description and analysis; 

2. Construction of a solution to the problem; 

3. Assessing the solution; and 

4. Exploiting the solution 

The knowledge base which is specific to the problem 

domain in question facilitates these stages. It contains 

declarative knowledge of concepts and principles as well as 

specific procedures facilitating their use.  

In the first stage, the original problem is redescribed in a 

way that facilitates the subsequent search for its solution, 

including identifying and organizing relevant knowledge 

and describing it in convenient symbolic form. The 

resulting problem description assists the construction of the 

solution by limiting the domain of search and by allowing a 

ready application of the problem solver’s knowledge base. 

Reif and Heller subdivide this stage into two fairly distinct 

stages. The one sub-stage, which we will call 1A, is where 

everyday knowledge is used to generate a basic description 

readily interpretable by the problem solver. The aim of this 

description is merely to translate the original problem into a 

form clearly describing the situation specified and the 

information to be found. This includes using diagrams 

and/or statements to describe the specified situation about 

the system and its properties, introducing convenient 

symbols, and identifying those denoting unknown values. 

The other sub-stage, which we will call 1B, is where the 

problem solver uses his/her specialized knowledge about 

the domain in question. This leads to a theoretical problem 

description in which the problem is described in terms of 

the concepts of the particular domain. This means that the 

entire body of theoretical knowledge about this domain is 

accessible when the solution of the problem is 

implemented. The theoretical analysis of a problem is 

usually followed by a qualitative analysis of the problem in 

which the main implications of applicable principles are 

explored qualitatively. Such an analysis may facilitate the 

subsequent solution by suggesting possible approaches and 

by helping to interpret physically the results of the 

mathematical analysis. When substage 1A and 1B is 

completed, the way is paved for the actual construction of 

the solution. Here, Reif and Heller focus mainly on 

generally applicable methods, such as constraint 

satisfaction. After a solution is constructed, how 

satisfactory it actually is in terms of e.g. completeness and 

internal consistency is assessed. 

To solve a real-world problem, the problem solver has 

to go through the Reif and Heller’s four stages listed above. 
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Sub-stages 1A and 1B play a particularly important role 

when solving real-world problems because these two steps 

take the problem from the real-world situation and put it 

into the realm of Physics. However, as will be argued 

below, their model, which in principle is applicable to all 

types of problem solving, is too general and simple to 

capture the complexity of translating a real-world problem 

into Physics. 

Two recent models of the problem solving process, one 

developed in [14, 15], and the other in [13], modify the 

model by Reif and colleagues. These two models focus 

greatly on the role of Physics knowledge in the problem 

solving process, but neither of them is designed to 

characterize the possible challenges and obstacles students 

encounter due to the real-world aspect of the problem 

solving. 

 

 

IV. MODELLING IN PHYSICS 
 

Seeing problem solving as a modelling process allows us to 

focus particularly on the translation from the real world  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

FIGURE 3. Modelling in Physics according to Hestenes (1995). 

 

 

to the physical world. According to Hestenes [24], 

modelling in Physics typically begins with a real-world 

situation. Then the following steps are taken: 

A. The system to be modelled is identified along with 

its relevant properties (identification of variables). This leads 

to the construction of a system schema and the selection of 

property descriptors.  

B. A model is then constructed or selected and 

adapted from a collection of available models. The intended 

use or purpose greatly influences this step and a variety of 

purposes govern variations of the modelling process.  

C. Empirical determination of the model’s validity is 

obtained by comparing the model with the system in the 

original situation. This can involve designing and performing 

an experiment or simply checking the answer to a problem.  

D. The previous step provides justification for the 

conclusions about the system and the situation which are 

drawn from the model.  

E. In order to extract conclusions from the model, an 

analysis of the behavior of the model is required.  

