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Abstract 
This paper discusses the traditional problem of the projectile motion by alternative approaches. The usual assumption 

of neglecting air resistance is considered. We verify that the vector method based on the whole position vector gives 

significant pedagogical advantage when compared with the decomposition method alone. We also show that the 

approaches stressing the concept of linear momentum and the conservation of energy play an essential role. The 

methodology based on the notion of first integrals of motion gives an overview on this topic, showing the interplay and 

complementarity of the different descriptions. 
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Resumen 
Este artículo discute el problema tradicional del movimiento de un proyectil en enfoques alternativos. El supuesto 

habitual de dejar de lado la resistencia del aire es considerado. Verificamos que el método vectorial basado en la 

posición total del vector da ventaja pedagógica significativa cuando se compara solo con el método de descomposición. 

También se muestra que los enfoques dan hincapié al concepto de cantidad de movimiento y la conservación de la 

energía juega un papel esencial. La metodología basada en la noción de las integrales primeras del movimiento ofrece 

una visión general sobre este tema, mostrando la interacción y la complementariedad de las diferentes descripciones. 
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I. INTRODUCTION 
 

Projectile motion is a topic that students of the scientific 

areas learn at secondary school. Even when this subject is 

revisited in the introductory courses of physics in the 

university, students are typically invited to memorize and 

apply a pre-established prescription. This methodology is 

based on the traditional decomposition into two 

independent motions. As a matter of fact, we can observe 

that the generality of the textbooks only consider this 

traditional approach that is followed by teachers in the 

classroom. At this level, it would be expected that students 

could be stimulated to apply new points of view to such a 

familiar problem. 

Several articles and notes have discussed the problem of 

projectile motion in two-dimensions in the absence of air 

resistance [1, 2, 3, 4, 5, 6, 7]. Some of them discuss 

interesting aspects like the orthogonality of initial and final 

velocities for the maximizing parabolic trajectory [3, 4]. In 

general, authors combine vectorial and analytical methods 

to obtain the main results. An alternative description which 

includes the concepts of angular momentum and torque to 

solve some aspects of this problem has also been 

considered [8]. 

In the present paper the projectile problem is revisited. 

The usual assumption of constant acceleration of gravity g  

and absence of air resistance will be made. Besides the 

traditional approach, three complementary methods are 

presented. The most straightforward method takes 

advantage of the whole position vector, with calculus being 

kept to a minimum. We report this situation by addressing 

two exploratory examples that are typically used by 

teachers to introduce this subject. A next step applies 

impulse-momentum and kinetic-energy theorems, stressing 

momentum and energy variables. Finally, a first integrals 

method gives an overview of the projectile problem, 

allowing a natural link between dynamical equations and 

constants of motion, i.e., quantities whose values do not 

change along the entire path of the particle [9]. So, the 

variety of descriptions and points of view allows to get a 

deep understanding of this subject, making it a theoretical 

tool with a didactic interest in physics or mathematics 

courses. To prove the reliability of the nonconventional 

methods as powerful alternatives for solving problems of 
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projectile motion in two-dimensions, two illustrative 

problems are also included. 

We remember that the existence of conserved quantities 

of an isolated mechanical system is associated with its 

invariance under the Galilean group. However, it is also 

possible to prove the existence of other constants of motion 

rather than the well known quantities arising from space-

time symmetries as the laws of conservation of momentum 

and energy [10]. Some of the constants of motion can 

depend explicitly on time. 

Independently of the method used, we will also show 

that the velocity vector plays a crucial role. Within the 

methodology addressing the law of conservation of energy, 

this is visible in the way the equation of the trajectory can 

be calculated. Here we suggest the condition of parallelism 

between the velocity vector and the tangent to the 

trajectory. So, this procedure also illustrates the application 

of simple mathematical tools to physics, a barrier that some 

students have difficulty to overcome. However, it is 

worthwhile showing that the problems suggested can be 

solved even with a simple high school level of algebra, 

which most students taking an intermediate physics course 

at the university are supposed to be familiar with. 

