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Abstract 
The paper describes the geometrical method of the apparent vertical (MAV for short) for the solution of a large class 
of problems in elementary classical mechanics: perturbation of a dynamical system by a constant or nearly constant 
force, not necessarily small. The basic idea is to rotate the system of coordinates so that the z-axis coincides with an 
―apparent‖ acceleration of gravity. The solution in the rotated system is simpler than in the unrotated coordinates, and 
it is usually known. The methodology is illustrated with a spherical pendulum in a uniform field of force, where the 
standard solution in terms of elliptic functions is directly applicable in the rotated system of coordinates. The trajectory 
of the bob in the usual coordinates attached to the laboratory is obtained by a straightforward rotation of coordinates, 

thus allowing calculation of the observable parameters: amplitude, period, and plane of oscillation of the pendulum. 
 
Keywords: spherical pendulum dynamics, perturbed dynamical systems, geometrical solution of equations of motion. 
 

 

Resumen 
En el documento se describe el método geométrico de la vertical aparente (para abreviar, MAV, por las iniciales en 
inglés) para la solución de una gran clase de problemas en la mecánica clásica elemental: la perturbación de un sistema 
dinámico de una fuerza constante o casi constante, no necesariamente pequeña. La idea básica consiste en hacer girar 
el sistema de coordenadas de modo que el eje z coincide con una ―aparente‖ aceleración de la gravedad. La solución 
en el sistema de rotación es más sencillo que en las coordenadas sin rotar, y es generalmente conocido. La 
metodología se ilustra con un péndulo esférico en un campo uniforme de fuerza, donde la solución estándar en 
términos de funciones elípticas es directamente aplicable en el sistema de coordenadas asociado con la vertical 
aparente. La trayectoria del movimiento en las coordenadas habituales ancladas al laboratorio se obtiene mediante una 
sencilla rotación de coordenadas, lo que permite el cálculo de los parámetros observables: amplitud, periodo, y el 

plano de oscilación del péndulo. 
 
Palabras clave: dinámica del péndulo esférico, sistemas dinámicos perturbados, solución geométrica de las 
ecuaciones de movimiento. 
 
PACS: 45.30.+s, 45.20.-d                                                                                                                         ISSN 1870-9095 

 
 
 

I. INTRODUCTION 

 
Problems in elementary classical dynamics are represented 

by an equation of motion, usually referred to a system of 

coordinates O X Y Z, selected so that the z-axis coincides 
with the local direction of terrestrial gravitational attraction 

g. Let us assume that the solution to a given problem is 

already known. What happens if we introduce an additional 

force F, approximately constant, or slowly varying in time? 

The solution to the new equation of motion is usually known 

from the theory of differential equations. Here we want to 

introduce an alternative geometrical method, which is 

entirely equivalent to the usual mathematical procedure, that 

we call the method of the apparent vertical (MAV for short). 

The MAV may be applied to any dynamical system subject 

to a constant or nearly constant (not necessarily small) 

perturbation, but the method is illustrated here with the 

spherical pendulum perturbed by the gravitational fields of 

the sun and the moon, problem that is of some current 

interest. [1, 2, 3, 4, 5, 6, 7]. 

The basic idea of the MAV is to make a rotation of 

coordinates to a new system OX*Y*Z*, where the direction of 

the rotated z*-axis coincides with an apparent gravity g*. The 

rotation of coordinates used in the MAV is reminiscent of 

the graphical algorithms use to define the addition of 

bivectors in geometric algebra (recall that an axial vector in 
the usual vector algebra is the same as a bivector in| 

geometric algebra, [8, 9]).  

 



Héctor A. Múnera and Héctor R. Maya 

Lat. Am. J. Phys. Educ. Vol. 5, No. 1, March 2011 23 http://www.lajpe.org 

 

II. THE METHOD OF THE APPARENT VERTI-

CAL  
 

Rather than entering into explanations in abstract, the 

method of the apparent vertical (MAV) is introduced with an 
example. Consider an ideal pendulum of mass m suspended 

from an inextensible and massless cord of length L in a 

laboratory rigidly attached to our earth. The support is an 

ideal fixed point C, located at the origin of a Cartesian 

system of coordinates S = (x, y, z), with the z-axis pointing in 

the same direction as the local vertical g = gk defined by the 

plumb line, i.e. g is the vector sum of earth’s gravitational 

acceleration plus the centrifugal acceleration associated with 

earth’s rotation. As usual, i, j, k are the unit vectors of a 

Cartesian frame of reference. The pendulum is released at t 

= 0 from x = q = L sin θ0, y = 0, z = h = L cos θ0 as shown in 

figure 1A. The position of the bob at any time t is given by r 
= xi + yj + zk, and its equation of motion is  