The model deployment scheme described in Fig. 4 shows 

that Halloun [25] builds on Hestenes’ ideas, though some of 

the stages are reformulated and several new ones added. As 

will be argued below, the most important additional stages 

for the purpose of this article is the stage ‘Paradigmatic 

choice: What theory? What model(s)?’, which Halloun 

describes as follows, ‘The problem solution would begin 

with the choice of an appropriate theory within the context 

of a specific scientific paradigm (e.g. the choice of Newton 

theory, Euler theory, or Hamilton-Jacobi theory for 

classical mechanics situations), followed by the choice of 

appropriate models’ [25, p. 150-151]. Two distinct stages 

are involved in Halloun’s paradigmatic choice. In the first 

stage, the overall theory is chosen and the appropriate 

model is chosen subsequently. The latter stage involves 

choosing an appropriate principle, e.g. conservation of 

energy, within the theory. Since these two stages may cause 

different difficulties for the students, we consider them to 

be separate steps and call them the ‘paradigmatic choice’ 

and the ‘principle and concept choice,’ respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

FIGURE 4. Model deployment according to Halloun (2004). 

 

 

V. THREE EXAMPLES 
 

To assist and illuminate our analysis, we consider solutions 

to three specific, real-world problems. 

 

A. The power plug problem 

 

The power plug problem can be solved using the following 

steps [17]: 

1. A loose connection is a point in an electric circuit where 

the metal on one side of the connection is not in complete 

contact with the metal on the other side, effectively 

Situation 

System 

Phenomenon 

 

Model 

Analysis 

Conclusions/ 

Justification 

 

Validity Purpose 

Empirical 

situation 

Analysis of the situation: 

What physical systems? 

What phenomena? 

Paradigmatic choice: 

What theory? 

What model(s)? 

Schematic reproduction: 

What objectives? 

What is needed from model 

composition? 

Model structure? 

Mathematical  

model 

 processing 

Results: 

What outcomes? 

How can they be 

justified? 

How interpreted? 

Paradigmatic  

synthesis 

Evaluation 

Transformation into a mathematical 

model: 

What mathematical depictors/ 

representations are most suitable? 

What mathematical operations are 

needed to analyze the chosen 

model(s) 
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reducing the cross-sectional area of the wire at the joint. 

Consequently, higher than normal resistance occurs at the 

joint, thus, causing it to heat up. For our purpose, the effect 

of the loose connection is for it to act as a resistor, so that 

when a current flows through the resistor, heat is generated. 

The heating of the loose connection must be equal to the 

power generated by the flow of the current through the 

resistor. Similarly, we can represent the effect of the water 

heater on the system using a resistor. Regarding the 

position of the resistors, it is natural to assume that the 

loose connection resistor is connected in series with the 

water heater, which is an external component. The role of 

the water heater is to affect the voltage drop over the 

former, since they are placed in a series. 

2. We now have a physical model describing what is 

happening. It follows from the previous considerations that 

the relevant physical theory is electric circuit theory.  

3. Within this theory, Joule’s law can be used to calculate 

the heat generated due to the current flowing through a 

conductor or, equivalently, the power dissipated in a 

resistance. Moreover, we know that the current through a 

series of resistors is the same for each resistor. 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 5. Electric diagram for the power plug problem. 

 

 

4. These physical ideas can be turn into a mathematical 

model. First, we have to describe the situation in 

mathematical terms. We denote the resistance of the loose 

connection by Rl, and the current through it, I. Then we use 

Joule’s law to calculate the power dissipated in the loose 

connection:  

 

.2IRW ll                                         (1) 

 

This does not solve the problem, because we want to reduce 

Wl to known quantities and I is unknown, while the mains 

voltage is assumed to be known, namely 220V, 110V, or 

whatever is the value in the country of residence. One 

might be tempted to simply use Ohms law for voltage, 

V=RI with R and V over the loose connection to eliminate I, 

but that does not work because we do not know the voltage 

over the loose connection. We call the resistance of the 

water heater Rh. Noting that for a series of resistors, the 

current through them is the same we thus replace the above 

with:  

.
)( 2
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lh

l
l

RR

VR
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                              (2) 

 

5. We now want to find for what values of Rl, Wl attains its 

maximum value. Thus we find the derivative with respect 

to Rl is given by: 

 

.
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llh

l

l

RR

RRR
V
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                    (3) 

 

The power plug attains the maximum heating for the values 

of Rl when this is equal to 0. This happens when Rl =Rh.  

6. Hence, we obtain:  

 

.
4

1

)(

22

max,
hhh

hl
R

V

RR

V
RW 


                    (4) 

 

7. The power delivered to the water heater Wh is V
2
/Rh so 

the maximum loss is proportional to this power, which 

seems reasonable.  