 

 

 

II. TRADITIONAL TREATMENT 

 

For convenience and comparative purposes, we start with a 

summary of the traditional approach to the projectile 

motion. This motion has a constant acceleration a g , so 

the position vector as a function of time is given by 

 

2

0 0

1
,

2
r r v t g t  

                                (1)

 

 

where 
0r  and 

0v  are the initial values of position and 

velocity vectors, respectively. 

Using this approach, let us address an illustrative 

example of projectile motion which corresponds to the 

simpler physical situation 
0( 0)r  , being in general used 

by teachers to introduce this subject. 

 

Example 1. A particle is thrown upward at an angle   

to the horizontal and with an initial speed 
0

v . Determine 

the time of flight of the particle, the maximum range and 

height, and the equation of the trajectory. 

 

The traditional methodology is based on the 

decomposition of the two-dimensional motion into the 

horizontal and vertical components, where the discussion of 

the velocity vector and its components (see Fig. 1) play a 

fundamental role. 

 

 
 

FIGURE 1. Parabolic trajectory of a projectile which leaves the 

origin with a velocity 
0v  at an angle  . The components and the 

velocity vector in four point of the path are shown. 

 

 

The relevant quantities of the projectile problem are 

summarized in the following expressions: 

 

0Range, cosx v t ,                             (2) 

 

2

0

1
Height, sin

2
y v t g t  ,                      (3)

 
 

02
Timeof flight, sin

v
T

g
 ,                      (4)

 
 

2

0Maximumrange, sin 2
v

R
g

 ,                  (5)

 
 

2
20Maximumheight, sin

2

v
H

g
 ,                (6)

 
 

2

2 2

0

Parabolic trajectory, tan .
2 cos

g
y x x

v



        (7)

 
 

 

 

III. APPROACH BASED ON ELEMENTARY 

VECTOR ANALYSIS 
 

After the presentation of the projectile motion, which starts 

with the equations of motion for each of the two 

dimensions, teachers can show the advantage and versatility 

of exploring geometrical and analytical aspects of the 

problem through whole vectors and its addition. The 

importance of using whole vectors in mechanics has been 

pointed out by Wheeler [11]. However, with few exceptions 

[12], this approach is absent from the literature and the 

classroom teaching. For example 1, the position vector of 

the projectile as a function of time follows directly from (1) 

with 
0 0r  : 
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2

0

1
.

2
r v t g t                                   (8)

 
 

 
 

FIGURE 2. Position vector of a projectile with coordinates ( ,x y ) 

at the instant t as the addition of two displacement vectors: the 

vector 
ov t  if the gravity were absent, and the vector 2 / 2gt  

arising from the gravity. 

 

 

This expression is represented in Fig. 2 showing the 

addition of two terms: (1) 
0

v t  is the displacement if no 

acceleration were present resulting from the initial velocity 

of the particle, and (2) 21

2
g t  is the vertical displacement 

arising from the gravity. This deepens and gives a new 

insight to the meaning of the projectile problem as a 

superposition of two independent motions:  

(i) constant velocity motion in the horizontal 

direction;  

(ii) free-fall motion in the vertical direction with some 

initial velocity. 

In addition, the time of flight t  is a parameter that 

established the necessary link between the two components, 

which are completely independent of each other. This 

aspect is important for the methodology presented in 

section 5. 

At this point teachers can show that (2) and (3) can be 

obtained directly from the projection of the vectors 

presented in Fig. 2. However, the purpose of this section is 

to point out a method that analyses whole vector instead of 

its components. An important point of this methodology 

starts with the rule of addition of vectors as illustrated. This 

is relevant bearing in mind the difficulties of students of 

introductory physics with vectorial calculus. This vectorial 

analysis is a good complement to the traditional approach 

of the previous section and is easily generalized to 

problems with other initial conditions. So, let us address a 

second general example where 
0 0r  . 

