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Abstract 
This ‘research-survey’ is meant for beginners in the studies of integrable systems. Here we outline some analytical 

methods for dealing with a class of nonlinear partial differential equations. We pay special attention to ‘inverse spectral 

transform’, ‘Lax pair representation’, and ‘zero-curvature condition’ as applied to these equations. We provide a number 

of interesting examples to gain some physico-mathematical feeling for the methods presented.  
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Resumen 

Esta 'investigación-encuesta' está destinada a principiantes en los estudios de sistemas integrables. Aquí describimos 

algunos métodos analíticos para tratar con una clase de ecuaciones diferenciales parciales no lineales. Prestamos especial 

atención a la 'transformada espectral inversa', la 'representación de par Lax' y la 'condición de curvatura cero' aplicadas 

a estas ecuaciones. Proporcionamos una serie de ejemplos interesantes para obtener una idea físico-matemática de los 

métodos presentados 

 
Palabras clave: Ecuaciones Diferenciales Parciales No Lineales, Sistemas Integrables, Método Espectral Inverso, 

Pares Laxos, Condición de Curvatura Cero. 

 

 

 

I. INTRODUCTION  
 

Integrable systems are represented by nonlinear partial 

differential equations (NLPDEs) which, in principle, can be 

solved by analytic methods. This necessarily implies that the 

solution of such equations can be constructed using a finite 

number of algebraic operations and integrations. The inverse 

scattering method as discovered by Gardner, Greene, Kruskal 

and Miura [1] represents a very useful tool to analytically 

solve a class of nonlinear differential equations which 

support soliton solutions. Solitons are localized waves that 

propagate without change in their properties (shape, velocity 

etc.). These waves are stable against mutual collision and 

retain their identities except for some trivial phase change. 

Mechanistically, the linear and nonlinear terms in NLPDEs 

have opposite effects on the wave propagation. In particular, 

the linear term causes dispersion of the wave while the 

nonlinear one leads to steepening. In certain equations 

representing typical physical systems a balance between 

these two effects produces solitons. Soliton was observed in 

1834 by a Scottish engineer; John Scott Russel [2]. He 

followed the motion of a boat drawn rapidly along a cannel 

by a pair of horses. The boat suddenly stopped. He observed 

that a large solitary elevation (well defined heap of water) left 

the boat and moved with great velocity. The first soliton 

equation was identified by Zabusky and Kruskal [3] in 1965. 

By solving the KdV equation numerically, they demonstrated 

an unexpected property of its solution. It was found that from 

a smooth initial wave form there emerged waves with sharp 

peaks which are, in fact, representative of the unexpected 

phenomena observed by Scott Russel. Solitons appear in a 

wide variety of physical systems ranging from shallow water 

waves to Bose-Einstein condensates [4]. Consequently, 

soliton theory now occupies a large part of theoretical and 

mathematical physics.  

In this paper we collect a number of useful results that are 

needed to construct localized solutions of integrable systems 

and make appropriate comments wherever necessary. We 

also pay equal attention to introduce the necessary and 

sufficient conditions for a general nonlinear evolution 

equation to be integrable. In presenting the work we have 

followed the historical development of the subject as far as 

practicable. It is our belief that for young researchers in this 
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field of investigation, the results presented will serve as an 

appetizer if not a full meal.  

In section 2 we introduce the inverse spectral method for 

solving the nonlinear evolution equation with particular 

emphasis on the KdV equation. We use the technique to 

provide results for both single and multi-soliton solutions. 

Multi-soliton solutions indicate that at the time t = 0 we have 

a single hump produced by juxtaposition of the component 

solitons and separate components make their appearance for 

only t > 0. The taller solitons move faster and carries greater 

energy compared to that carried by the shorter ones. We 

provide in section 3 the next important development in the 

theory of integral equations as developed by Lax [5] who 

introduced a general principle for associating nonlinear 

evolution equations with linear differential operators. These 

linear operators are often called Lax pairs. The Lax pairs 

yield evolution equations when they commute and represent 

a useful tool in finding conserved quantities of integrable 

dynamical systems. We present a number of examples in 

respect of Lax’s treatment of nonlinear partial differential 

equations. We devote section 4 to realize nonlinear evolution 

equations as a compatibility condition between pair of linear 

equations. The idea is to avoid the need to consider higher-

order Lax pair and represent nonlinear evolution equation as 

the zero curvature condition [6]. Here we first briefly discuss 

as to why the noted compatibility condition has been given 

the name zero curvature condition and then provide a set of 

examples to substantiate the ideas of [6]. Finally, in section 5 

we summarize our outlook on the present work and make 

some concluding remarks.  

 

 

II. INVERSE SPECTRAL TRANSFORM FOR 

SOLVING THE KORTEWEG-DE VRIES (KDV) 

EQUATION 
 

Traditionally, a class of nonlinear partial differential 

equations (NLPDEs) is classified as integrable if these can be 

solved by the use of inverse spectral transform (IST). The 

idea of the IST is the following. 

Each integrable NPDE is associated with a linear ordinary 

differential equation (LODE) containing a parameter λ, 

usually known as spectral parameter, and the solution u(x, t) 

of the NPDE appears as a coefficient in the corresponding 

LODE. The function 𝑢(𝑥, 𝑡) is known as the potential 

characterizing the linear problem. In the NLPDE the 

quantities 𝑥 and 𝑡 appear as independent variables. In fact, 

these are the so-called spatial and temporal coordinates. Here 

we are concerned with a one-dimensional problem 

characterized by a single spatial variable. We point out while 

𝑥 is a dynamical variable of the NLPDE, the quantities λ and 

𝑡 appear as parameters. One of the most significant properties 

of the IST is that the spectral parameter does not change with 

time. The solution of the NLPDE is constructed by using the 

spectra of the LODE in the Gel’fand-Levitan equation [7]. 

We shall illustrate the use of IST in solving NPDE with 

special attention to the well known Korteweg-de Vries (KdV) 

equation [8]. 

 

𝑢𝑡 − 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0,                         (1) 

where the subscripts of u denote partial derivatives.  