8. We can rewrite the maximum loss to get: 

 

.
4

1
max, hl WW                                  (5) 

 

Hence, the worst case scenario is that a fourth of the 

dimensioned power of the water heater is lost as heat due to 

the loose connection. 

 

B. The cannon problem 

 

The cannon problem can be solved as follows [16]: 

1. The cannon’s firepower is a measure of the 

destructiveness of its projectiles. We define the firepower to 

be the kinetic energy of the projectile when it leaves the 

barrel muzzle (we could also have chosen the muzzle 

speed). The ignition of the cannon gun powder causes an 

explosion in the cannon that expands the air below the 

projectile, which propels the projectile until the air fills the 

entire volume of the barrel.  

2. The explosion and expansion of the gas in the cannon 

can be described with thermodynamics, while mechanics is 

appropriate for the motion of the projectile in the barrel.  

3. We can use thermodynamics to calculate the work done 

by the expanding gas on the projectile during its motion 

through the barrel. Using the work theorem of mechanics 

we can relate this work to the kinetic energy. We 

furthermore have to make an assumption about the 

expansion process. We will assume that the explosion 

occurs without an exchange of heat between the gas and the 

barrel, i.e. it is an adiabatic expansion, but other reasonable 

assumptions could have been made as well.  

4. Let V0 be the small volume behind the projectile and VL 

the volume of the barrel. Let P0 and P be the pressures of 

the gas right after the explosion and during the expansion, 

respectively. We assume that the barrel is a cylinder and let 

Loose 

connection

  

Water 

heater 
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L0 denote the length of the barrel corresponding to the 

initial volume V0 and L the entire length of the barrel. Since 

we assume that it is an adiabatic process, we know that the 

pressure during the expansion is: 

 

.00
 VPPV                                      (6) 

 

Here γ is a characteristic constant of the gas. 

The work done on the projectile is 

 


LV

V
PdVW

0

.                                    (7) 

 

According to the work theorem, the kinetic energy gained 

by the projectile in the barrel is: 

 

.KW                                          (8) 

 

Since the projectile is initially at rest ΔK is equal to the 

kinetic energy of the projectile when it leaves the cannon 

muzzle; this implies that the firepower is equal to W.  

5. Evaluating the integral in Eq. 7, we get an expression for 

the work: 
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This can be rewritten in terms of the barrel length, using the 

assumption that it is a cylinder: 
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6. For the firepower we obtain:  
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7. Here 
1

00



PV  is identified as the internal energy of the gas 

after the explosion U0. Hence, the firepower is equal to U0 

when the barrel length is long. This seems reasonable 

because in that case all the energy released by the explosion 

should be transferred to the projectile as none of it is lost to 

the surroundings as gas expansion. 

8. The cannon’s firepower dependence on the length is 

given by Eq. (11). 

 

C. The water tap problem 

 

The water tap problem can be solved in the following way:  

1. We assume first that the column has a circular cross-

section. The width of the column is then the diameter of 

this cross-section. The water leaves the tap with a certain 

flow rate. We assume that in a horizontal section of the 

water column, the water has a uniform flow rate. Gravity 

causes the water to accelerate as it falls, thus increasing the 

flow rate as we go down along the column. Furthermore, 

we assume that the horizontal shape of the water column 

does not change. 

2. Since this problem involves the follow of water, fluid 

dynamics can obviously be applied. 

3. In order to apply these ideas, we need to make some 

choices. We neglect turbulence and assume that the flow is 

laminar. Since we assume a uniform flow rate through a 

horizontal cross-section, we get a continuity equation. 

Moreover, we assume that the viscosity can be neglected, 

so that Bernoulli’s equation (a way of taking energy 

conservation into account) can be applied to the situation. 

Furthermore, we assume that the pressure down the water 

column is constant. 

