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Abstract 
This article describes four innovative pedagogical exercises: (i) The expression for relation between cross sections in 

the laboratory and the centre of mass systems provided in text books assumes zero or low Q values which needs to be 

corrected for the most general case when Q value of the reaction is not negligible compared to the masses of interacting 

nuclei. The general expression derived here can be used for elastic and inelastic cases involving zero, low or even very 

high Q values. (ii) The equation of oscillatory motion of a massive surface put horizontally on two wheels rotating with 

equal and opposite angular velocities is established. The time period of oscillation is related to the coefficient of 

dynamic friction between the surface and the wheels which facilitates the measurement of the coefficient of dynamic 

friction. (iii) The equation of motion of a fixed torque mass shedding vehicle moving against friction and its velocity at 

any instant of time are derived. This example is equivalent to motion of a mass shedding rocket moving by applying 

fixed force against atmospheric friction. (iv). The equation of the path of a missile directed at every instant of time 

towards a rectilinearly moving target and time taken to hit the target are derived. It provides equation of path for 

asteroid and comet destructing missiles as conceptualized by NASA projects. 
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Resumen 
En este artículo se describen cuatro ejercicios pedagógicos innovadores: (i) La expresión de relación entre las secciones 

transversales en el laboratorio y el centro de masa de los sistemas de comunicación previstos en los libros de texto 

asumiendo los valores de Q bajos o nulos, los cuales se necesitan para ser corregidos para el caso más general, cuando 

el valor de Q de la reacción no es despreciable comparado con las masas de núcleos en interacción. La expresión 

general derivada aquí puede ser utilizada para los casos elásticos e inelásticos que implican los valores cero, bajos o 

incluso cuando Q tiene valores muy altos. (ii) La ecuación de movimiento oscilatorio de una superficie masiva puesta 

horizontalmente sobre dos ruedas giratorias con velocidades angulares iguales y opuestas es establecida. El período de 

tiempo de oscilación está relacionado con el coeficiente de fricción dinámica entre la superficie y las ruedas lo que 

facilita la medición del coeficiente de fricción dinámica. (iii) La ecuación de movimiento de un vehículo de 

diseminación de par fijo de masa en movimiento contra la fricción y su velocidad en cualquier instante de tiempo son 

derivados. Este ejemplo es equivalente al movimiento de masa de un cohete en movimiento aplicando una fuerza fija 

contra la fricción atmosférica. (iv) La ecuación de la trayectoria de un misil dirigido a cada instante de tiempo hacia un 

blanco en movimiento rectilíneo y tiempo necesario para alcanzar el objetivo son derivados. Se proporciona la ecuación 

de la trayectoria de asteroides y cometas destruyendo misiles según lo conceptuado por proyectos de la NASA. 

 
Palabras clave: Sección transversal en el laboratorio y los sistemas CM; Coeficiente de fricción dinámica, ecuación de 

la trayectoria de misiles. 
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I. RELATION BETWEEN LABORATORY AND 

CENTRE OF MASS CROSS SECTIONS FOR 

HIGH Q VALUES  
 

In this short note the non-relativistic expression for the 

relation between cross sections in the laboratory and the 

centre of mass systems derived in text books [1] is re-

derived. Let    be the mass of the projectile incident with 

velocity    and kinetic energy   
 

 
    

  in the laboratory 

frame on a target of mass    at rest. Let    and    be the 

masses of the interacting nuclei, respectively, after 

collision. 

The centre of mass system of interacting particles is 

defined as a frame of reference where the sum of the 

momenta of all interacting particles is zero. Therefore, in 

the centre of mass system incident projectile and the target 

nuclei moves with momenta which are equal in magnitude 

and opposite in direction and hence  

 

                           
    

      
           (1) 

 

where     is the velocity of the centre of mass of the 

projectile-target system in the laboratory frame of 

reference. Obviously,           and        are the 
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velocities of the projectile and the target, respectively, as 

observed in the centre of mass frame. Thus, the kinetic 

energy     in the centre of mass frame of reference is  

 

     
 

 
     

   
 

 
    

   
  

      
   

 

 
   

 ,       (2) 

 

obtained using Eq. (1) where   
    

      
 is called the 

reduced mass of the projectile-target system and the 

magnitude of momenta of each particle            

          are equal in this frame of reference. The 

energy released (or absorbed)   in the process of 

interaction is given by  

 

        
          

   ,                  (3) 

 

which is always realized in the centre of mass frame of 

reference and c is the velocity of light in vacuum. Let 

   and    be the velocities of scattered projectile like and 

recoiling target like nuclei in the centre of mass system and 

   be the angle of scattering of the scattered projectile like 

nucleus of mass    as observed in the laboratory system 

while   be the corresponding angle as observed in the 

centre of mass system. Obviously, the two angles    and   

are related by 

 

       
      

         
 

    

      
                

  

  
 ,      (4) 

 

obtained by constructing the velocity triangle. The 

following energy conservation equations in the centre of 

mass system 

 
 

