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Abstract 
A simple problem in Newtonian mechanics is considered. The problem consists in finding the maximum value of the 

length xUP of the portion of string slowly dragged on a step of height h, when the string itself is initially placed to 

match the vertical profile of the step, the remaining part lying on the ground and the final portion being in static 

equilibrium during the dragging process. A straightforward analysis is required to find the solution. The problem can 

be proposed in a lecture or a demonstration in class on the role played by the coefficient of static friction in mechanics. 
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Resumen 
Un simple problema de la mecánica newtoniana es considero. El problema consiste en encontrar el valor máximo de la 

longitud xUP  de la porción de cadena lentamente arrastrado en un paso de altura h, cuando la propia cadena se coloca 

inicialmente para que coincida con el perfil vertical del paso, la parte restante en el suelo y la porción final de estar en 

equilibrio estático durante el proceso de arrastre. Un análisis simple se requiere para encontrar la solución. El problema 

puede ser propuesto en una conferencia o una demostración en clase sobre el papel desempeñado por el coeficiente de 

fricción estática en la mecánica. 
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I. THE PROBLEM 
 

Consider a rounded step of height h. A string of length L 

and linear mass density  is initially placed in such a way 

that one end follows the vertical profile of the step and the 

remaining part lies on an horizontal rough surface as shown 

in Fig. 1a. 
 

 

 

 

FIGURE 1. a) A portion of a string of length L lies over the 

vertical profile of a rounded step, the remaining part lies on a 

horizontal rough surface. The end of the vertical portion is held by 

a finger at the edge of the step. b) The string is slowly dragged by 

the finger over the step, while the other end is not moving: the 

suspended part of the string is seen to have length ls. 

 

 

The coefficient of static friction between the surface and the 

string is S [1]. The string is then slowly dragged from the 

upper end over the step with a finger, as shown in Fig. 1b, 

until the other end starts moving. 
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FIGURE 2. a) A small necklace of length L lies over the vertical 

profile of a pile of books, the remaining part lies on a horizontal 

surface. The end of the vertical portion is held by a finger at the 

edge of the step. b) The string is slowly dragged by the finger over 

the pile of books, while the other end is not moving: the 

suspended part of the string is seen to take the form of a catenary. 

 

 

 

We notice that the portion of the suspended part of the 

string takes a form of a catenary. Just before the portion of 

the string lying on the horizontal surface starts moving, we 

record the value of the horizontal distance xUP (see Fig. 1b) 

and the distance xS between the closest point of contact of 

the string to the lower edge of the step. The evidence that 

the suspended portion of the string, of length lS, takes the 

form of a catenary is well reproduced in Figs. 2a-b, where a 

small necklace is dragged above a pile of books. Notice that 

by varying the number of books in the pile one can change 

the value of h, so that the ratio L/h can be varied by keeping 

either h or L fixed. 

 

 

 
II. THE SOLUTION 
 

By considering the schematic diagrams in Figs. 3a and 3b, 

describing the forces acting on the suspended and 

horizontal portion of the string, respectively, we may find 

the conditions for static equilibrium. In particular, for the 

suspended portion of the string, by setting the resultant 

force equal to zero [1], we have:  

 

gmT

TT

SA

BA









sin

cos  ,      (1) 

 

Where mS=lS, and TA and TB are the moduli of the tensions 

at the cuts shown in Fig. 3a.  

 

 
 

FIGURE 3. a) Suspended portion of the string. Only tensions at 

both orthogonal cuts are considered. b) Horizontal portion of the 

string: the friction ft is sufficient to maintain the system in 

equilibrium. 

 

 

On the other hand, for the horizontal portion we write: 

 

gmN

Tf

H

Bt



  ,                                   (2) 

 

where mH=lR=(L-h-xS) is the mass of the portion of the 

string lying on the horizontal surface, ft and N are the 

moduli of the friction force and of the normal reaction, 

respectively. By now introducing the phenomenological 

relation Nf St   valid for static equilibrium of the system, 

we consider the case of incipient motion. Therefore, by 

eliminating the tensions TA and TB by means of (1) and (2) 

and by setting Nf St  , we obtain: 
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The expression for lS can be obtained by the equation of the 

catenary for the suspended portion of the curve. In fact, by 

fixing the origin of the x-axis at the same point B where the 

orthogonal cut to obtain tension TB is made (see Figs. 3a-b), 

by taking x positive toward the left, the catenary equation 

can be written as follows [2]: 
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Therefore, since dl = (1+y'
2
)

1/2 
dx, y' being the derivative of 

y with respect to x, lS can be obtained by the following 

integration:  
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FIGURE 4. Graphical representation of the curves f1(x) and f2(x) 

corresponding, respectively, to the left hand side (blue full line) 

and to the right hand side (dotted black line) of (8) for l=3.0 and 

S=0.5. The cyan dotted line represents the right horizontal 

asymptote of f1(x), while the orange dotted line f(x)=1 represents 

the right horizontal asymptote of f2(x). Notice that f(x)=1 is 

tangent to f1(x) at its minimum point at x=l-1. Finally notice that 

only the left intersection at x1 between the curves f1(x) and f2(x) 

gives a meaningful solution for (8), being x1<l. 