4. These ideas can be turned into a mathematical model. Let 

the tap be placed at the height h0 above the sink and let it 

have a circular cross-sectional area of A0. We denote by v0 

the flow rate of the water leaving the tap. Bernoulli’s 

equation states that the quantity pghv   2

2

1
, where v 

is the velocity; ρ is the water density; g is the gravitational 

acceleration; and h is the height above the sink, is constant 

down along the water column. In particular, the equation 

for what occurs just after the water has left the tap is: 

 

.
2

1
0

2
0 constpghv       (12) 

 

The atmospheric pressure has a constant value, p. So:  

 

.
2

1

2

1
00

2 pghvpghv             (13) 

 

The continuity equation gives that the cross-sectional area 

A times the flow rate v is constant down the column:  

 

.constvA                                (14) 

 

In particular, at the tap we get: 

 

.00 constvA                                  (15) 

 

Hence: 

.00 vAvA                                  (16) 

 

The horizontal cross-section is circular, so 
2dA  with d 

being the diameter. 

5. These equations can be analyzed mathematically. 

Bernoulli’s equation implies that:  

 

).(2 0
2
0

2 hhgvv                             (17) 

 

Hence: 

.)(2 2
00 vhhgv                            (18) 
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Combining this equation with the continuity equation 

yields: 

.
)(2 2

00

0000

vhhg

vA
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                      (19) 

 

We then use that the cross-sectional area of the water is 

circular, so 


A
d  . 

6. We find that the width, i.e. the diameter, changes with 

height as  
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)(2
4/12
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00

vhhg
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                   (20) 

 

Here v0, A0, and h0 are constants of the system.  

7. We find that the column gets thinner as we go down the 

column, a result that we should expect from our real world 

experience. 

8. We get that the width changes with height according to 

Eq. (20). 

 

 

VI. PROBLEM SOLVING AS MODELLING 
 

It is evident that solving these three problems requires 

executing the actions that researchers see as characteristic 

of real world problem solving: the problem solver has to 

make the decisions, assumptions, approximations and 

idealization that are relevant for the problems. 

Hestenes’ and Halloun’s diagrams of modelling in 

Physics can be adapted to model the process of solving 

real-world problems. Hestenes’ diagram forms the 

backbone, but in modified form. First of all, Halloun’s 

‘paradigmatic choice’ is relevant for the problem solving 

process and some of Halloun’s titles are more indicative 

than Hestenes’, so they have also been chosen. On the other 

hand, two of Halloun’s boxes, ‘Schematic reproduction’ 

and ‘Paradigmatic synthesis,’ represent unnecessary 

complications for the present purpose and are consequently 

left out here. All this leads to the diagram in Fig. 6, which 

shows the problem solving process. 

The process begins with a real-world situation in which 

some problem is formulated. As this is typically not 

formulated in Physics terms, the problem needs to be put 

into a form that is amenable to investigation using Physics. 

To do so, making an initial analysis of the situation is 

necessary. The aim of this step is the identification of the 

physical system and the phenomenon that are to be 

modelled. This is done by identifying the relevant features 

of reality, selecting the objects, relations and so on that are 

relevant for the modelling. This process is typically based 

on specialized knowledge about the domain as well as 

physical knowledge. In this process the system is delineated 

from the context and some idealizations are done, explicitly 

or implicitly.  

For the power plug problem and the cannon problem, 

this initial analysis is the first step. For the power plug case, 

the analysis has three parts. First, the effect of the loose 

connection on the situation can be represented by an 

electrical resistor and this resistor should be placed in a 

series with the water heater. Second, the water heater does 

in fact play a role because it affects the current going  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 6. Problem solving as modelling. 

 

 

through the loose connection. Third, the problem solver 

needs to identify relevant theoretical or special knowledge, 

e.g. that the heating is equivalent to the power generated by 

the current flowing through the resistor. The cannon 

problem requires an analysis of how the everyday notion of 

firepower should be interpreted in physical terms as kinetic 

energy (or perhaps as the muzzle speed) of the projectile. 

Moreover, it should be realized that the explosion of the 

gun powder propels the projectile. 

In the next step, the machinery of Physics is brought to 

bear on the delineated system. This requires that the 

problem solver makes a paradigmatic choice of appropriate 

physical theory. This means choosing a way of seeing the 

Situation 

 

Paradigmatic choice 

What theory? 

Transformation into a 

mathematical model 

Mathematical analysis 

Results 

What outcomes? 

How can they be justified? 

How interpreted? 
 

Conclusion 

Analysis of situation: 

What physical system? 

What phenomena? 