The Gel’fand-Levitan equation associated with the 

inverse spectral method is a Volterra integral equation for a 

function 𝐾(𝑥, 𝑦, 𝑡) written as [1]. 

 

  𝐾(𝑥, 𝑦, 𝑡) + 𝐵(𝑥 + 𝑦, 𝑡) + ∫ 𝐾(𝑥, 𝑠, 𝑡)𝐵(𝑥 + 𝑦, 𝑡)𝑑𝑠 = 0,     (2)
∞

𝑥
 

 

with the kernel 𝐵(𝑧, 𝑡) given by  

 

 𝐵(𝑧, 𝑡) = ∑ 𝑐𝑛
2𝑒−𝜅𝑛𝑧 +

1

2𝜋
∫ 𝑏(𝑘, 𝑡)

∞

−∞
𝑒𝑖𝑘𝑧𝑑𝑘.             (3)𝑁

𝑛=1  

 

In equation (3) 𝜅𝑛 and 𝑘 represent the wave numbers for 

bound and continuum state energies of the one-dimensional 

Schrödinger equation with potential 𝑢(𝑥, 𝑡). Understandably, 

here 𝑛 and 𝑏(𝑘, 𝑡) stand for the principal quantum number 

and reflection coefficient; 𝑐𝑛 is the normalization constant of 

the bound-state wave function. The solution 𝐾(. ) of this 

integral equation is related to the potential by [1]. 

 

 𝑢(𝑥, 𝑡) = −2
𝜕

𝜕𝑥
𝐾(𝑥, 𝑥, 𝑡).                     (4) 

 

Eq. (4) shows that we have obtained the solution of a 

nonlinear evolution equation by using the solution of a linear 

ordinary differential equation. We shall now apply this result 

to obtain the solution of the KdV equation as given in eq. (1). 

The spectral problem for the KdV equation is provided by a 

one dimensional Schrödinger equation given by  

 

𝐻𝜓 = 𝜆𝜓.                                        (5) 

 

The Hamiltonian H, in addition to the kinetic energy term, 

involves 𝑢(𝑥, 𝑡), the solution of eq. (1) as the potential 

energy. We consider the particular case where the potential 

has a single bound state with the eigenvalue 𝜆 = −𝜅2, 

normalization constant 𝑐, and vanishing reflection coefficient 

i.e. 𝑏(𝑘, 𝑡) = 0. In this case 𝐵(𝑧, 𝑡) is given by. 

 

𝐵(𝑧, 𝑡) = 𝑐2(𝑡)𝑒−𝜅𝑧 = 𝑐0
2𝑒8𝜅3𝑡𝑒−𝜅𝑧 .         (6) 

 

For 𝑧 = 𝑥 + 𝑦 the kernel of the Gel’fand-Levitan equation is 

separable such that we can write 

 

𝐾(𝑥, 𝑦, 𝑡) + 𝑐0
2𝑒8𝜅3𝑡𝑒−𝜅(𝑥+𝑦)

+   𝑐0
2𝑒8𝜅3𝑡𝑒−𝜅𝑦 ∫ 𝐾(𝑥, 𝑠, 𝑡)𝑒−𝜅𝑠𝑑𝑠

∞

𝑥

= 0.                                                                       (7) 

 

Because of separability of the kernel, eq. (7) can easily be 

solved to get [9] 

 

 𝐾(𝑥, 𝑦, 𝑡) = −𝜅
𝑒8𝜅3𝑡𝑒−𝜅(𝑦−𝑥0)

cosh[𝜅(𝑥−𝑥0−4𝜅3𝑡)]
,               (8) 

  

 

which when substituted in eq. (4) gives the solution of the 

KdV equation in the form 

 

𝑢(𝑥, 𝑡) = −2𝜅2 𝑠𝑒𝑐ℎ2[𝜅(𝑥 − 𝑥0 − 4𝜅3𝑡)].        (9) 
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This solution corresponds to a single soliton of amplitude 

−2𝜅2 and speed 4𝜅3 moving to the right and centered 

initially at 

 

 𝑥0 =
1

2𝜅
𝑙𝑛 (

𝑐0
2

2𝜅
).                               (10) 

 

The method of inverse scattering as formulated above for the 

KdV equations is an ingenuous way of solving the initial 

value problem by associating the solution of a nonlinear 

equation with the potential of a time-independent 

Schrödinger equation. This replaces the problem of finding a 

solution of the KdV equation - a nonlinear equation- with the 

less difficult task of solving a linear quantum mechanical 

scattering problem.  

In order to gain some physical feeling for the time 

evolution of the KdV soliton, we plot in Figs. 1- 4 the solution 

in Eq. (9) at different values of 𝑡 as a function of 𝑥 for 𝑥0 =
0. As expected from the formula in eq. (9), the solitons in 

Figs. 1-4 have centres at 𝑥 = 0, 2 , 4 and 6 respectively. In 

these figures coordinates of the peaks of the 

 

 

 
 
FIGURE 1. Soliton solution for 𝜅 = 1, 𝑡 = 0, 𝑥0 = 0, 𝑦 =
−𝑢(𝑥, 0). 
 

 

      
 
FIGURE 2. Soliton solution for 𝜅 = 1, 𝑡 = 0.5, 𝑥0 = 0, 𝑦 =
−𝑢(𝑥, 0.5). 

  
 

FIGURE 3. Soliton solution for 𝜅 = 1, 𝑡 = 1, 𝑥0 = 0, 𝑦 =
−𝑢(𝑥, 1). 
 

 

 
 
FIGURE 4. Soliton solution for 𝜅 = 1, 𝑡 = 1.5, 𝑥0 = 0, 𝑦 =
−𝑢(𝑥, 1.5). 
 

 

Solitons are given by (0,2), (2,2), (4,2) and (6,2). 