 
2

2
,

d
m m m m

dt

r
A g T g T                  (1) 

 

where constant force F = mA = m(Axi + Ayj + Azk) 

continuously acts upon the bob, say a constant wind, the 

time dependent tension is T, and the apparent gravity g* is,  
 

( )
x y z

A A A gg A g i j k .               (2) 

 
The last expression on the right-hand side of Eq. (1) means 

that the dynamics of the pendulum in a system with apparent 

gravity g*
 

is the same as the usual dynamics of a pendulum 

subject to gravity g only. We just need to rotate the system 

of coordinates S = (x, y, z) in an appropriate manner to get S* 

= (x*, y*, z*) so that the new z*-axis is aligned with the 

direction of g*.  
 

 
 
FIGURE 1. Plane of oscillation, force diagrams, and rotation of 
coordinates in 3D space. A) Usual coordinates in the laboratory. 
The z-axis is aligned with the local vertical g. The y-axis points out 

of page, and F may have components in y. Point O (often used as a 
reference) is the projection of support C onto the laboratory 

horizontal floor. Line CR is in the zx-plane. B) Rotation of 
coordinates to align the z*-axis with g*, and to include line CR in 

the z*x*-plane. In general angles α, θ, and θ* are in different planes. 

C) At the moment of release, the pendulum is in the z*x*-plane. 
 
 

We denote all variables in the apparent vertical coordinates 

by an asterisk added to the corresponding concept in the 

unrotated laboratory coordinates. Formally, in the rotated 

coordinates S*
 

the position of the bob at any time t is given 

by r*
 

= x
*
i
*
 + y

*
j
*
 + z*

k
* (evidently r = r

*). The new equation 
of motion is  

 
2

2

d
m m

dt

r
g T .                            (3) 

 

For convenience in the description of the problem in S*, we 

have imposed the further condition that the physical line CR, 

defined by the initial release of the bob, is in the same 
geometry in both systems of coordinates S and S* (compare 

figures 1A and 1C). From Eq. 3 it follows that all standard 

solutions for the planar, spherical and physical pendulums 

are applicable in S* provided that we write g
* instead of g. 

Obviously, force F does not appear any longer.  

Note that the apparent acceleration of gravity g* defined 

by Eq. (2) is not the same as the effective or equivalent 

acceleration of gravity defined in the context of Einstein’s 

principle of equivalence (A has a different sign), see, for 

instance, [10]. It is stressed that in the MAV there is one 
frame of reference (the laboratory) only, but two systems of 

coordinates S and S* with a common origin.  

 

 

III. ROTATION OF COORDINATES WHEN Ay=0 
 

Let α be the angle between the usual vertical g and the 

apparent vertical g* given by  

 

·
cos .z

A g

gg g

g g
                         (4) 

 

The magnitude of the apparent gravity is  
 

2 2
2 2 2 2

1
x y z x y z

g A A A g g k k k ,    (5) 

 

where the reduced components of acceleration A are kj = 

Aj/g for j = x, y, z.  

Consider now the elementary text-book problem of a 

pendulum released at time t = 0 from x = q, y = 0, z = h, with 

F = 0. The bob moves on a plane of oscillation P defined by 

the two forces acting upon the pendulum — weight W = mg, 

and tension T. In figure 1A the plane P coincides with the 

zx-plane. Let us focus on the simple case Ay = 0, that is, F 

contained in the zx-plane, i.e. there are no components of 

force transversal to plane P. In this case, both α and g
∗ 

are 
contained in the same plane P, as shown in figure 2 for the 

case Ax > 0 and Az > 0.  
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In Fig. 2 it is evident by direct inspection that the angular 

amplitude of oscillation is 
0 0

. 
 