Evaluation 

Principle choice 

What concepts and principles? 
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problem in physical terms and this choice subsequently 

affects how the problem is approached.  

For the three problems, the paradigmatic choice is done 

in step 2. For the power plug problem and the water tap 

problem, this choice follows immediately from the initial 

analysis. For the cannon problem, however, the solver 

needs to find a strategy for determining the muzzle speed of 

the projectile. Which physical discipline would solve the 

problem? One might think that the problem could be 

attacked by purely mechanical means, for instance, by 

making a more or less ad hoc assumption about the 

acceleration of the projectile in the barrel. A more 

satisfactory solution, along the above lines (several other 

reasonable solutions with other types of expansion of the 

gas are possible), requires a certain realization on the part 

of the problem solver, namely that the solution to the 

problem involves a combination of a mechanical view point 

and a thermodynamic one. This requires the combination of 

two physical disciplines. 

When the physical theory has been chosen, the solver 

has to choose a physical principle within this theory. This 

corresponds to step 3 for the three problems. In the power 

plug problem, the solver needs to realize both that Joule’s 

law can be used to find the heat generated by the current 

flowing through a conductor as well as that the current 

through a series of resistors is the same for each resistor. 

The cannon problem requires that the solver realizes that 

the thermodynamic work can be used to obtain the 

mechanical kinetic energy. In the water tap problem, 

Bernoulli’s equation or another version of energy 

conservation as well as the continuity equation are the basis 

of the solution to the problem. 

The choices of paradigm and physical principle should 

lead to a physical model of the phenomenon in question. 

The physical model obtained can then be transformed into a 

mathematical model. Hestenes and Halloun do not provide 

many details about this stage, so it is necessary to extend 

their description. The setting up of the mathematical model 

requires a mathematization, i.e. a translation of the physical 

structure into a mathematical structure. This involves a 

description of the situation in mathematical terms (the 

volumes, pressures, lengths, etc.) as well as writing the 

mathematical equations described in the paradigmatic 

choice. During this stage, the abstract laws and principles, 

often mathematically formulated, are applied to the specific 

situation by an identification of the general mathematical 

structure of the situation. Thomas Kuhn’s [26] discussion of 

Newton’s second law can serve as an example. This law, 

Kuhn writes, is usually formulated as f=ma. In order to 

apply it, the solver needs to adapt it to the situation. For the 

free-fall, the laws reads: 
2

2

dt

sd
mmg  ; for the simple 

pendulum, it is transformed to: 
2

2

sin
dt

d
mlmg


  ; for a pair 

of coupled harmonic oscillators, it becomes two equations, 

the first being: )( 122112

2

1 ssdksk
dt

sd
m  , etc. In all 

these situations, the problem solver has to identify the 

relevant mathematical quantity, whether it is the height 

above the Earth, the angle, or the position along a 

pendulum trajectory of the object. 

This is stage 4 for the three examples. The power plug 

problem requires that the solver realizes which variable will 

solve the problem and which are unknown. Moreover it is 

important to realize that Ohm’s law for the voltage, V=RI 

with R and V over the loose connection to eliminate I, do 

not work because we do not know the voltage over the 

loose connection. We call the resistance of the water heater 

Rh. In order to solve the cannon problem, the solver has to 

realize that the barrel length is related to barrel volume. The 

mathematization process for the water tap problem is quite 

involved. In order to apply Bernoulli’s equation and the 

continuity equation, a mathematical preparation of the 

situation is needed that specifies the parameters that can 

describe the shape of the water and the flow of the water.  

The model resulting from the previous deliberations can 

be analyzed mathematically using mathematical methods to 

obtain mathematical results and conclusions. These 

methods can be either analytical or numerical, i.e. they can 

involve the use of a calculator or a computer. 

This is stage 5. For the power plug, it consists in finding 

a maximum of the equations, while an integral must be 

evaluated for the cannon problem. For the water tap, the 

equations must be manipulated to give the right answer.   

The mathematical analysis leads to results for the 

behavior of the model. For the power plug problem and the 

cannon problem, this is stage 6. 

