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Abstract 
In this article I shall describe an easily constructed apparatus for an experiment on winding motion in a spiral-like 
trajectory in three dimensions. The experimental results show how the total time of the process depends on the initial 

speed, and the total time has its maximum value of 16.3s for a speed of 2.67m/s. The experimental results were in 

good agreement with the theoretical predictions. The analytical solution of the problem is original. 
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Resumen 
En este artículo se describe un aparato de fácil construcción para un experimento sobre el movimiento de aire en una 
espiral en tres dimensiones. Los resultados experimentales muestran cómo el tiempo total del proceso depende de la 
velocidad inicial y el tiempo total que tiene su valor máximo de 16,3s para una velocidad de 2,67m/s. Los resultados 
experimentales se encontran en buena concordancia con las predicciones teóricas. La solución analítica del problema 
es original.  
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I. INTRODUCTION  
 

Many texts [1, 2, 3] contain conical pendulum whose ball 

travels in a horizontal circle. The ball is suspended by a 

string. If a pole suddenly stands upright into the circle, the 

string winds around the pole until the ball ultimately hits 
the pole. Let us consider the total time of the process for a 

initial speed of the ball theoretically. We can guess the 

total time will be short when the initial speed is very low 

or very high. Then, let us calculate the initial speed when 

the total time has its maximum value, and compare it the 

experimental result. This problem has not been published 

yet. 

 

 

II. EXPERIMENTAL PROCEDURE AND RE-

SULTS 

 
Let us assume that the angular velocity of the pole is the 

same as that of the ball, which is allowed to swing in a 

horizontal circle and so has a circular path of radius r0 with 

a constant speed v0. If we look at the apparatus from 

above, we can measure r0 using a scale (a ruler or similar 

on the bench below). Then, using the value of r0, the value 

of v0 is given by the formula: 
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Here l0 = 1.0 m, a = 8.0×10－3 m and g is the acceleration 

due to gravity, 9.8 m/s2. The mass of the ball is 6.4 ×10－2 

kg and its diameter is 2.4×10－2 m. The length of the pole 

is about 1.3 m.  

In this apparatus only the top of the pole can rotate. A 

hand - drill can be used to rotate the top using a long metal 

rod (to which the top is firmly attached) which passes 

through a tube: the lower end of the rod is held in the 

chuck of the hand - drill. The tube and the drill are 
clamped to the edge of the bench to keep the rod upright 

and to ensure it is able to rotate smoothly. The handle of 

the drill is turned by hand at a steady rate so that the top of 

the pole rotates with a constant speed. 

If the top stops abruptly, the ball moves almost along a 

quadrant with the same constant speed of v0, since a is 

very small compared with l0 (a << l0). The ball takes time 

t1 to move along the quadrant, and t1 is a quarter of period 

of conical pendulum. Then, t1 is given by the following 

formula: 
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After this quarter revolution, the ball travels (during time 

t2) in a spiral -like trajectory as the string winds around the 

pole until the ball ultimately hits the pole. The total time, t0 

= t1 + t2, is measured by a stopwatch, which can be read 

accurately to within 0.1 s. 
The purpose of this experiment is to show how t0 depends 

on the initial speed v0. The experiment was carried out 

many times at different initial velocities less than 3.8 m/s 

(which correspond to the maximum speed required to keep 

this particular pole from swinging due to tension). 

In Figure 2, the circles indicate experimental points. 

Figure 3 is a stroboscopic photograph for an initial 
velocity of 1.4 m/s. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

FIGURE 1. The apparatus for measuring the time t0. Only the top of the pole can rotate. 
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FIGURE 2. t0 as a function of v0. The solid line is calculated, 

and circles ( ) are experimental points.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
FIGURE 3. Stroboscopic picture of winding motion. 

 

 
 

 

III. THEORY 
 
Let us consider the time t2 for a given velocity of the ball 

v0 theoretically, assuming bulk of the ball, mass of the 

string and air resistance are negligible. As shown in Fig.4, 

the string is fastened at a point A.  