 

Example 2. A particle is thrown from the top of a 

building upward at an angle   to the horizontal and with 

an initial speed 
0

v . The height of the building is h. 

Determine the time of flight and the maximum distance 

from the building when the particle reaches the ground 

(Fig. 3). 

 

 
 

 

 
 

FIGURE 3. Kinematical quantities of a projectile problem at the 

instant t (upper) and at the total time of flight T (lower) where the 

range R is attained. 

 

 

In this case the position vector at the instant t  is given by 

the addition of three vectors: 

 

2

0

1
.

2
r h v t g t                                   (9)

 
 

In Fig. 3, we illustrate this generalization showing the 

different displacements at a generic instant t  and at the 

time of flight T. 

As the given quantities are: 
0

v ,   and h, by using 

elementary trigonometry, the time of flight T and the 

maximum range R are easily calculated. To this purpose we 

write (see Fig. 3, lower part) 

 

2

0

1
sin ,

2
g T h v T                              (10)

 
 

0 cos .R v T                                   (11) 

 

From these two equations we obtain the time of flight: 
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  1/2
2 20
0

sin
1 1 2 / sin ,

v
T g h v

g


                (12)

 
 

and the maximum range: 

 

  
2

1/2
2 20
0

sin 2
1 1 2 / sin .

2

v
R g h v

g


               (13)

 

 

In the limit 0h   the Eqs. (4) and (5) for time flight and the 

maximum range, written in the previous section, are 

recovered. 

 

 

 

IV. IMPULSE-MOMENTUM AND WORK-

ENERGY THEOREMS: CONSERVATION OF 

MOMENTUM AND ENERGY 
 

The impulse-momentum and work-energy theorems are 

tools that students usually appreciate to solve problems. 

However, teachers do not in general motivate students to 

look at these theorems to analyse projectile behavior. As a 

further step, we may introduce explicitly this point of view, 

showing that the conservation of energy can also be useful. 

 

 

A. Analytical development 

 

The impulse of a force over time produces a change in the 

momentum p mv , where m is the mass of the particle. It 

is defined by the integral of the applied force over the time 

interval 0 and t, allowing for the so-called impulse-

momentum theorem: 

 

0
,

t

I F dt p                                 (14)

 
 

which is the integral form of Newton's second law. 

Let us illustrate the application of this procedure to 

example 2. Substituting F m g  in this theorem and 

simplifying, we find the standard kinematic expressions 

 

0 0 cos ,x xv v v                                  (15)

  

0 0 sin .y yg t v v v                               (16)

  

It may be noted that the first of these equations corresponds 

to the conservation of the momentum along the x  axis, 

which is a consequence of the absence of any force in the 

horizontal direction. 

The work done by a force over displacement produces a 

change in the kinetic energy, K, of the particle upon it acts. 

The integral is now defined over a displacement, allowing 

for the work-energy theorem for the particle: 

 

0
. .

r

W F dr K                              (17)

 
 

As the gravitational force is a conservative one, this is 

equivalent to the conservation of total mechanical energy of 

the system particle-Earth. In fact, a conservative force acts 

between the members of the system; the point of 

application of the force undergoes a displacement, and 

work is done by the force. The corresponding potential 

energy function ( )U y  changes according to W U . So, 

we can write for the particular case of example 2, the law of 

conservation of energy 

 

2 2 2 2

0 0

1 1
( ) ( ),

2 2
x y x ym g y m v v m g h m v v             (18)

 
 

where the zero point for potential energy is defined at 

0.y   

Since 
0x xv v , the previous equation can be simplified: 

 

2 2

0

1 1
.