If α < θ0, then q* = L 
0

sin 
0

 < q; if θ0 = α, then q* = 0, 

and the pendulum remains at rest; and, if α > θ0 the 

pendulum behaves as if released from the left side (i.e. the 

negative x*-axis), and q* may be smaller or larger  

 

 
 
FIGURE 2. Two dimensional (2D) rotation of coordinates when 
Ay = 0. A) Usual 2D-diagram of force. B) Rotation around the y-
axis through angle α aligns the z-axis with the apparent vertical g*. 
This example corresponds to Ax > 0, Az > 0. The angular amplitude 

of oscillation is 
0

 = θ0 − α. If α < θ0 then q* = L sin 
0

 < q; if 

α=θ0, q
* = 0, and the pendulum remains at rest, and if α > θ0 the 

pendulum behaves as if released from the left side. 

 

 
than q depending upon the magnitude of acceleration Ax. 

Similar considerations apply for Ax < 0.  

For an arbitrary initial amplitude of release q* or 
0

, the 

standard solution for a pendulum released from rest is [11, 

12, 13] 

 

sin[ ( )], 0, cos[ ( )]x L t y z L t ,        (6) 

 

0 0
( ) 2 arcsin  s ); n (t n t t n ,           (7) 

2 2

0 0
where sin [ / 2], and  /n g L . 

  

The paramenter n is the module of the Jacobi elliptic 
function sn. As usual, the period of oscillation of the 

pendulum τ is obtained from the period of the Jacobi elliptic 

function sn  

 

0
4K n

Jacobi
,                       (8) 

 

where K is the elliptic integral of the first kind  

 

/2

0 2
.

1 sin

dq
K n

n q
                      (9) 

 

Then, 
 

0

2
24

0

4
4 ,

1
x z

K n L
K n

g k k
   

 (10) 

 

where τ0 is the period of the pendulum when F = 0, given by  

 

0 0

0

4
4 ( )  for arbitrary , 

K n L
K n

g
       (11) 

0 0

0

2
2 /   for sma  .llL g             (12) 

 

Evidently, τ < τ0 if Az > 0 any Ax, i.e. if force F pulls 

downwards. However, if Az < 0 there is no definitive trend.  

The trajectory of the pendulum in laboratory coordinates 

S is easily obtained from Eq. (6) by a simple rotation Rα 

applied to the position vector r*
 

= (x*, y*, z*) in the rotated 

system S
∗
:  

 

cos 0 sin

0 1 0

sin 0 cos

x x x

y y R y

z z z

. (13) 

 

Example 1. Vertical force F.  

 

A pendulum is released from rest with initial conditions θ = 

θ0, x = L sin θ0, y = 0, z = cos θ0, ẋ  = 0, ẏ  = 0, z˙= 0 in the 

presence of force F characterized by kx = 0, ky = 0, kz ≠ 0, 

and kz ≠ −1. This is the trivial case of an apparent vertical 

acceleration with same direction as g, but different 
magnitude g* = g(1 + kz). Eq. 10 reduces to 

0
/ (1 )

z
abs k , so that τ < τ0 if kz > 0 and kz < −2, but 

τ > τ0 if −2 < kz < 0. Neither the amplitude, nor the plane of 

oscillation of the pendulum are modified by a vertical force 

F.  

 

Example 2. Longitudinal force F.  

Consider a pendulum released as in previous example in 

the presence of force F producing acceleration parallel to the 

direction of oscillation, i.e. kx ≠ 0, ky = 0, kz = 0, leading to g* 

> g. If kx > 0 there is a counter-clockwise rotation through 
angle α given by  

 

2

2

1
1 , cos

1
x

x

g g k
k

.                (14) 

 

If kx < 0 the rotation is clockwise. Substituting the explicit 

values for x*, y*, z* given by Eq. 6 into Eq. 13, 
 

cos sin ( ) sin cos ( ) x L t L t , 

sin ) [ ( ]x L t , 

0 y y ,                                       (15) 

sin sin ( ) cos co ) s (z L t L t , 
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cos ) [ ( ]z L t . 

 

Previous equations mean that in the usual laboratory 

coordinates a longitudinal force induces a phase angle α, that 

is not present in the elementary case. 

 

 
 
FIGURE 3. Angular position θ as a function of time t for different 

values of kx > 0. It also shows the values of the corresponding 
angles α in dashed lines. The arrow indicates the direction of Ax. 