 
     

   
 

 
    

                     before collision 

 
 

 
     

   
 

 
    

                after collision     (5) 

 

can be used for evaluation of. In the centre of mass frame 

momenta of the two colliding nuclei are always equal in 

magnitude and opposite in direction at every instant of time 

and hence infinite time before and infinite time after 

collision as well, so that 

 

                          .                    (6) 

 

Using Eq. (6) to eliminate    and    from Eq. (5), one 

obtains  

  
   

     
 

       

       

    

    
 
  

  
  ,                         (7) 

 

and therefore 

 

   
  

  
  

    

    

       

       

   

     
    ,                 (8) 

 

The relation between the differential cross sections 

measured in the laboratory system  
  

  
     and the centre of 

mass system  
  

  
    is given by 

 

            
  

  
                

  

  
   ,            (9) 

 

from the conservation of flux. Thus 

 

 
  

  
      

      

        
  

  

  
   .                     (10) 

 

Using Eq. (4), the above equation becomes 

 

 
  

  
      

                 

          
  

  

  
   .              (11) 

 

The angle integrated cross sections are just the areas offered 

perpendicularly to the incident beam direction and therefore 

remain same in the laboratory and the centre of mass 

systems which means          .  

The Eq. (8) provided above for is exact and there is no 

approximation involved and is valid for the most general 

case when   value of the reaction is not negligible 

compared to the masses of the interacting nuclei. The term 
       

       
 is missing in the corresponding expression of Ref. 

[1] which is valid only for Q values much smaller than the 

masses involved and is therefore an approximate 

expression. For elastic scattering             and 

      and then    
  

  
 [2] from the Eq. (8) above. 

 

 

II. A LABORATORY METHOD OF 

MEASURING THE COEFFICIENT OF 

DYNAMIC FRICTION  
 

Measurement of the coefficient of dynamic (or kinetic) 

friction between wheel and road (or any surface) is often 

needed. A useful laboratory method for measuring the 

coefficient of dynamic (not rolling) friction is described 

here. First an equation is derived for the motion to show 

that the restoring force is proportional to the displacement 

of the plate (surface) from its equilibrium position. Then the 

time period of the simple harmonic motion (SHM) executed 

by the surface is related to the coefficient of dynamic 

friction between the surface and the wheels establishing the 

feasibility of this method for measuring the coefficient of 

dynamic friction.  

Let the centres of the axles of two wheels are   distance 

apart and they are coupled by belt in such a manner that 

when motor of one wheel drives it at a constant speed 

(which means constant angular velocity), the belt forces the 

other wheel to move in the opposite direction and with 

identical speed as the former. The wheels are kept vertical, 

on which the plate of mass   is placed whose dynamic 

friction coefficient against the given wheels is to be 

determined. Now at equilibrium condition, the plate rests 
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symmetrically on the two wheels with its centre of mass at 
 

 
 distance from each of the axles. If the plate is now 

displaced it will execute periodic oscillations. Let   be the 

displacement at any instant of time   and    and    be the 

normal reactions on the two wheels at that instant of time. 

Obviously, at equilibrium condition these two forces of 

normal reactions are equal. When the centre of mass of the 

plate is displaced by  , its distances from the two axles are 
 

 
   and 

 

 
  , respectively. Balancing moments of the 

weight of the plate (acting vertically downward from its 

centre of mass) against reaction force (acting vertically 

upward and passing through axle) about the first and the 

second axles yield 

 

     
 

 
      , 

 

     
 

 
      ,                           (12) 

 

respectively, where   is acceleration due to gravity. The 

frictional forces which are proportional to the normal 

reactions are, therefore,     and    , respectively, and they 

are acting in the opposite directions horizontally but 

unequal in magnitude except for the mean position with μ 

being the coefficient of dynamic friction. Hence, the 

restoring force is 

 

         
    

 
 ,                         (13) 

 

where we have used Eqs. (12) for evaluating    and   . 

The equation of motion (Newtonian force equation) is 

 

 
   

     
    

 
 ,                              (14) 

 

which is the equation of a SHM. Its time period T of 

oscillation is, therefore, given by 

 

       
 

   
 .                                  (15) 

 

The coefficient of dynamic friction 

 

    
    

    ,                                      (16) 

 

can now be measured by measuring the time period of 

oscillation   and distance   between the axles. It is obvious 

from the above equation that if the distance   between the 

axles is increased then the time period of oscillation   also 

increases. Obviously, for better accuracy, large separation 

between the axles is desired since it would not only lessen 

the errors involved in the measurement of separation 

distance    but also reduces the errors in the time period 

measurements. 

 

 

III. THE EQUATION OF MOTION OF A MASS 

SHEDDING VEHICLE 
 

A fixed torque vehicle applies fixed force since radii of its 

wheels are fixed. The problem of the motion of a mass 

shedding fixed torque vehicle moving against friction is 

equivalent to motion of a mass shedding rocket moving by 

applying fixed force against atmospheric friction provided 

frictional force is proportional to its variable mass which in 

turn is proportional to its length (atmospheric friction is 

likely to be proportional to its length since viscous drag 

depends upon the dimensions of the object).  