 

 

 

Eq. (4) can be used to obtain a relation between xS and h, by 

setting y(xS)=h, so that: 
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Recalling now that cosh
2
x-sinh

2
x=1, by combining (3), (5), 

and (6), and by setting lR=L-h-xS, we have: 
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FIGURE 5. Graphical representation of the dependence of the 

quantities lR, lS, xs, xUP, and  as functions of l=L/h. In particular, 

in a) lR (blue line), and lS (orange line) vs. l curves are reported for 

S=0.5. In b) xs (blue line), and xUP (orange line) vs. l curves are 

shown for S=0.5. Finally, in c)  vs. l curves are plotted for 

S=0.4 (blue line),S=0.5 (cyan line),S=0.6 (orange line), 

andS=0.7 (gray line). 
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By solving numerically (7a) for lR, we can obtain  from 

(7b) and, by the knowledge of the latter two quantities, we 

can get lS, xUP=L-lS-lR, and xS. 
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III. NUMERICAL RESULTS 
 

We can solve Eq. (7a) numerically for xlR/h in terms of the 

parameters S and l=L/h. Let us thus write Eq. (7a) as 

follows: 
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The functions f1(x) and f2(x) on the right and left hand side 

of Eq. (8), respectively, are represented in Fig. 4 for l=3.0 

and S=0.5. By the rule we can argue from Fig. 4, for 

which only the left intersection represents the meaningful 

solution to (8), we obtain the solutions in terms of l, 

reported in Figs. 5a-c for fixed values ofS. Notice that, for 

increasing values of the normalized length of the string 

l=L/h, the quantities lR, lS, xS, xUP increase. However, as 

shown in Fig. 5a, the derivative of lR with respect to l, for a 

given value of the latter normalized quantity, is always 

greater than the derivative of lS for the same value of l. 

Similarly, in Fig. 5b we may notice that the derivative of xS 

with respect to l, for a given value of the latter normalized 

quantity, is always greater than the derivative of xUP for the 

same value of l. In Fig. 5c, finally, we may notice that the 

derivatives of all  vs. l curves are negative for any value of 

l in the represented range of values of the latter quantity. 

The behavior of the curves shown in Figs. 5a-b can be 

justified by the higher value the friction force obtained by 

increasing l, S being kept constant. 

In Figs. 6a-c we show the quantities lR, lS, xS, xUP, and  

in terms of the coefficient of static friction S for fixed 

values of l. As it can be noted from the l-dependence of the 

distances lS, xS, and xUP, a positive derivative with respect to 

S is detectable in Figs. 6a-b, differently from the 

decreasing behavior of lR for increasing values of S in Fig. 

6a. In Fig. 6c one notices that all curves attain a negative 

derivative. Furthermore, in the same Fig. 6c one may see 

that, for a fixed value of l, the angles  are lower as S 

increases from 0.4 to 0.7, coherently with what shown in 

Fig. 5c. 

 

 

 

IV. CONCLUSIONS  
 

By studying a rather straightforward problem, we are able 

to illustrate the role played by the coefficient of static 

friction in Newtonian mechanics. The solution to the 

problem can be found by elementary principles in 

mechanics and results can be represented graphically by 

means of numerical analysis. Furthermore, given the rather 

simple experimental setup required to reproduce the system 

in real terms, a classroom demonstration experiment can be 

performed to illustrate the meaning of the coefficient of 

static friction in mechanics. The content of the present work 

can be part of a lecture addressed to advanced high-school 

students or to first-year college students.  

 
 

 
 

 
FIGURE 6. Graphical representation of the dependence of the 

quantities lR, lS, xs, xUP, and  as functions of S. In particular, in a) 

lR (blue line), and lS (orange line) vs. S curves are reported for 

l=4.5. In b) xs (blue line), and xUP (orange line) vs. S curves are 

shown for l=4.5. Finally, in c)  vs. S curves are plotted for l=3.5 

(blue line), l=4.5 (cyan line), l=5.5 (orange line), and l=6.5 (gray 

line). 
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