At time t1, right after the quarter revolution, the string 

is tangent to the side of the pole, and it makes an angle φ0 
below horizontal line. At an arbitrary time t1 + t, the 

position of the ball is B’, and the string makes an angle φ 

with respect to the horizontal. If the point of contact 

between the string and the pole moves from B to C in a 

very small interval of time dt, the ball moves from B’ to C’ 

in the same time and its incremental change of height is 

dh; at the same time the angle φ is changed by dφ. We can 

then write  

 

)0(cos ddldh .・・・・(3) 

 

The pull of the string, T, does not work, since the 

displacement is perpendicular to T at all times. Hence, 

using the principle of conservation of energy, 

2
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1
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The instantaneous speed v of the ball is defined as  
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ds
v ,・・・・・・・・・(5) 

 

where ds is the increment of displacement which the ball 

has during the short time interval dt. This speed can be 
separated into horizontal and vertical elements represented 

by dl cos  and dl cos , respectively (see Fig. 

5); where θ is the angle BOA subtended by arc BA  

(as shown in the plane figure of Fig. 4), and dθ is the 

angular displacement in the time interval dt. Hence, 
22

)()(cos ddds   , and equation (5) can be 

rewritten as  
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From the geometry of the situation (Fig. 4), it is seen that 

the distance with -dl (dl < 0) from B to C is given by the 

relation 
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FIGURE 4. The string is fastened at point A, and it leaves the pole at point B and C at time t1 + t and t1 + t+dt, respectively. 

 

 
From equations (6) and (7) 
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Since a is very small as compared with l0, the value of dφ 

will also be very small as compared with the value of dθ. 

Hence we can neglect the term 
2

/ dd . This 

approximation leads us to the following formula, 
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FIGURE 5. The resultant of mg and T is the centripetal force cos
2

lmv  approximately. 

 

 
On the other hand, when the ball is at the point B’, the two 

forces acting through the common point B’ are the weight 

of the ball mg and the string tension T, as shown in Fig. 5. 

The resultant of mg and T is the centripetal force 

cos/
2

lmv , approximately. Therefore,  
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In Eq. (9), we also have neglected a very small force 

)( d/dgm  that tends to retard the motion. 

Differentiating Eq. (9), we find 
 

dv
v

dl
l

dd
1

2
1

tan2cot .・・・(10) 

 

We therefore get the following formula from Eqs. (3), (4), 

(9) and (10) 
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Integration of both sides of equation (11) gives 
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Eq. (12) gives a relationship between l and φ. 

In the case of a true point particle, we find that the final 

value of φ is zero by setting l = 0 in this formula. By 

differentiating equation (12) with respect to time t1 + t, we 

find that 
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On the other hand, from equations (8), (9) and (12), we 

find  
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Combining equations (13) and (14), we get 
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Integration of both sides of equation (15), and using the 

fact that at the final time t0 = t1 + t2 and the angle φ = 0, we 
obtain 
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Using following equation, 
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can rewrite equation (2) into  
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Then, the total time t0 is given by  
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Furthermore from equation (9), the relationship between v0 

and φ0 is given, 
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Using equations (18) and (19), and the computer software 

“Mathematica”[4], we can calculate numerical values of 

the time t0 for different initial velocities v0. The program is 

as follows: 
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Where ][ 0vf is the total time t0 . 

 

 

IV. CONCLUSION 
 
In Fig. 2, the solid curve is the calculated curve which is 

based on equations (18) and (19), and it shows how the 

time t0 depends on v0. We can see from this figure that t0 

has its maximum value of 16.3 s for a speed of 2.67 m/s, 

and the experimental results were in good agreement with 

the calculated values. The analytical solution of the 

problem is original.  
In the future, we will construct an apparatus to keep the 

vertical pole from swinging due to tension at high speed. 
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