2 2
y yg y v g h v                             (19)

 
 

We remark that (18) expresses the conservation of total 

mechanical energy: 
1 2( , , ) ( ) ( , ) const.x y x yE v y v E v E y v  

 
 

In fact, the total mechanical energy is given by 

2 21
( , , ) ( )

2
x y x yE v y v m v v mg y  

1
 coming from the 

summation of  

2

1

1
( )

2
x xE v mv  and  

2

2

1
( , )

2
y yE y v mv m g y  , both constants. 

In this methodology we obtain the components of the 

velocity 

 

0 cos ,xv v                                    (20)

 and 

 

 
1/2

2 2

0 sin 2 ( ) ,yv v g h y                    (21)

 
 

where 
yv  is a function of y. 

The last equations are very convenient to obtain the 

equation of the trajectory. In fact, since the velocity vector 

is tangential to the trajectory at every point, the differential 

equation of the trajectory of the particle follows directly 

from the requirement 

 

d 0,r v                                    (22)

  

                                                           
1 In the Hamiltonian or Lagrangian formalism we say that x is a cyclic 

coordinate, which implies that the x component of the momentum is a 

constant of motion. The conservation of energy comes from the absence of 

t in the energy function. 
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involving the vector cross product of v  and 

ˆ ˆd d dr xi y j  , where î  and ĵ  are the Cartesian unit 

vectors along x and y, respectively. 

This condition can be expressed as 

 

d d 0.y xv x v y                               (23) 

 

In this case, the insertion of (20) and (21) into (23) allows 

to obtain 

 

 
1/2

2 2

0

0

1
sin 2 ( ) d d 0,

cos
v g h y y x

v






           (24)

 

 

which on integration yields 

 

 
1/2

2 2

0

0

sin 2 ( ) const.
cos

g x
v g h y

v



            (25)

 

 

It is worth noting that if 0h  , then the equation of the 

parabolic trajectory (7) is recovered. 

 

B. Application 

 

Now, let us consider a problem, adapted from Serway and 

Beichner [12], that shows as the combination of the 

vectorial analysis with the conservation of energy can be a 

very convenient tool. 

 

Problem 1. A particle of mass 0.5m  kg is shot from 

point A  at the top of a building. The particle has an initial 

velocity 0v  with a horizontal component of 30m/s. The 

height of the building is 60h  m and the particle rises to a 

maximum height 
1h  20m at point C, and reaches the 

ground at point B (see Fig. 3). Determine, using the value 
29.8msg  :  

(i) the vertical component of 
0

v ,  

(ii) the time of flight of the particle and the maximum 

distance from the building when the particle 

reaches the ground,  

(iii) the work done by the gravitational force on the 

particle during its motion from A to B, and  

(iv) the horizontal and vertical components of the 

velocity vector when the particle reaches B. 

 

Solution 

 

(i) The conservation of energy (18) applied to the initial 

position A and to point C where 0yv  , together with 

0x xv v , allow to obtain the vertical component of the 

initial velocity: 

 

0 12 19.8m/s.yv g h                           (26)

  

(ii) The time of flight and the maximum range can be 

obtained by geometry as illustrated in the lower part 

of Fig. 3 (see also (10) and (11)), giving T = 6.1 s and 

R = 181.8 m. 

(iii) The work can be provided by the variation of potential 

energy, yielding 

 

  294.0J.AB B AW U U m g h                    (27) 

 

(iv) Applying again the conservation of energy to points A 

and B it is straightforward to calculate the components 

of the velocity at position B: 

 

12 ( ) 39.6m/s,yv g h h                    (28)

  

and 

30m/s.xv                                    (29)

  

 

 

V. APPROACH BASED ON FIRST INTEGRALS 

OF MOTION 
 

For advanced students, we can go further giving a new 

insight into the equations obtained in the previous sections. 

As already referred, the projectile motion can be 

decomposed into two components characterized by four 

dynamical variables: x, xv , y and 
yv . These dynamical 

variables, which specify the state of the system, are 

functions of time t, parameter which provides the necessary 

connection between the two components. 