The algebraic method followed in deriving eq. (9) can be 

generalized to include a reflectionless potential with N bound 

states [10]. In fact, a reflectionless potential with N bound 

states corresponds, through the inverse scattering transform, 

to a pure N soliton solution of the Korteweg-de Vries 

equation. To illustrate this we suppose that the bound states 

have parameters 𝜅1, 𝜅2, … , 𝜅𝑁 and 𝑐1, 𝑐2, … , 𝑐𝑁. Then the 

kernel of the Gel’fand-Levitan equation is represented by  

 

  𝐵(𝑥 + 𝑦, 𝑡) =

            ∑ 𝑐𝑛
2(𝑡)𝑒−𝜅𝑛(𝑥+𝑦) =𝑁

𝑛=1 ∑ 𝑓𝑛(𝑥, 𝑡)𝑔𝑛(𝑦).𝑁
𝑛=1           (11) 

 

Here  

 

𝑓𝑛(𝑥, 𝑡) = 𝑐𝑛
2(𝑡)𝑒−𝜅𝑛𝑥  and   𝑔𝑛(𝑦) = 𝑒−𝜅𝑛𝑦 .     (12) 

 

Then assuming the separable form of the kernel as 

 

 𝐾(𝑥, 𝑦, 𝑡) = ∑ 𝑘𝑛(𝑥, 𝑡)𝑔𝑛(𝑦)𝑁
𝑛=1 .            (13) 

 

We substitute eq. (11) and eq. (13) in the Gel’fand-Levitan 

equation to write 
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∑ 𝑘𝑛(𝑥, 𝑡)𝑔𝑛(𝑦)

𝑁

𝑛=1

+ ∑ 𝑓𝑛(𝑥, 𝑡)𝑔𝑛(𝑦)

𝑁

𝑛=1

 

+ ∫ [∑ 𝑘𝑛(𝑥, 𝑡)𝑔𝑛(𝑠) ∑ 𝑓𝑛(𝑠, 𝑡)𝑔𝑛(𝑦)

𝑁

𝑛=1

𝑁

𝑛=1

] 𝑑𝑠 = 0.      (14)
∞

𝑥

 

 

Making use of eq. (12) in eq. (14) and equating the coefficient 

of 𝑔𝑛(𝑦) to zero we deduce 

 

 𝑘𝑚 + 𝑘𝑓 + 𝑐𝑚
2 ∑ 𝑘𝑚

𝑒−(𝑘𝑚+𝑘𝑛)𝑥

(𝑘𝑚+𝑘𝑛)
𝑁
𝑛=1  .            (15) 

 

In writing eq. (15) we have made use of the middle term of 

eq. (11). In Matrix form eq. (15) reads 

 

𝑀𝑘 + 𝑓 = 0,                                  (16) 

 

where 𝑘 and 𝑓 are column vectors with entries 𝑘𝑛 and 𝑓𝑛 fn 

respectively, and M is an 𝑁 × 𝑁square matrix with elements 

 

 𝑀𝑖𝑗 = 𝛿𝑖𝑗 + 𝑐𝑖
2(𝑡)

𝑒
−(𝜅𝑖+𝜅𝑗)𝑥

𝜅𝑖+𝜅𝑗
 .                  (17) 

 

The matrix eq. (16) can be solved so as to write 

 

 𝐾(𝑥, 𝑦, 𝑡) =
𝜕

𝜕𝑥
ln det 𝑀 ,                        (18) 

 

which finally gives the N soliton solution  

 

𝑢(𝑥, 𝑡) = −2
𝜕2

𝜕𝑥2
ln det 𝑀.                  (19) 

 

We shall now illustrate the application of the above results by 

constructing (A) two-soliton solution, and (B) three- soliton 

solution of the KdV equation. 

 

 

A. The two-soliton solution of the KdV equation 
 

Construct the two-soliton solution of the KdV equation for 

the initial value given by 

 

𝑢(𝑥, 0) = −6 sech2 𝑥 .                       (20) 

 

For 𝑖, 𝑗 = 1, 2, eq. 17 can be judiciously used to construct 

the expression  

 

 det 𝑀 = 1 + 3𝑒8𝑡−2𝑥 + 3𝑒64𝑡−4𝑥 + 𝑒72𝑡−6𝑥 .             (21) 

 

In writing eq. (21) we have used 𝜅1 = 1, 𝜅2 = 2, 𝑐1 = √6𝑒4𝑡 

and 𝑐2 = √12𝑒32𝑡. From eq. (19) and eq. (21) we have, 

 
  𝑢(𝑥, 𝑡)

= −
24𝑒8𝑡+2𝑥(𝑒128𝑡 + 𝑒8𝑥 + 4𝑒72𝑡+2𝑥 + 6𝑒64𝑡+4𝑥 + 4𝑒56𝑡+6𝑥)

(𝑒72𝑡 + 𝑒6𝑥 + 3𝑒64𝑡+2𝑥 + 3𝑒8𝑡+4𝑥)2  . 

 (22) 
 

At 𝑡 = 0 the plot of Eq. (22) as a function of x is shown in 

Figure 5. The soliton in Figure 5 is in exact agreement with 

that found from the formula in eq. (20). The important point 

to note here is that the two-soliton solution at 𝑡 = 0 coalesce 

to give rise to a single soliton. We shall now show that as time 

goes on we find solitons separated by some distance that 

increases with time. In Figure 6 we display the soliton 

solution from eq. (22) as a function of 𝑥 for 𝑡 = 0.5. The 

curve in this figure shows that the juxtaposed soliton solution 

of Figure 5 transforms into a two separate solitons for 𝑡 > 0. 

It will be interesting to know how the solitons displayed in 

Figure 6 behave during time evolution. In order that we plot 

in Figures 7 and 8 and 𝑢(𝑥, 1) and 𝑢(𝑥, 1.5) as a function of 

𝑥. From the curves in Figures 6 - 8 it is clear that one soliton 

is taller than the other and during time evolution the tall 

soliton moves faster than the short one. As usual the 

coordinate for the centre of the single hump soliton in Figure 

5 is the same as predicted from eq. (20).  

 
 
FIGURE 5. 𝑢(𝑥, 0) as a function of 𝑥 from eq. (22), 𝑦 = −𝑢(𝑥, 0). 