The entire process is evaluated during the process with 

respect both to the original purpose as well as validity. The 

purpose largely governs the modelling process. The level of 

detail in the model is, for instance, governed by the 

purpose. Sometimes only a crude model is needed, while at 

other times a more elaborate model is relevant. The model 

furthermore needs to be valid; this is achieved by 

comparing the model with the system in the original 

situation.  

For the power plug problem, it is reasonable that the 

value is proportional to the power of the water heater, while 

the result for the cannon problem is studied in a limit. 

Finally, a conclusion about the real-world situation is 

drawn based on the obtained results. 

 

 

VII. DISCUSSION 
 

By seeing problem solving in Physics as a modelling 

process, the proposed framework is based on a systemic 

modelling of the challenges encountered by students 

solving real-world problems.  

It is evident that the model indeed captures the stages of 

the process of solving the three example problems 

provided. Since there is nothing special about these three 

problems, it is reasonable to assume that the model captures 

the process of solving real-world problems more generally. 

Moreover, the model allows a focus on aspects of special 

importance for real-world problems that are rarely covered 

by previous models. For all three problems, the initial 
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analysis of the situation clearly plays an important role in 

the process of solving them. This is particularly true for the 

power plug problem, where, for example, this analysis is 

crucial and it is not all trivial to determine the relevant 

aspects of the loose connection. This aspect is much less 

present in the pendulum problem in Fig. 1, as illustrated by 

Reif and Heller’s (1982) four-stage model analysis of the 

problem solving process. A basic description can 

immediately be given with diagrams and symbols and the 

goal stated as the determination of the value of parameter. 

Subsequently, a theoretical description could be provided. 

In contrast, in the real-world problem, considerations 

concerning how to prepare the situation to set up the 

theoretical description are required.  

Another special feature of the present description of the 

problem solving process compared to previous approaches 

is the paradigmatic choice. For standard problems in 

Physics, the paradigmatic choice is of little importance as 

the problems have been prepared in such a way that it is 

rarely unclear which physical theory applies to the problem. 

Most Physics students are probably undoubtedly aware that 

the solution to the pendulum problem in Fig. 1 requires 

mechanics. This may not be the case for real-world 

problems as is particularly evident with the cannon 

problem. This problem requires an initial analysis of how 

the everyday notion of firepower should be interpreted in 

physical terms as kinetic energy (or perhaps as the muzzle 

speed) of the projectile. Here the problem solver needs to 

decide which physical discipline would solve the problem. 

One might think that the problem could be attacked by 

purely mechanical means, for instance, by making a more 

or less ad hoc assumption about the acceleration of the 

projectile in the barrel. A more satisfactory solution, along 

the above lines (several other reasonable solutions with 

other types of expansion of the gas are possible), requires a 

certain realization on the part of the problem solver, namely 

that the solution to the problem involves a combination of a 

mechanical view point and a thermodynamic one. This 

requires the combination of two physical disciplines. It thus 

requires that the solver is capable of realizing that the 

thermodynamic work can be used to obtain the mechanical 

kinetic energy. 

The third aspect that is taken into account in the present 

model of the problem solving process is the 

mathematization process. The setting up of the 

mathematical model requires mathematization, i.e. a 

translation of the physical structure into a mathematical 

structure. This involves a description of the situation in 

mathematical terms as well as applying the Physics 

principle to the situation. Standard problems have typically 

been translated into mathematical language, which is not 

the case for real-world problems. For the power plug 

problem, we arrive at Eq. 1 when the mathematization is 

complete. Physical insight is required to realize that this 

equation is not sufficient. I is not an independent variable 

and focusing on V is preferable. At this point the water 

heater is taken into account to get Eq. 2.  

Previous research on student difficulties with problem 

solving can be incorporated into the framework presented 

here. The initial analysis of the situation involves what 

might be called a framing of the problem situation (see 

[27]), i.e. the determination of a certain perspective that 

guides the problem solver’s interpretation of the situation. 