Meanwhile, there exist functions of the dynamical 

variables and, eventually of the time, the so-called integrals 

of motion [9], whose values remain constant during the 

motion, and depend only on the initial conditions. So, we 

present a methodology that allows to interpret the equations 

of the projectile problem as first integrals of motion, which 

corresponds to constants of motion. This method, here 

presented at an elementary level, was formulated in a more 

formal way [13], following a methodology proposed by 

Wittaker [14]. We remember that the traditional way to 

obtain constants of motion comes from a much more 

elaborated mathematical framework based on space-time 

symmetries and cyclic coordinates [9]. 

To discuss, from a pedagogical viewpoint, how 

constants of motion can be extracted and used to analyse 

the projectile behavior, let us consider the following 

illustrative problem [15], to be explicitly solved later. 

 

Problem 2. An elastic ball is dropped on a long inclined 

plane at point A. It bounces, hits the plane again, bounces, 

and so on. Let us label the distance between the points of 

the first and the second hit 
12

d , and the distance between 

the points of the second and the third hit 
23

d . Find the ratio 

12 23/d d . 
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FIGURE 4. Trajectory of an elastic ball on an inclined plane. The 

triangle ABC  is isosceles. The magnitude of the vectors indicated 

are given by 
0 CAB v t  and 21

2
CBC g t , and   and   are 

complementary angles. 

 

 

A. Analytical development 

 

The referential indicated in Fig. 4 is the most convenient to 

solve the problem. According to this referential, the 

relevant information can be written as 

 

0 0 0
ˆ ˆcos sin ,v v i v j                           (30)

  

ˆ ˆcos sin .g g i g j                             (31)

  

We start with the definitions: 

 

ddd d
, , cos , sin .

d d d d

yx
x y

vvx y
v v g g

t t t t
              (32)

 
 

As t  is a common parameter of (32), we can also write 

 

ddd d d
.

cos sin 1

yx

x y

vvx y t

v v g g 
   


             (33)

 

 

This leads to a set of rearrangements of the differential 

equations involved, which are going to be analyzed in 

detail. This procedure allows to find first integrals for this 

system which corresponds to constants of motion. 

 

1. To obtain the first constant of motion 
1C , we start with 

the relation 

d cos d ,x xv v g x                              (34)

  

showing that, by direct integration, 

 

2 2 2

1 0

1 1
cos cos .

2 2
xC v g x v                    (35) 

2. Analogously, from equation 

 

d sin d ,y yv v g y                              (36)

  

we get, on integration, a second constant of motion 

 

2 2 2

2 0

1 1
sin sin .

2 2
yC v g y v                     (37)

 
 

Before pursuing, it should be emphasised that the 

constants of motion 
1C  and 

2C  are actually compatible 

with the conservation of total mechanical energy: 

1 2( , , , ) ( , ) ( , ) constx y x yE x v y v E x v E y v   , where 

2

1 1

1
cos

2
xE mC mv m g x    and  

2

2 2

1
sin ,

2
yE mC mv m g y    both constants. 

 

3. Once again, from the relation 

 

d cos d ,xv g t                                   (38)

  

we get a new constant of motion 

 

3 0cos cos .xC v g t v                            (39)

  

4. Analogously, from the equation 

 

d sin d ,yv g t                               (40)

 we obtain 

 

4 0sin sin .yC v g t v                          (41)

  

The equations of motion (39) and (41) correspond to the 

impulse-momentum theorem along the x and y 

directions, respectively. The interesting point is that 

these two constants of motion 
3C  and 

4C  depend 

explicitly on time t. This is intimately related to the 

presence of a force along both axes x and y. 

 

5. There are more three relations from (33): 

 

d sin d ,x yv v g x                            (42) 

 

d cos d ,y xv v g y                            (43)

 and 

dd
,

cos sin

yx
vv

 
                              (44)

 

 

that yield the same conclusion: 

5 02 .
cos sin

yx
vv

C v
 

                         (45)
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Straightforward mathematical manipulations show 

that this equation can also be obtained by combining 

Eqs. (39) and (41). 