 

 
 
FIGURE 6. 𝑢(𝑥, 0.5) as a function of 𝑥 from eq. (22), 𝑦 =
−𝑢(𝑥, 0.5). 
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FIGURE 7. 𝑢(𝑥, 1) as a function of 𝑥 from eq. (22), 𝑦 = −𝑢(𝑥, 1). 

 
Coordinates of the peaks of the short and tall solitons in 

Figures 6 – 8 are {(1.5, 2), (8.3, 8)}, {(3.4, 2), (16.3, 8)} and 

{(5.5, 2), (24.4, 8)}. In each of these entries, the numbers in 

the round brackets encapsulated inside curly brackets denote  

 

 
 
FIGURE 8. 𝑢(𝑥, 1.5) as a function of 𝑥 from eq. (22), 𝑦 =
−𝑢(𝑥, 1.5). 
 

The coordinates of the short and tall solitons. We shall follow 

this convention throughout. The area under the curve in 

Figure 5 is 12 while in Figure 6 the area of the curves 

representing short and tall soliton are 4 and 8 respectively. 

This implies that the energy of the juxtaposed solitons is 

redistributed into the component solitons such that the tall 

component carries two-third of the total energy while the 

short one carries only one-third of the total energy. The 

energy distribution remains constant during time evolution of 

the soliton.  

 

 

B. The three-soliton solution of the KdV equation 
 

Construct the three-soliton solution of the KdV equation for 

the initial value given by, 

 

𝑢(𝑥, 0) = −12 sech2 𝑥.        (23) 

 

As with the problem in (A), for 𝑖, 𝑗 = 1, 2, 3, we can obtain 

from eq. (17) 

 

det 𝑀 = 1 + 𝑒288𝑡−12𝑥 + 6𝑒280𝑡−10𝑥 + 15𝑒224𝑡−8𝑥

+ 10𝑒72𝑡−6𝑥 + 10𝑒216𝑡−6𝑥 + 15𝑒64𝑡−4𝑥

+ 6𝑒8𝑡−2𝑥 ,                                               (24) 

 

such that, 

 

𝑢(𝑥, 𝑡) = 𝑛 𝑑 ,             (25)⁄  

 

with  

 

𝑛 = −48𝑒8𝑡+2𝑥(𝑒560𝑡 + 𝑒20𝑥 + 30𝑒16(4𝑡+𝑥)

+ 15𝑒16(13𝑡+𝑥) + 252𝑒10(28𝑡+𝑥)

+ 50𝑒8(36𝑡+𝑥) + 135𝑒8(42𝑡+𝑥))

+ 25𝑒8(54𝑡+𝑥) + 15𝑒4(88𝑡+𝑥)

+ 10𝑒504𝑡+2𝑥 + 30𝑒496𝑡+4𝑥

+ 80𝑒344𝑡+6𝑥 + 40𝑒488𝑡+6𝑥

+ 25𝑒128𝑡+12𝑥 + 135𝑒244𝑡+12𝑥

+ 50𝑒272𝑡+12𝑥 + 40𝑒72𝑡+14𝑥

+ 80𝑒216𝑡+14𝑥 + 10𝑒56𝑡+18𝑥),            (26) 

and 

 

𝑑 = (𝑒288𝑡 + 𝑒12𝑥 + 15𝑒8(8𝑡+𝑥) + 10𝑒6(36𝑡+𝑥) +

15𝑒4(56𝑡+𝑥) + 6𝑒280𝑡+2𝑥 + 10𝑒72𝑡+6𝑥 + 6𝑒8𝑡+10𝑥)
2

.    (27)  

 

 

In Figure 9 we display 𝑢(𝑥, 0) as a function of 𝑥 for the three-

soliton solution as obtained from eq. (25). As expected here 

we have three juxtaposed solutions so as to look like single-

soliton. In fact the plot in Figure 9 coincides with that 

obtained from eq. (23). In Figures 10 - 12 we portray the 

positions of the moving three-soliton solutions from eq. (25). 

In each of these figures the position of the shorter soliton lies 

near the origin of the coordinates while ones with bigger 

heights are situated at 𝑥 ≫ 0. In particular, the tallest soliton 

occupies the furthest position. The coordinates of the peaks 

of the solitons in the above three figures are given by {(1.2, 

2), (7.9, 9), (18.8, 17.9)}, {(3.1, 2), (16, 9), (36.4, 17.9)}, {(5, 

2), (24, 9), (54.5, 17.9)}. From the result.  

 

 

 
 
FIGURE 9. 𝑢(𝑥, 0) as a function of 𝑥 from eq. (25), 𝑦 = −𝑢(𝑥, 0). 
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FIGURE 10. 𝑢(𝑥, 0.5) as a function of 𝑥 from eq. (25), 𝑦 =
−𝑢(𝑥, 0.5). 

 
Presented for the centres of the three-soliton solutions one 

can easily verify that the taller soliton moves with greater 

velocity. Figures 10 - 12 also show that the taller solitons are 

narrower. As expected at 𝑡 = 0 the area under the curves 
in Figure 9 is 24. For 𝑡 > 0 the energy of the juxtaposed 

soliton is redistributed into three solitons with areas 4, 8 and 

12. Understandably, these areas remain constant during time 

evolution of the soliton. 

 

 
FIGURE 11. 𝑢(𝑥, 1) as a function of 𝑥 from eq. (25), 𝑦 = −𝑢(𝑥, 1). 

 

 
FIGURE 12. 𝑢(𝑥, 1.5) as a function of 𝑥 from eq. (25), 𝑦 =
−𝑢(𝑥, 1.5). 

 

III. METHOD OF LAX FOR ASSOCIATING 

NONLINEAR DIFFERENTIAL EQUATIONS 

WITH LINEAR OPERATORS 
 

The success of inverse scattering method as applied to the 

KdV equation naturally raised the question of whether other 

nonlinear equations could be solved by analogous methods. 