 

 

 
 
FIGURE 4. Angular position θ as a function of time t for different 
values of kx < 0. Dashes lines and arrow as in figure 3. 

 

 

Fig. 3 shows the angular position θ as function of time, for 

θ0 = 0.1 rad, L = 1 m, g = 9.8 m/s
2 

and for different values of 

kx. The curve kx = 0 is the elementary solution in the 

presence of terrestrial gravity only. When kx > 0 the bob 

oscillates with amplitude θ0 − α around the apparent 

vertical, that in the graph corresponds to horizontal dashed 
lines for each kx. Note that in the laboratory the amplitude 

decreases as kx increases, until the pendulum remains at rest 

for kx = tan θ0. For large magnitudes of F, kx > tan θ0, the 

amplitude of the oscillation steadily increases.  

 

 

The roots θ = 0 represent the successive passages of the 

pendulum through the local vertical. The time difference 

between two consecutive passages corresponds to one half 

period τ1/2. It is evident from Fig. 3 that the time taken for 

half a period in the left-region (i.e. negative θ) is longer than 

in the right-region (or positive θ), then τ1/2−left < τ1/2−right for 

kx > 0; the opposite holds for kx < 0 (see figure 4). In both 

cases the full period remains approximately constant: τ1/2−left 

+ τ1/2−right = τ. 

 

 
 

FIGURE 5. Trajectory in the zx-plane, for θ0 > 0 and kx > 0, values 

of kx as in Fig. 3. The direction of Ax is given by the arrrow.  

 

 

Figs. 5 and 6 respectively show the trajectories in the zx-

plane for the same values of kx shown in Fig. 3 and 4, where 

the apparent vertical for each kx is plotted as a dashed line. 

Note that amplitude and period are symmetrical with respect 

of the apparent vertical, but are asymmetrical with reference 

to the local, or laboratory, vertical. The shorter half-period 

on the left (right) side is evident from Fig. 3 and 5 (Figs. 4 

and 6 respectively).  
The period of oscillation τ in the presence of a 

longitudinal force is shorter than the usual period τ0 in the 

absence of F:  
2

0

02
4

1
41

x

x

k

k

.                    (16) 

 

Summarizing, a longitudinal F shortens the period of 

oscillation and modifies the amplitude of oscillation in the 

laboratory, but the plane of oscillation of the ideal pendulum 

remains the same. 
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IV. GENERAL ROTATION FROM S-TO S*-

COORDINATES  
 

In the general case Ay ≠ 0, the plane P* (or z*x*−plane) is 

defined by g* and T* when t = 0, and does not coincide with 
the zx−plane. Line CR is a physical connection between the 

point of suspension C and the position of the bob R at the 

instant of release, so that CR is the intercept between planes 

P and P*. The rotation to transform from S to S
∗ 

hinges 
around line CR. Three successive operations are required: 

(1) Rotate the system of coordinates S, through angle θ0 so 

that the z-axis coincides with CR; (2) Rotate the plane of 

oscillation P through angle ψ to the new orientation P*; (3) 

Rotate back through angle 
0

 so that the z*-axis coincides 

with g*, thus obtaining system of coordinates S*. 

 

 
 

FIGURE 6. Trajectory in the zx-plane, for θ0 > 0 and kx < 0, 

for values of kx in Figure 4. The arrow is the direction of Ax.  

 

 

Note that the single rotation discussed in previous section is 

the special case ψ = 0, so that there is no change of 

orientation in the second rotation. Hence, α = θ0 − 
0

 is 

produced by rotations 1 and 3. Now for the details of the 

general case (see Fig. 7): 

(1) Let t = i sin θ0 + k cos θ0 be a unit vector along CR, 

with direction opposite to the tension T acting on the bob. A 

counter-clockwise rotation through angle θ0 around the y-
axis aligns the z-axis with unit vector t, i.e. with the 

pendulum at the instant of release. Let us call this 

intermediate system S x y z . The transformation is 

described by  

0 0

1 1

0 0

cos 0 sin

; % 0 1 0

sin 0 cos

x x

y R y R

zz

.      (17) 

 

(2) The second rotation is through angle ψ –the angle 

between the normals to the zx-and z*x*-planes. Evidently, 

unit vector j´ is normal to the usual oscillation plane P. The 
normal vector N to the oscillation plane P is N = (g* x t) / g*: 