6. Finally, the differential equation d d 0x yv y v x   is also 

contained in (33), which on integration gives the 

equation of the trajectory as already illustrated in the 

previous section. 

 

The mathematical derivations presented here can be 

simplified in situations, like Example 1, where xv  is itself a 

constant of motion [13]. 

So, starting with the dynamical equations, we can find 

constants of motion of this classical problem with two 

degrees of freedom. With some of these equations, it is easy 

to solve the problem proposed. The remaining equations 

can be used to check the solution of the problem we are 

dealing with. 

 

 

B. Solution of problem 2 

 

Applying (41) to the flight phase between first and second 

hit one can show that the time to get the maximum distance 

from the inclined plane is given by 
0 /v g . So, the time 

spent in each flight is 
02 /Ct v g . The vectorial 

construction in Fig. 4, which shows that the triangle ABC  

is isosceles, confirms this result. 

At point C, the components of the velocity can be 

calculated through (39) and (41), yielding 

 

03 cos ,xv v                                  (46)

  

and 

0 sin .yv v                                 (47)

  

After the elastic ball-plane collision the takeoff velocity 

components are 
03 cosxv v   and 

0 sinyv v  . This 

indicates that in the next flight phase the maximum distance 

from the inclined plane is the same of the first flight and the 

range is larger. 

The displacement along the plane follows from (35) and 

(46): 

 
2 2 2

0 0
12

41 1
cos cos .

2 cos 2

xv v v
d

g g g
 


              (48)

 

 

Equation (37) confirms that y=0 at point C. 

At point D, it is easy to show that the components of the 

velocity are: 

 

05 cos ,xv v                                    (49)

  

and 

0 sin .yv v                                  (50)

 

This result indicated that the time of each flight is, in fact, 

the same. 

Using a procedure similar to the previous one we obtain 

 
2

0
23

8
cos ,

v
d

g
                                 (51)

 
 

showing that 

12

23

1
.

2

d

d
                                      (52)

 

 

The extra Eq. (45) can be used to check the values obtained 

for the components of the velocity at points C and D. We 

invite the reader to obtain other interesting aspects of this 

challenge problem as, for instance, the location of the 

maximum distance from the plane attained in each flight. 

 

 

 

VI. CONCLUSIONS 
 

We have discussed the projectile motion, where the usual 

assumption of constant acceleration of gravity and absence 

of air resistance have been considered. We started with two 

typical examples which are used as exploratory tools. We 

have verified that the vector method based on the whole 

position vector gives significant pedagogical advantage 

when compared with the decomposition method alone. If 

we look at several textbook problems, we verify that some 

aspects can be easily solved by the conjugation of this and 

other procedures. 

For advanced students, the methodology based on the 

notion of first integrals of motion, gives an overview on this 

topic, showing the interplay and complementarity of the 

different descriptions. It can also provide the starting point 

for the discussion of constants of motion of any classical 

system. As a matter of fact, these approaches in a familiar 

problem help students to understand the dynamical content 

of the conservation laws, and can establish a natural bridge 

to introduce this topic of fundamental importance in several 

areas of physics. 

In conclusion, the nontraditional approaches invite 

students to elaborate a general procedure and, after that, 

they can easily solve the problem. In this way they do not 

worry about "memorized equations". We verified that this 

procedure enhances the physical content of the subject 

when compared with the traditional method. In addition, it 

is worthwhile showing that this approach can be carried out 

even with a simple high school level of algebra, which most 

students of intermediate physics course are supposed to be 

familiar with. In fact, it should be emphasized that in the 

first examples no mathematics beyond elementary vectorial 

calculus and trigonometry was employed. Meanwhile, the 

more advanced method allows to focus on supplying the 

mathematical framework of the linear first-order 

differential equations. The advantage is that this is done in a 

context that the students were already familiar with from a 

physical point of view. 
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