This problem was considered by Lax [5] who demonstrated 

in a seminal paper that a nonlinear evolution equation 

 

𝐹(𝑥, 𝑡, 𝑢, … ) = 0,                           (28) 

 

is integrable if there exists a pair of operators such that they 

yield the equation when they commute. Let us illustrate the 

method of Lax by particular attention to the KdV equation. 

In the inverse spectral method the KdV equation is solved 

by using the spectral problem 

 

    𝐿𝜓 = 𝜆𝜓.                                  (29) 

 

The operator 𝐿 involves 𝑢(𝑥, 𝑡) and 𝜆𝑡 = 0. In the Lax’s 

method one introduces an auxiliary spectral problem defined 

by  

 𝜓𝑡 = 𝐵𝜓.                                  (30) 

 

Clearly, the operator 𝐵 characterizes the change in the eigen 

vector with respect to the parameter 𝑡 which in the KdV 

equation corresponds to time. We now differentiate eq. (29) 

with respect to 𝑡 and make use of eq. (30) together with 𝜆𝑡 =
0 and thus obtain 

 

 𝐿𝑡 = [𝐵, 𝐿],                              (31) 

 

where the commutator [𝐵, 𝐿] = 𝐵𝐿 − 𝐿𝐵. For the KdV 

equation the operators 𝐿 and 𝐵, often called the Lax pair, can 

be identified by the use of the inverse scattering technique to 

write 

 

 𝐿 = −
𝜕2

𝜕𝑥2 + 𝑢,                          (32𝑎) 

 

and 

 

 𝐵 = −4
𝜕3

𝜕𝑥3 + 6𝑢
𝜕

𝜕𝑥
+ 3

𝜕𝑢

𝜕𝑥
.            (32𝑏) 

 

For the operator in eq. (32a)  

 

𝐿𝑡 = 𝑢𝑡 .                              (33𝑎)  

 

Also introducing an arbitrary function 𝜙 = 𝜙(𝑥, 𝑡) we can 

compute 𝐵𝐿𝜙 and 𝐿𝐵𝜙 to get    

 

 [𝐵𝐿 − 𝐿𝐵]𝜙 = [−
𝜕3𝑢

𝜕𝑥3 + 6𝑢
𝜕𝑢

𝜕𝑥
] 𝜙,        (33𝑏) 

 

so that       

 

 [𝐵𝐿 − 𝐿𝐵] = −
𝜕3𝑢

𝜕𝑥3 + 6𝑢
𝜕𝑢

𝜕𝑥
 .             (33𝑐) 
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From eq. (31) and eq. (33a-33c) we get the KdV equation. 

The KdV equation represents a generic model for 

studying weakly nonlinear waves. Physically, this equation 

models surface waves with small amplitude and long 

wavelength on shallow water. The equation involves a 

balance between weak nonlinearity and linear dispersion (the 

second and third terms of eq. (1)). The Miura transformation 

[11] 

 

 𝑢 =
𝜕𝑣

𝜕𝑥
+ 𝑣2,                                (34) 

 

converts the KdV equation to another nonlinear equation 

given by 

 

 
𝜕𝑣

𝜕𝑡
− 6𝑣2 𝜕𝑣

𝜕𝑥
+

𝜕3𝑣

𝜕𝑥3 = 0.                      (35) 

 

The dispersive term of eq. (35) is similar to that of the KdV 

equation but the middle term shows that this equation is more 

nonlinear than the KdV equation. eq. (35) is known as the 

modified KdV equation and is often denoted as mKdV 

equation. The modified KdV equation manifests itself in 

diverse areas of physics. For example, it appears in the 

context of electromagnetic waves in size-quantized films, van 

Alfven waves in collisionless plasma, phonons in anharmonic 

lattice, ion acoustic solitons and many more [12]. 

From eq. (32a-32b) and eq. (34) the Lax pair for the 

mKdV equation can be written as 

 

 𝐿 = −
𝜕2

𝜕𝑥2 +
𝜕𝑣

𝜕𝑥
+ 𝑣2 ,                      (36𝑎)  

 

And 

 

 𝐵 = −4
𝜕3

𝜕𝑥3 + 6 (
𝜕𝑣

𝜕𝑥
+ 𝑣2)

𝜕

𝜕𝑥
+ 3

𝜕

𝜕𝑥
(

𝜕𝑣

𝜕𝑥
+ 𝑣2).       (36𝑏) 

 

As in the case of KdV equation eq. (36a) and eq. (36b) can 

be inserted in the Lax equation (31) to get 

 

 (
𝜕

𝜕𝑥
+ 2𝑣) (

𝜕𝑣

𝜕𝑡
− 6𝑣2 𝜕𝑣

𝜕𝑥
+

𝜕3𝑣

𝜕𝑥3) .                  (37) 

 

Clearly, the second bracketed term of eq. (37) must be equal 

to zero. Thus we identify that 𝑣 must be a solution of the 

mKdV equation. 

In the above we have obtained the Lax pair of the mKdV 

equation from that of the KdV equation by using a simple 

mapping between u and v as given in eq. (34). But the general 

problem of finding Lax pairs for nonlinear evolution 

equations is quite complicated. Without going into such 

details we present below the result of Lax pairs for a number 

of physically important equations. As opposed to the third-

order equations as considered above we shall consider now a 

fifth-order equation. 

 

 
𝜕𝑢

𝜕𝑡
+ 5𝑢2 𝜕𝑢

𝜕𝑥
+ 5𝑢

𝜕3𝑢

𝜕𝑥3 + 5
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑥2 +
𝜕5𝑢

𝜕𝑥5 = 0,     (38) 

 

given by Sawada and Kotera (SK) [13]. The Lax pair for eq. 

(38) is given by 

 𝐿 =
𝜕3

𝜕𝑥3 + 𝑢
𝜕

𝜕𝑥
 ,                             (39𝑎) 

 

and 

 

𝐵 = 9
𝜕5

𝜕𝑥5 + 15𝑢
𝜕3

𝜕𝑥3 + 15
𝜕𝑢

𝜕𝑥

𝜕

𝜕𝑥
+ (5𝑢2 + 10

𝜕2𝑢

𝜕𝑥2).     (39𝑏)  

 

Although the algebra is little lengthy, using eq. (39a) and eq. 