 

0 0 0

1
{ cos sin c os

y z x
A A g A

g
N i j  

0
sin }

y
Ak .              (18) 

 

and its magnitude N is 
 

2
2

0 0
1 sin cos

y z x

g
N k k k

g
.       (19) 

 
Note the axial-vector N is formed by unit vectors, but its 

magnitude is not 1. A rotation around the z -axis through 

angle ψ brings the x -axis onto the oscillation plane P*. This 

intermediate system of coordinates is S'' x''y"z" . Angle ψ 

is contained in the x y −plane (proof omitted) and is given 

by  

0 0

·
cos (1 ) sin cos

z x

g
k k

N Ng

N j
. 

 

After this rotation the x − and the z −axes are contained 

in P*, while the y −axis is perpendicular to P* (see Fig. 7). 

Formally, the second rotation is given by 

 

2 2

cos sin 0

; sin cos 0

0 0 1

x x

y R y R

z z

,          (20) 

 

(3) The third rotation aligns the z -axis with the effective 

vertical g*. This requires a clockwise rotation through angle 

0
 around the y -axis, given by  

 

0 0

3 3

0 0

cos 0 sin

; 0 1 0

sin 0 cos

x x

y R y R

z z

,       (21) 

 

where angle 
0

 is defined by the direction of CR and vector 

g* (see figures 1B and 1C) so that 

 

0 0 0

·
cos sin 1 cos

x z

g
k k

g g

t g
.   (22) 
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Since the behavior of the pendulum is observed in the 

laboratory, we need the opposite transformations from the 

apparent vertical S*−coordinates into the S-coordinates in 

the laboratory, That is, 

 

 
 
FIGURA 7. The three rotations required to pass from S-
coordinates to S*-coordinates. 

 

 

1 2 3
,

t t t

x x

y R y R R R R

z z

,                    (23) 

 

where 
t

i
R  denotes the transpose of matrix Ri, i = 1, 2, 3. The 

individual terms of the rotation matrix R are 

 

11 0 0 0
cos cos c s os inr , 

12 0
cos sin r , 

13 0 0 0 0
cos cos sin sin cos r , 

21 0
sin co sr , 

22
s cor ,                                                                      (24) 

23 0
sin sin r , 

31 0 0 0 0
sin cos cos cos sin r , 

32 0
si n sinr , 

33 0 0 0 0
sin cos sin cos cos r . 

 

For the particular case of a pendulum released from rest in 

the zx−plane, the generic solution in laboratory coordinates 
is 

11 13
 x r x r z , 

21 23
 y r x r z ,                             (25) 

31 33
 z r x r z , 

 
Example 3 Transversal force F.  

Consider a pendulum released from rest, from the same 

position as in examples 1 and 2, subject to a transversal 

force leading to kx = 0, ky ≠ 0, kz = 0. In this case 

2

2

1
1 , co

1
 s

y

y

g g k
k

, 

2 2

00

0 2 2

sin +cos
cos , 

1 1

y

y y

k
N

k k
,            (26) 

0

2 2

0

sin
cos

s
 

in +%
y

k
. 

 

Substituting (26) into (24) and using (25), we obtain the 

solution in the laboratory system: 
 

2

0

2 2

0

1 sin
sin ( )

sin

y

y

k
x L t

k
,                    (27) 

0

2 2 2

0

% cos
cos ( ) sin ( )

1 sin

y

y y

L k
y t t

k k
,     (28) 

2

0

2 2 2

0

% cos
cos ( ) sin ( )

1 sin

y

y y

kL
z t t

k k
.     (29) 

 

Fig. 8 shows the 3D-trajectories in the laboratory for θ0 = 

0.1 rad, L = 1m, g = 9.8m/s
2 

and various ky. For ky = 0 
oscillation ocurs in the zx−plane, which is the usual case in 

the absence of force F. When ky is increased, the oscillation 

plane is tilted in the same direction of force F = mAy (see 

Fig. 8). Note that in the laboratory the trajectories are 

curved, although for small values of ky the curvature is not 

perceptible. This is illustrated with the projections shown in 

Fig. 9 for larger values of ky, also note that the amplitude of 
oscillation increases with ky.  

In the present example the period varies analogously to 

Eq. 10 for the longitudinal case. Then, a transversal force 

modifies all observable parameters of the pendulum: period, 

amplitude and plane of oscillation.  

