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Abstract 
Assorted real life examples are indispensable to teaching, however, most engineering vibration textbooks are deficient 
in such examples, and most of them are exclusively mass-spring systems, especially the multi-degree-of-freedom case. 
To enrich lecture content, some triple-pendulum instances are presented. The parameters of these instances are tuned 
to have closed-form solutions. The principal vibration and free vibration of one instance are presented. These 
examples can be illustrated clearly and promptly in limited time and writing space. 
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Resumen 
Una variedad de ejemplos de la vida real son indispensables para la enseñanza, sin embargo, la mayoría de los libros de 

texto de ingeniería de vibraciones son deficientes en tales ejemplos, y la mayoría de ellos son exclusivamente los 
sistemas de masa-resorte, sobre todo el multi-grado-de-casos de libertad. Para enriquecer el contenido de la clase, se 
presentan algunas instancias del péndulo triple. Los parámetros de estas instancias están ajustados para tener 
soluciones de forma-cerrada. Se presentan la vibración principal y la vibración libre de un ejemplo. Estos ejemplos se 
pueden  ilustrar clara y prontamente en tiempo limitado y en el espacio escrito. 
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I. INTRODUCTION 
 

In lectures on vibration, versatile examples and exercises 

are indispensable. However, the available material in most 
engineering textbooks [1, 2, 3, 4] is predominantly based on 

the mass-spring system, especially the case of the multi-

degree-of-freedom systems. We have presented examples 

based the discrete mass and massless beams [5].  

The pendulum has been an essential component in 

physics at least from the times of Galileo's finding the 

isochrony of a pendulum [6]. Even today, research on 

pendulums is still very active, for example, the chaos and 

stability of pendulums [7, 8]. Recently, we investigated the 

stability of the human's stance posture using the model of 

inverted pendulum with a coiled spring [9], which has 
drawn attention from some researchers[10, 11]. Gauld has 

written a systemic review on pendulums in the physics 

education [12]. 

The simple pendulum is a canonical example of a single 

degree-of-freedom (DOF) system in engineering vibration 

textbooks, while the double pendulum is frequently included 

in textbooks as an example of two-DOF systems. Even so, 

in such textbooks, most examples with DOF greater than 

two are limited to mass-spring systems, because of the 

complexity of alternative examples. A classroom example 

should be concise in both time and space, so that it can be 

finished in the class time and the limited space of a 

blackboard or a few multimedia slides. Further, too 

complicated or lengthy examples become difficult to grasp 

the main theme and record in note form. 

In this paper, some triple-pendulum instances will be 
presented. The triple-pendulum is a nonlinear system. It can 

be linearized for small amplitude vibration, which is 

highlighted in an engineering vibration course. Even after 

linearization, to solve a general problem necessitates an 

iterative approach, which is not suit for a classroom lecture.  

The triple-pendulum instances given here have closed-

form solutions, because of their elaborate parameters. They 

can be lectured in a timely and efficiently manner in 

classroom lecture. 

 

 

II. PHYSICAL MODEL 
 

The triple-pendulum is shown in Fig. 1. For enhancing 

diversity, a spring is attached to m3. The three massless 

trusses have lengths of l1, l2 and l3 individually. The three 

discrete mass are m1, m2 and m3 individually. We assume 

that the spring does have deformation when all the three 

trusses are vertical. 
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FIGURE 1. The model of triple-pendulum with a spring. 

 

 

III. MATHEMATICAL MODEL 

 
The Lagrange's equations are used here, so the generalized 

displacements, 1, 2 and 3 are selected as in Fig. 2. 
The velocity analysis is illustrated in Fig. 2, thus the 

kinetics for three masses are: 
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FIGURE 2. Movement analysis. 
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where we have used the approximation: 
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The potential energy is 
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The Lagrange's equations are 
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All the quantities involved are as follows, 
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Substituting all the above quantities into Eq. (1) leads to 
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IV. INSTANCES 
 

The eigenvalue problem of Eq. (2) necessitates an iterative 

computation, which is not tractable in a theoretical course. 

Here we set 1 2 3 1 2 3,   m m m m l l l l      , and give the 

follow instances with closed-form solutions. 
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where 
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   . The expressions for the 

eigenvectors are rather lengthy, thus only the approximate 
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The corresponding eigenvectors are 
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The corresponding eigenvectors are 
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It is very interesting to note that the first order eigenvector 
has a node. Normally, for a mass-spring system, the first 

order eigenvector (modal vector) does not have a node. 
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The corresponding eigenvectors are 
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IV. PRINCIPAL VIBRATION 
 
Discussions in this and the next sections are pertaining to 

instance 2 from section 3. Denote the modal shape matrix 

(eigenvector matrix) as 
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Introducing the modal transform{ } [ ]{ }q  arrives at the 

uncoupling equations as 
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where q1, q2, and q3, are modal variables.  

The solutions of Eq. (3) are the following sinusoidal 

functions 
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where ( 1 ~ 3)i ip i   are the modal frequencies. The 

solutions are depicted in the first row of Figure 3. 

The modal shapes are shown in the third row of Figure 3. 

It should be noted that they are not drawn as per the vectors 

1 2 3,  and    , because the angular values do not have visual 

meanings. The absolute geometric positions in the modal 

shape plots are calculated according to the angular values. 

This also explains why there is a node in 1 , because 1  is 

only a mathematical eigenvector. The mathematical 

eigenvector had better be transformed to the position in the 

physics space, so that a vivid image can be discerned easily. 

 

 



Triple-pendulum Model for Studying the Vibration of Multi-Degree-of-freedom Systems 

Lat. Am. J. Phys. Educ. Vol. 5, No. 1, March 2011 35 http://www.lajpe.org 

 

0 5 10 15

2

1

O

3

2

1

O

3

m
as

s 
#

0 5 10 15 0 5 10 15

P
ri

n
ci

p
al

 V
ib

ra
ti

o
n

S
n
ap

sh
o
t 

O
v
er

la
y

M
o
d
al

 S
h
ap

e

(a) 1st order (b) 2nd order (c)  3rd order

t  g/l t  g/l t  g/l

q 1
(t

)

q 2
(t

)

q 3
(t

)

m
as

s 
#

node

node

node

node

node

node

 
 

FIGURE 3. Principal vibrations. 

 

 

The second row in Fig. 3 shows the overlap of system 

profile snapshot taking at many instants. The stable nodes 
and vibration patterns (modes) can be discerned easily. The 

number of nodes increases with the modal orders.  

 

 

V. FREE VIBRATION 
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Thus the free response for each modal order as per Eq. (4) is  
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According to the transform { } [ ]{ }q  , the free response 

in the physical space is 
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Their trajectories are depicted in Fig. 4 (a), (b), (c) 

individually. These curves are not sinusoidal any longer, 

and look rather complicated. However Eq. (5) indicates that 

these complicated curves are composed by the simple 
principal vibrations. 

Fig. 4d is parallel to Fig. 3d, the mass positions in the 

physical space. This plot shows that the free vibration does 

not have a stable node and pattern like the principal 

vibrations 
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FIGURE 4. Free vibrations. 
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VI. CONCLUSION 
 

The triple-pendulum with a spring was investigated using 

Lagrange's equations and linearization. Some pendulum's 

instances with closed-form value solutions are presented. 

These instances can be used as lecture examples or exercises. 
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