(39b) one can get eq. (38). In the following we provide the 

Mathematica program to compute the KdV, mKdv and SK 

equations from their Lax pairs.  

 

KdV Equation  

 

f:= ψ[x,t] 

g:=u[x,t] 

LaxL[f_]:=-D[f,{x,2}]+g f 

LaxB[f_]:=-4 D[f,{x,3}]+6 g D[f,x]+3 f D[g,x] 

Simplify[LaxB[LaxL[f]]- LaxL[LaxB[f]]-D[g,t] f] 

 

mKdV equation 

 
f:= ψ[x,t] 

g:=v[x,t] 

LaxL[f_]:=-D[f,{x,2}]+(D[g,x]+gˆ2) f 

LaxB[f_]:=-4 D[f,{x,3}]+6 (D[g,x]+gˆ2) D[f,x]+3 D[(D[g, 

x]+gˆ2),x] f 

Simplify[LaxB[LaxL[f]]-LaxL[LaxB[f]]-D[(D[g,x]+ gˆ2),t] 

f]. 

 

Sawada and Kotera equation 

 

f:= ψ[x,t] 

g:=v[x,t] 

LaxL[f_]:=D[f,{x,3}+g D[f,x]] 

LaxB[f_]:=9 D[f,{x,5}]+15 g D[f,{x,3}]+15 D[g,x] 

D[f,{x,2}]+(5 gˆ2+10 D[g,{x,2}]) 

D[f,x] 

Simplify[LaxB[LaxL[f]]-LaxL[LaxB[f]]-D[g,t] D[f,x]] 

 

In the following we shall present results for the Lax pairs of 

a number of physically important nonlinear evolution 

equations. 

The NLS equation: The nonlinear Schrödinger (NLS) 

equation is given by [12] 

 

 𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 2𝜆|𝑢|2𝑢 = 0,                  (40)  
 

with 

 

 𝑢(𝑥, 0) = 𝑢0(𝑥) ∈ 𝑆(ℜ).                  (41)  

 

Here 𝑆(ℜ) denotes Schwartz class of rapidly decaying 

functions. The classical equation (40), for 𝜆 = 0, gives the 

well known Schrödinger equation in quantum mechanics. 

When 𝜆 = 1 we obtain the focusing NLS equation and for 

𝜆 = −1, the defocusing NLS equation. The equations have 

applications in various fields such as acoustics, optics as well 

Bose-Einstein condensates [14]. In addition to the KdV 

equation, the equation (40) also represents another canonical 
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example of the (1+1)-dimensional partial differential 

equations. For each of the focusing and defocusing NLS 

equations there exists an inverse scattering transform. The  

focusing NLS equation associated with the system of linear-

ordinary differential equations 

 

             
𝑑𝜉

𝑑𝑥
= −𝑖𝜆𝜉 + 𝑢𝜂,                       (42𝑎) 

             
 

and 

 

 
𝑑𝜂

𝑑𝑥
= 𝑖𝜆𝜂 − 𝑢∗𝜉 ,                         (42𝑏)  

 

is known as the Zakharov-Shabat system [15]. Here asterisk 

denotes complex conjugation. The corresponding Lax pair is 

given by 

 

 𝐿 = (
𝑖𝜕𝑥 𝑖𝑢

−𝑖𝑢∗ −𝑖𝜕𝑥
),                        (43𝑎) 

  

and 

 

 𝐵 = (
2𝑖𝜕𝑥

2 + 𝑖|𝑢|2 −2𝑖𝑢𝜕𝑥 − 𝑖𝑢𝑥

−2𝑖𝑢∗𝜕𝑥 − 𝑖𝑢𝑥
∗ −2𝑖𝜕𝑥

2 − 𝑖|𝑢|2).    (43𝑏) 

 

For the defocusing nonlinear Schrödinger equation 

 

 𝑖𝑢𝑡 + 𝑢𝑥𝑥 − 2|𝑢|2𝑢 = 0,                      (44) 

 

the associated linear differential equations are 

 

 
𝑑𝜉

𝑑𝑥
= −𝑖𝜆𝜉 + 𝑢(𝑥, 𝑡)𝜂,                    (45𝑎) 

 

and 

 

 
𝑑𝜂

𝑑𝑥
= 𝑖𝜆𝜂 + 𝑢∗(𝑥, 𝑡)𝜉,                   (45𝑎) 

 

with the corresponding Lax pair  

 

𝐿 = (
𝑖𝜕𝑥 −𝑖𝑢
𝑖𝑢∗ −𝑖𝜕𝑥

),                       (46𝑎) 

 

and 

 

𝐵 = (
2𝑖𝜕𝑥

2 − 𝑖|𝑢|2 −2𝑖𝑢𝜕𝑥 − 𝑖𝑢𝑥

2𝑖𝑢∗𝜕𝑥 + 𝑖𝑢𝑥
∗ −2𝑖𝜕𝑥

2 + 𝑖𝑢∗ ),       (46𝑏) 

   

The sine-Gordon equation: This hyperbolic partial 

differential equation given by [16]  

 

 𝑢𝑥𝑡 = sin 𝑢,                               (47) 

  

is associated with the linear system 

 

 
𝑑𝜉

𝑑𝑥
= −𝑖𝜆𝜉 −

1

2
𝑢𝑥(𝑥, 𝑡)𝜂,              (48𝑎) 

 

and 

 
𝑑𝜂

𝑑𝑥
= 𝑖𝜆𝜂 +

1

2
𝑢∗(𝑥, 𝑡)𝜉,                 (48𝑏)  

 

The corresponding Lax pair is given by 

 

 𝐿 = (
𝑖𝜕𝑥 𝑖

𝑢𝑥

2

𝑖
𝑢𝑥

2
−𝑖𝜕𝑥

) ,                     (49𝑎) 

 

and  

 

 𝐵 =
1

8
(∫ − ∫ )𝑑𝑦 [cos (

𝑢(𝑥,𝑡)+𝑢(𝑦,𝑡)

2
) (

1 0
0 1

) +
∞

𝑥

𝑥

−∞

sin (
𝑢(𝑥,𝑡)+𝑢(𝑦,𝑡)

2
) (

0 −1
1 0

)] .       (49𝑏) 

 

 

IV. AKNS HIERARCHY AND ZERO- 

CURVATURE REPRESENTATION 
 

The so-called Lax pair representaton for the KdV equation 

was given by Lax himself [5]. However, a similar Lax pair 

for the standard nonlinear Schrödinger (both focusiong and 

defocusing) was found by Zakharov and Shabat [15] and its 

integrability was established by Zakharov and Manakov [17]. 