It is easy to show that the projection of the trajectory on 

the xy-plane is not a straight line, but a section of a rotated 

ellipse. Eliminating time from equations 27-28 we obtain an 

ellipse 

 

2 2 2 20

0 2

1 2 cot
csc 1

y y

x y xy L
k k

,      (30) 

 
The intercept of this projection with the y-axis represents the 

displacement of the bob in the direction of F:  

 

2
1

y

c

y

Lk
y

k
.                              (31) 
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FIGURA 8. Trayectory in the xyz-space for different values of ky. 

When ky increases the apparent vertical (dashed lines) is tilted in 
the same direction as force mAy, and the curved shape of the 
trayectory is manifest. 
 

 

 
 
FIGURA 9. Projection onto the xy-plane of the trajectories plotted 
in Fig. 8. 

 

 

V. BEYOND THE ELEMENTARY PENDULUM  
 

The earth is a rotating laboratory, thus leading to the well-

known Foucault effect, where the plane of oscillation of the 

pendulum (constant in an inertial frame) rotates clockwise. 

There are other more subtle effects related to the initial 

conditions at the instant of release t = 0, typically from rest 

relative to the terrestrial laboratory. However, relative to an 

inertial system the tangential velocity of the center of mass 

of the pendulum is not the same as the velocity of the point 

of support, and -even more important- the derivatives of the 

Euler angles that represent spin around the center of mass 

are non-zero.  

The ideal Foucault pendulum has a massive bob sup-

ported by a long wire, which is conventionally modelled by 

the ideal spherical pendulum discussed in the foregoing 
sections. Perturbations arising from the non-zero initial spin 

of the bob are usually neglected. This is acceptable because 

Foucault pendulums are usually operated subject to a 

periodic driving kick that keeps the bob in a given 

oscillation plane, and because other real life complications, 

like air-dragging, are not even mentioned. For the 

paraconical pendulum, however, non-zero initial conditions 

may be relevant. The effect of a force F upon the Foucault 

pendulum may be easily calculated by just writing the 

solutions that are reported in the literature for the rotated 

system S
*
, followed by a rotation back to the usual 

coordinates S. [14, 15, 16, 17].  

Let us consider an ideal spherical pendulum released 

with initial velocity. In this case there is initial angular 

momentum and the pendulum moves in 3D. Due to the 

constraint r* = L there are two degrees of freedom only. In 

spherical coordinates the relevant variables are θ* and φ*, 

which satisfy the following equations (see any intermediate 

mechanics textbook, for instance [12], [13] or [18]),  

 
2

2

02 2 2 2
sin cos sin 0,

sin sin

z zL L

mL mL
,     (32) 

 

2 2sin

zL

mL
,                               (33) 

 

where 
z

L  is angular momentum along the z*-axis. 

Eq. (32) can be integrated to obtain the usual solution for 

angle θ* in terms of the constants of motion E and 
z

L  

 
2

2
2

0 2 2

2
2 cos

sin

z
E L

mL mL
.        (34) 

 

Eqs. (33) and (34) formally solve the problem in the rotated 

coordinates S*. In Cartesian coordinates, the trajectory of the 

bob in S* is  
 

sin cos ,  sin sin ,  cosx L y L z L .  (35) 

 

As before, the trajectory of the pendulum in laboratory 

coordinates S is easily obtained from Eqs. (35) using the 

rotation of Eq. (23)  

 

Example 4 Release with transversal velocity  

In example 3 let the bob have initial transversal speed 
0

y  
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= -0.0001 m/s, which is the right order of magnitude for a 

paraconical pendulum of 1 meter of length released from 

rest in the laboratory. Numerical solution of the system of 

equations 33 through 35 yields the curves shown as figure 10 

for the rotated coordinates S*, where continuous curves 

represent ky = 0.1, and dashed curves ky = 0. Two 

trajectories are shown: the first oscillation of the pendulum 

between 0 < t < τ (approximately horizontal), and an 

oscillation 5 minutes later (i.e. 300s< t < τ + 300s). Figure 

10A shows the 3D curve, and 10B the projection on the 
x*y*−plane. Evidently, the presence of initial velocity 

generates ellipses with a clear precession (clockwise in this 

example). Figure 11 shows the trajectories in the laboratory 

S, obtained from figure 10 using Eq. 23. The 3D paths are in 

fig. 11A, and the projections on the xy−plane are in figure 

11B; note that the oscillations at t = 0, and t = 300s cannot 

be visually discriminated. The insets in fig. 11B show the 

details at the crossing of the pendulum with the y-axis, 

crossing that is used to observe the evolution of the minor 

axis of the ellipses. These variations cannot be observed by 

the naked eye, but are observable with laser rangers. 
 