The framing of the situation constitutes a fundamental 

understanding of the situation. Based on established 

theories as well as more informal Physics, the framing 

includes a selection of the situation’s relevant features as 

well as cutting out of irrelevant features. Sometimes this is 

based on more or less formal Physics ideas about what is 

going on and sometimes assumptions, i.e. ‘less-than-fully 

established propositions that are used as a basis for 

continuing a problem solving process’ [9, p. 87]. The 

framing is often a prerequisite for deciding which specific 

variables would be useful to answer the problem and what 

Physics concepts and principles could be applied to 

determine that variable. In the case of the power plug, e.g. 

the framing consists in pointing out that the loose 

connection can be represented as an electrical resistor with 

a certain constant resistance. This framing defines a certain 

perspective on the situation, which is particularly important 

for real-world problems as they are not prepared in 

advance.  

Fortus [9] stresses that making assumptions is crucial 

when transforming a real-world problem into a well-defined 

question. He finds that two types of assumptions are 

involved: (a) assumptions about the Physics variables and 

the principles involved in the problem; and (b) assumptions 

about the absolute or relative magnitudes of the variables. 

Fortus emphasizes that assumptions of the first type are 

always involved when solving any Physics problems, 

whether standard or real world. Heller and Hollabaugh [3] 

point out, however, that standard textbook problems often 

specify the unknown variable in the last sentence, thus 

removing the necessity of making decisions about which 

specific variable would be useful to answer the problem. 

The identification of what exactly to look for in terms of 

physics quantities is much more straightforward for 

standard problems, with their formalized nature, than for 

the less formalized real-world problems. It is also natural to 

assume that this identification may cause difficulties for the 

students. 

It has been widely recognized that a major obstacle 

faced by novices when they try to solve a standard Physics 

problem is translating from the verbal statement of the 

problem to a mental representation of the problem in terms 

of Physics (see, e.g. [1, 14, 15]). An adequate mental 

representation of the problem is the first requirement for 

successful problem solving. In order to obtain such a 

representation, one needs to infer deep features with the use 

of relevant background knowledge. Understanding why and 

how a feature is important thus involves conceptual 

knowledge of the problem. However, novices’ 

representations are lacking and pose an impediment to their 

problem-solving proficiency [28, 29, 30]. Studies by 

Finegold & Mass [31] and McMillan & Swadener [32] 

indicate another difficulty. Poor problem solvers fail or are 

unable to carry out the necessary qualitative analysis to 

construct an adequate representation. We should expect 
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real-world problem solvers to encounter difficulties similar 

to the ones found for standard problems when they attempt 

to answer the well-defined question arrived at in the process 

described above.  

The difficulties of making paradigmatic choices have 

not been researched. The reason could be that this step, 

which is crucial for real-world problem solving, seems to 

be much easier for most standard problems since their 

formulations often reveal which physical theory is relevant. 

Concerning the principle choice and concept choice, several 

empirical studies show that both cause difficulties for 

standard problems. Hardiman, Dufresne, and Mestre [33] 

found that beginning Physics students who had completed a 

Physics course had trouble identifying major laws or 

principles that could be applied to solve a problem. Other 

studies show that while students may be able to state the 

definitions of scientific concepts, they often do not know 

what to do to apply these definitions in specific cases [34, 

35].  

The intricacies of the mathematization process, which is 

critical to solving real-world problems, have not been 

studied to a large extent. While not intending to 

characterize difficulties, Redish [36] argued from a 

theoretical point of view that the ability to use mathematics 

in solving Physics problems requires something other than 

what is learned in the mathematics classroom. In particular, 

physicists interpret and use equations in a different way 

than mathematicians, because they combine conceptual 

physics and mathematical symbolism. On a much more 

specific level, Clement, Lochhead, and Monk [37] found 

that college students working on a word problems in 

mathematics had difficulties translating the English words 

from the problem statement into algebraic expressions. 

To conclude, we provide a few remarks about the 

potential applications of the framework presented. This 

paper offers insights into the behavior of Physics students 

when faced with real-world problems. The identification of 

difficulties generic to the problem-solving process opens up 

the possibility of predicting where in the process of solving 

a given problem obstacles of different types might be 

expected to arise. This understanding can contribute to the 

planning of teaching, such as the identification of necessary 

prerequisite skills as well as the design of activities that 

scaffold the development of problem solving competency, 

in particular the design of tasks that address the challenges 

and obstacles presented in the framework. Finally, the 

framework, when it has been refined and further examined, 

may be useful as an instrument in research on problem 

solving in Physics. The work presented in this paper has 

advanced our progress towards achieving these goals. 
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