Simultaneously, with the works in [11] and [13], Ablowitz, 

Kaup, Newell and Segur [6] introduced a more general kind 

of Lax pairs and thus provided a systematic method to find 

new integrable systems which constitute the so called AKNS 

hierarchy. In the approach of [6], one begins by introducing 

a 2 × 2 linear eigen-value problem 

 

 
𝜕Φ

𝜕𝑥
= 𝑈Φ,                                 (50a) 

 

and 

 

 
𝜕Φ

𝜕𝑡
= 𝑉Φ ,                               (50b) 

 

for the nonlinear evolution equation. Here 𝑈 and 𝑉 are 

traceless matrices given by 

 

 𝑈 = (
−𝜂(𝑥, 𝑡) 𝑞(𝑥, 𝑡)

𝑟(𝑥, 𝑡) 𝜂(𝑡)
),                 (51𝑎) 

and 

 

 𝑉 = (
𝐴(𝑥, 𝑡) 𝐵(𝑥, 𝑡)

𝐶(𝑥, 𝑡) −𝐴(𝑥, 𝑡)
).                 (51𝑏) 

 

The element 𝜂(𝑡) is the time dependent spectral parameter 

and 𝑞(𝑥, 𝑡), 𝑟(𝑥, 𝑡), 𝐴(𝑥, 𝑡), 𝐵(𝑥, 𝑡) and 𝐶(𝑥, 𝑡) are real 

functions of space and time variables. From the integrability 

condition of eq. (50a) and eq. (50b) i.e. Φ𝑥𝑡 = Φ𝑡𝑥 it is rather 

straightforward to see that the traceless matrices 𝑈 and 𝑉 are 

constrained by the zero curvature condition [18]. 

 

𝑈𝑡 − 𝑉𝑥 + [𝑈, 𝑉] = 0.                         (52) 
 

From eqs. (31) and (52), it is apparent that 𝑈 and 𝑉 represent 

the matrix Lax pair of the nonlinear equation. The differential 

representation of the Lax pairs as given in eq. (32), eq. (36) 
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or eq. (39) are not symmetric either in 𝜕𝑥 or in 𝑢. As opposed 

to this the matrix Lax pair appears to be symmetric. The price 

we pay to bring in this symmetry, whatsoever, is that 𝑈 and 

𝑉 are now square matrices, and Φ, a column vector. It may 

be of some interest to know why eq. (52) has been given the 

name zero curvature condition and or representation. 

In general theory of relativity the gravitational field is 

associated with spacetime curvature [19]. It turns out that the 

electromagnetic field is also associated with curvature not of 

space-time as those in the relativity theory but of an internal 

space defined by 𝑈(1) principal bundle over space time [20]. 

It is well known that the electric and magnetic fields can be 

packaged in the so-called field strength tensor such that 𝐹0𝑖 =
𝐸𝑖 𝑐⁄  and 𝐹𝑖𝑗 = ∑ 𝜖𝑖𝑗𝑘𝐵𝑘𝑘  for 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 3, where 𝑐 is the 

velocity of light. Thus the field strength is a measure of 

curvature. Specializing to (1+1)-dimension written as 𝑥0 = 𝑡, 

𝑥1 = 𝑥 and introducing the scalar and vector potentials 𝐴0 

and 𝐴1 we have 𝐹01 = 𝜕𝑡𝐴1 − 𝜕𝑥𝐴0. In non-abelian gauge 

theories relevant to the strong and weak interactions, 𝐴0 and 

𝐴1 become square matrices and the field strength acquires an 

extra commutator term such that 𝐹01 = 𝜕𝑡𝐴1 − 𝜕𝑥𝐴0 +
[𝐴1, 𝐴0]. Now if we use the mapping 𝐴1 → 𝑈 and 𝐴0 → 𝑉 we 

see that the consistency condition (52) is similar to that of 

𝐹01, the zero curvature of the non-abelian gauge field. Hence 

eq. (52) has been given the name zero curvature condition. 

For the KdV equation the matrix Lax pair of AKNS is 

given by 

 

𝑈 = (
0 𝑢 − 𝜆
1 0

),                         (53𝑎)  

 

and  

 

 𝑉 = (
𝑢𝑥 −4𝜆2 + 2𝜆𝑢 + 2𝑢2 − 𝑢𝑥𝑥

4𝜆 + 2𝑢 −𝑢𝑥
).    (53𝑏) 

 

The matrix Lax pair representation for the Zakharov-Shabat 

system or the focusing NLS equation can be written as 

 

 𝑈 = (
−𝑖𝜆 𝑢
−𝑢∗ 𝑖𝜆

),                         (54𝑎) 

  

and 

 

 𝑉 = (
−2𝑖𝜆2 + 𝑖|𝑢|2 2𝜆𝑢 + 𝑖𝑢𝑥

2𝜆𝑢∗ − 𝑖𝑢𝑥 2𝑖𝜆2 − 𝑖|𝑢|2).          (54𝑏) 

 

The defocusing NLS equation is characterized by the matrix 

Lax pair 

 

 𝑈 = (
−𝑖𝜆 𝑢
𝑢∗ 𝑖𝜆

) ,                          (55𝑎) 

 

 

and 

 

 𝑉 = (
−2𝑖𝜆2 − 𝑖|𝑢|2 2𝜆𝑢 + 𝑖𝑢𝑥

−2𝜆𝑢∗ + 𝑖𝑢𝑥 2𝑖𝜆2 + 𝑖|𝑢|2).          (55𝑏) 