 

 
 
FIGURA 10. Trajectories in the rotated coordinates S*, for ky = 0.1 
(continuous lines) and ky = 0 (dashed curves). The first oscillation 
(approximately horizontal) and an oscillation 5 minutes later are 
shown. The arrow indicates the direction of the precession. A) 
Trajectories in 3D-space. B) Projection onto the x*y*-plane.  

 

 

Paraconical pendulums are short and have a complex form, 

that is captured by the tensor of inertia. The point of 

suspension C in the Romanian pendulum moves within a 

small region at the bottom of a cup, [19] but in the case of 

Allais [2] and Goodey’s pendulums the point of suspension 

C may wander more freely upon a horizontal plane. 

Paraconical pendulums are similar to spinning tops, with 

two differences: the center of mass of the pendulum is below 
the point of contact with the support, and the spin of the 

pendulum (i.e. rotation around its center of mass) is small. 

Goodey’s paraconical pendulum is symmetric, so that the 

tensor of inertia is diagonal; but Allais and the Romanian 

pendulums are asymmetric, so that the tensor of inertia 

contains non-zero terms outside the diagonal. With the 

appropiate modifications, the extensive literature on tops 

may be applied to the paraconical pendulum, for instance 

advanced texts on mechanics as [20] and [21], or the modern 

method of geometric algebra as revived by Hestenes, [8], 

[22].  

 

 

 
 
FIGURE 11. Same as in figure 10, but in laboratory coordinates 
system S. The oscillations at t = 0 and 300s cannot be visually 
discerned. A) 3D-trajectories. B) Projection onto the laboratory 
xy−plane. Two insets show enlarged details at the y−axis crossing.  

 

 

VI. CONCLUDING REMARKS 
 

The paper described the method of the apparent vertical 

(MAV) for the solution of dynamical problems in 

elementary classical mechanics. The MAV amounts to a 

geometrical interpretation of the usual procedure of change 

of variables for the solution of differential equations. The 

method was illustrated with the dynamics of a simple 

pendulum r → r*, g → g* = g + A. The action of an 

additional force F produces a change in the orientation of the 

plane of oscillation of the pendulum. The solution is based 

on a rotation of the system of coordinates so that the vertical 
direction coincides with the apparent acceleration of gravity 

g*.  

An important implication of the MAV is that problems 

with forces other than terrestrial gravity are reverted back to 

the elementary dynamical problem of a body subject only to 

its weight. Then all theorems related to conservation of 

energy and momentum in a constant gravitational field 

remain valid in the rotated system.  

The MAV is valid for constant force F, but may be 

applied as a first-order approximation for slowly varying 

forces, for instance, the gravitational effect of the sun and 

the moon upon the dynamics of the pendulum. The 
individual effect of each component of force –vertical, 

longitudinal and transversal to the plane of oscillation– upon 

amplitude, period and orientation of the oscillation plane 

was shown.  

In the particular case of the effect due to the gravitational 

field of the sun and the moon, one may expect tiny variations 

of the amplitude, period and plane of oscillation of the 

pendulum in the course of a day (ressembling harmonic 

variations over 24 hours), that can be detected if the 
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sensitivity of the instruments used to measure the period and 

the position of the pendulum is suffcient. During a solar 

eclipse, the period may increase or de-crease, depending of 

the location of observation –i.e. of the relative values of the 

three force components produced by the combined pull of 

sun and moon–, and of the orientation of the plane of release 

of the pendulum relative to the sun and moon.  

In a future paper the method will be applied to the 

physical paraconical pendulum, to calculate the evolution of 

spin and plane of precession arising from the non-zero initial 
conditions; of particular interest is to establish to which 

extent the effects discussed in the present paper may explain 

the variations of period, [23, 19, 24] and plane of oscillation 

[2] observed during solar eclipses.  
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