Let   be the mass of a vehicle (including the fuel and 

the load) at the start of the journey which is shedding mass 

at a constant rate of   per unit time. The force that it applies 

to overcome frictional force and maintain its initial speed is 

    which remains constant throughout as per the 

statement of the problem. The frictional force is assumed to 

be proportional to the weight of the vehicle at any instant 

with     being the coefficient of friction and acceleration 

due to gravity, respectively. The net force at time   is 

obviously                       so that acceleration 
  

  
 at time   is given by 

 
  

  
 

    

     
 ,                                   (17) 

 

and hence velocity   at time   can be obtained from the 

following equation 

 

     
    

     
     ,                            (18) 

 

where   is a constant of integration. Changing variable 

from   to     , one obtains 

 

    
  

 
 

 

    
     .                         (19) 

 

The first term of the right hand side of the above expression 

can be integrated to provide 

 

    
  

 
     

 

    
      .                  (20) 

 

which with the initial condition that when         

yields     
  

 
     where   is the initial velocity of the 

vehicle. Therefore, the velocity   at time   of a fixed torque 

mass shedding vehicle moving against friction is 

 

      
  

 
     

 

    
    .                (21) 

 

where        is the amount of mass shed up to time  . 

In case of a rocket the term    can be replaced by some 

other constant   and then it would mean that the engine of 

the rocket applies a constant force of magnitude    

necessary to overcome atmospheric friction required 

initially and the atmospheric friction at any instant of time 
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is proportional to its mass (which is proportional to its 

length) with   as the constant of proportionality. 

 

 

IV. THE EQUATION OF PATH OF AN OBJECT 

TRACKING MISSSILE 
 

A missile is fired at a rectilinearly moving target when it is 

closest to it and hence the line joining the missile and the 

target is perpendicular to the straight line along which the 

target is moving with a constant velocity  . The missile is 

moving with a constant speed of   and is directed at every 

instant of time towards the moving target. Let   be the 

distance of closest approach when the missile starts moving 

towards the target. After time    let        be the length of 

the curvilinear path travelled by the missile which is 

moving with a constant speed  . Since the missile is 

directed at every instant towards the rectilinearly moving 

target, the tangent on curvilinear path of the missile meets 

the target at any instant of time   and therefore 

 

            

              
  

  
 ,                      (22) 

 

assuming that the line joining the missile and the target at 

      as the x-axis which is perpendicular to the straight 

line y-axis along which the target is moving with constant 

velocity   and position of the missile at       to be the 

origin of the co-ordinate system. From the above two 

equations one obtains 

 

         
  

  
 

 

 
 ,                        (23) 

 

which can be differentiated with respect to   to yield 

 

 
  

  
 

  

  
       

   

    
  

  
      

   

           (24) 

 

where   
 

 
 is a constant of motion. Putting    

  

  
 , the 

above equation reduces to 

 

              
  

  
 .                     (25) 

 

Since              
    

  
 

          

  
      

 
  

  
 
 

           

Therefore, solution of the above equation is 

 

 
  

     
   

  

     
   ,                       (26) 

where    is a constant of integration. Evaluating the 

integrals on both sides provide  

 

                    ,                       (27) 

 

But at         and   
  

  
   since the x-axis is 

chosen in the direction perpendicular to the straight line y-

axis along which the target is moving and position of the 

missile is chosen to be the origin of the co-ordinate system 

at    . This initial condition yield         and 

            
 

   
 . Therefore 

 

  
  

  
          

 

   
   

 

 
  

 

   
 
 

  
 

   
 
  

 ,   (28) 

 

and integrating both the sides of the above equation yields 

 

   
 

 
 
           

   
 

          

   
    ,            (29) 

 

where    is another constant of integration. Since at    , 

both     and    , imply    
  

     . Therefore the 

equation of the path of a missile directed at every instant 

towards rectilinearly moving target is given by  

 

   
 

 
 
           

   
 

          

   
  

  

     .         (30) 

 

Let   be the time taken by the missile to hit the target after 

leaving the station. Then when     and      Eq. (22) 

provides 

 

                                          (31) 

 

From Eq. (30),         
  

     and therefore, 

 

  
      

 
 

  

       
 

  

                          (32) 

 

using  
 

 
 . The above equation tells that     for the 

missile to hit the target. 

 

 

V. SUMMARY 

 

In this short note, we correct an expression for relation 

between differential cross sections in the laboratory and the 

centre of mass systems for binary collision, describe a 

method of measuring the coefficient of dynamic (or kinetic) 

friction, provide a solution of the simple rocket problem 

with air drag and solve the pursuit problem for a tracking 

missile such as the asteroid or comet destructing missiles. 
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