 

The focusing mKdV equation corresponds to the matrix Lax 

pair 

 

    𝑈 = (
−𝑖𝜆 𝑢
−𝑢 𝑖𝜆

),                       (56𝑎) 

 

and 

 

𝑉 = (
−4𝑖𝜆3 + 2𝑖𝜆𝑢2 4𝜆2𝑢 + 2𝑖𝜆𝑢𝑥 − 𝑢𝑥𝑥 − 2𝑢3

−4𝜆2𝑢 + 2𝑖𝜆𝑢𝑥 + 𝑢𝑥𝑥 + 2𝑢3 4𝑖𝜆3 − 2𝑖𝜆𝑢2 ).  (56𝑏) 

 

The matrix Lax pair for the sine-Gordon equation is given by 

 

 𝑈 = (
−𝑖𝜆 −

1

2
𝑢𝑥

1

2
𝑢𝑥 𝑖𝜆

),                   (57𝑎),     

 

and 

 

 𝑉 =
𝑖

4𝜆
(

cos 𝑢 sin 𝑢
sin 𝑢 − cos 𝑢

).                 (57𝑏) 

 

 

V. GEOMETRY OF THE ZERO CURVATURE 

CONDITION 

 
In the above we have cited a few examples to point out that 

soliton equations satisfy the curvature condition. The relevant 

mathematical framework underlying this formalism is 

embedded in noncommutative geometry [21]. In the 

noncommutative geometry an associative but not necessarily 

commutative algebra replaces the algebra of smooth 

functions on a manifold. A differential calculus on the 

algebra is then regarded as the most basic geometric structure 

on which further geometric concepts like connections can be 

defined. In the case of KdV, sine-Gordon and sinh-Gordon 

equations, one can find 𝑆𝐿(2, ℜ)-connection 1-form (gauge 

potentials) such that the condition for vanishing curvature (or 

‘field strength’) 

 

 𝐹 = 𝐷𝐴 + 𝐴𝐴 = 0,                          (58) 
 

is equivalent to the respective soliton equation. Thus there is 

a special geometric feature related to the integrability of 

nonlinear equations. We shall try to bring out some 

geometrical properties of the zero curvature representation of 

nonlinear equations relating to propagation of solitons in one-

dimensional space. 

We begin by noting that for nonlinear differential 

equations, the zero curvature condition is obtained from the 

compatibility condition of eq. (50a) and eq. (50b). Equation 

(50a) implies the motion of the auxiliary function Φ(𝑥, 𝑡) 

in the (𝑥, 𝑡) - plane [22] in the 𝑥 direction with a square 

matrix. Similarly, eq. (50b) refers to the motion of Φ(𝑥, 𝑡) in 

the (𝑥, 𝑡) - plane in the 𝑡 direction with the square matrix 𝑉. 

Written explicitly, the integrability and compatibility 

condition read 

 

 
𝜕

𝜕𝑥
(

𝜕

𝜕𝑡
Φ(𝑥, 𝑡)) =

𝜕

𝜕𝑡
(

𝜕

𝜕𝑥
Φ(𝑥, 𝑡)).              (59) 
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Equation (59) has a simple geometrical interpretation as this 

equation describes connections on a two-dimensional vector 

bundle over the (𝑥, 𝑡) - plane. More specifically, eq. (50a) 

shows the ‘parallel translation’ of Φ(𝑥, 𝑡) in the 𝑥- direction 

while eq. (50b) implies similar ‘parallel translation’ along the 

𝑡 -direction. The matrices 𝑈 and V stand for the so-called 

connection coefficients. A connection is defined to represent 

zero curvature if the parallel translation between two points 

is independent of the path connecting them. Thus the 

compatibility condition (59) represents the integrability of 

the nonlinear equation leading to soliton solutions. 

 

 

VI. CONCLUDING REMARKS 
 
In this work we have followed a historical viewpoint to 

introduce the inverse spectral method as a very useful tool for 

solving a class of nonlinear evolution equations and 

emphasized that the equations solvable by this method 

support soliton solutions. All equations considered here can 

be represented by two linear differential operators often 

called the Lax pair. In addition to the differential form of the 

Lax pair, we have considered the matrix Lax pair which are 

constrained by zero curvature condition. Wherever possible, 

simple geometrical interpretation is sought for the results 

presented. The nonlinear differential equations soluble by the 

use of inverse scattering theory and endowed with Lax pair 

leading to zero curvature representation are often referred to 

as integrable systems. However, there is no strict definition 

of integrability. The most successful technique to investigate 

the integrability of nonlinear ordinary as well as partial 

differential equations consists in applying the so-called 

Painleve analysis for their singularity structure [23]. This 

viewpoint asserts that a nonlinear partial differential equation 

is completely integrable iff after similarity reduction it 

coincides with any of the six Painleve equations. Any 

nonlinear differential equation that passes the Painleve test 

possesses infinite number of conserved densities. An 

important physico-mathematical implication of having 

infinite number of conserved densities is that for a given 

integrable equation one can obtain a hierarchy of higher-

order equations by taking recourse to the use of a hereditary 

operator [24]. The higher-order equations so generated share 

the same spectral problem as was used to solve the mother 

equation in the hierarchy. The auxiliary spectral problem, 

however, changes as one goes along the hierarchy.  
Zakharov and Faddeev [25] developed the Hamiltonian 

approach to integrability of nonlinear evolution equations in 

(1 + 1)- dimensional systems as considered in this paper. 

Almost simultaneously, Gardner [26] interpreted the KdV 

equation as a completely integrable Hamiltonian system with 

𝜕𝑥 as the relevant Hamiltonian operator. A significant 

development of the Hamiltonian theory is due to Magri [27] 

who established that integrable Hamiltonian systems have an 

additional structure. They are bi-Hamiltonian i.e. 

Hamiltonian with respect to two different compatible 

Hamiltonian operators. One of the important criteria for a 

nonlinear partial differential equation to be integrable is that 

it should possess bi-Hamiltonian structure.  
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