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Abstract 

In this paper, gyroradius for a pointlike charged particle is derived from the Kaluza-Klein theory by introducing a 

magnetic field. It shows that hypothetic Klein’s pointlike particle in the five dimensions spacetime can be 

circumgyrating in a magnetic field to cover the volume that forms a determined particle in three dimensions. Some 

analogies of this derivation with the considered topology in the String Theory and M-Theory are commented. 
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Resumen 

En este trabajo, el giroradio para una partícula puntual cargada es derivado de la teoría de Kaluza-Klein por la 

introducción un campo magnético. Esto muestra que la hipotética partícula puntual de Klein en cinco dimensiones de 

espacio-tiempo puede estar circumgirando en un campo magnético pata cubrir el volumen que forma una determinada 

partícula en tres dimensiones. Algunas analogías de esta derivación con la topología considerada en la Teoría de 

Cuerda y la Teoría-M son comentadas. 
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I. INTRODUCTION 
 

As known, mathematician Th. Kaluza in 1921 [1] proposed 

a model that seeks to unify the two fundamental forces, 

gravitation described by the Einstein’s general relativity [2] 

and electromagnetism described by the Maxwell’s equations 

[3] by multiplying gravity and the Maxwell stress tensor, 

where the product is a matrix in five dimensions, deriving 

an expression for the geodesics in the fifth dimension 

spacetime. The resulting equations can be separated into 

further sets of equations, yields the equivalent to Einstein 

field equations together with Maxwell’s equations. 

In 1926, Oskar Klein proposed that the extra spatial 

dimension is curled up in a circle of very small radius at 

each point in four-dimensional spacetime [4, 5]. This means 

the fifth dimension would have the topology of a circle, 

with a radius of the order of the Planck length. Five 

dimensional spacetime then has the topology R4×S
1, and the 

fifth coordinate y is periodic, 0 ≤ m y ≤ 2π, where m is the 

inverse radius of the circle. Thus, hypothetical pointlike 

particle moving a short distance along that axis would return 

to where it began completing a period. The distance that the 

pointlike particle can travel before reaching its initial 

position is said to be the size of the dimension. This spatial 

extra dimension is considered in the scale of very small 

particles, giving rise to the so-called Kaluza–Klein theory 

[6]. 

In this paper, gyroradius for a pointlike charged particle 

is derived from the Kaluza-Klein theory by introducing a 

magnetic field, where the hypothetic Klein’s pointlike 

particle can be circumgyrating in a magnetic field to cover 

the volume that forms a determined particle in three 

dimensions. Some analogies of this derivation with the 

considered topology in the String Theory and M-Theory are 

commented. 

 

 

II. KALUZA-KLEIN THEORY OVERVIEW 
 

O. Klein expression for the period of a hypothetical 

pointlike charged particle in the fifth dimension spacetime is 

given by 

 

4

16

2 16
,

G
hc

hc h Gc
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q q qc



 
               (1) 

 

where l is the length of the period, h is the Plank constant, c 

is the speed of light, q is the particle's electric charge and  

is the so-called Einstein gravitational constant, with G being 

Newton’s constant.  

Replacing with the known value for electron into 

expression (1), it is given that l ≈ 810-33 m. Having the 
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quantic moment expression defined as p = h/l, moment from 

expression (1) for a 5d spacetime reference gives 

 

5
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                          (2) 

 

where m is the rest mass of the pointlike particle and    5x = 

v5 is the velocity of a hypothetical charged particle in the 5d 

spacetime. 

 

 

III. INTRINSIC GYRORADIUS IN THE 

KALUZA-KLEIN THEORY  
 

It is possible to confirm that expression (2) has not 

dimensional consistency, but gives the relation between 

gravity (given by G) and charge for a charged particle in a 

5d spacetime. It is required to complement expression (2) in 

order to reach dimensional consistency [7], for instance by 

introducing terms of permeability and permittivity of free 

space and their equivalence with square of speed of light, 

hence 
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where 0 is the permeability of free space and 0 is the 

permittivity of free space. Expression (3) conserves relation 

between gravity and charge as given in expression (2) 

having also dimensional consistency.  

As considered in the Kaluza-Klein theory, fifth 

dimension would have the topology of a circle, where a 

pointlike charged particle defined in 5d spacetime describes 

a circular motion to cover a three dimensional reference 

through time. Thus, period of the circular motion of a 

pointlike charged particle is given by 
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where m is the rest mass of the particle, t is the time and B is 

the magnetic field. Considering velocity as distance per time 

and replacing in expression (4), hence 
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reordering terms of expression (3) to be compared with 

expression (5), yields  
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Thus, magnetic field B is introduced in the complemented 

Klein’s equation (3) by the analogy with period of a 

pointlike charged particle circumgyrating. Simplifying 

expression (6) and reordering, yields 

 

5
2

0 0

1
.

16
r

G 


B

                           (7) 

 

After the reduction of terms for charge and mass, expression 

(7) shows the relation between both, gravity and 

electromagnetism for a pointlike charged particle 

circumgyrating in a magnetic field at the scale of 5d 

spacetime. Verification of relation between gravity and 

electromagnetism as given in expression (7) can be 

confirmed by developing this expression to reach the 

Einstein field equation solution with magnetic stress tensor 

[8]. Thus, from expression (7), inverse of square of radius, 

yields 
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where, 
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it is an equivalent expression of the magnetic field in terms 

of permittivity of free space. 

A tensor is generally defined as stress. A stress field is 

generally a force per unit area. Thus, “magnetic stress 

tensor” can be defined in a simple way as the force 

(magnetic part of Lorentz force FL for speed of light, in this 

case) per unit area A [9], where for a spherical surface is 

giving by 
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where TM
, is the magnetic stress tensor and indexes , 

run 1, 2, 3; which is included in the expression (8). An 

equivalent expression that includes the electric field can be 

derived by developing expression (10) in terms of 

permeability and permittivity of free space, and reducing 

yields 
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where E is the electric field and the Poynting vector [10] is 

given by 

0

1
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If the field is only magnetic some terms are reduced, 

expression (11) becomes 

 
2

,

0 0

1
,MT

c
 

 
  

B
E B                     (13) 

 

where B2 = Bx
2 + By

2 + Bz
2, which is a simplified equivalent 

expression of the magnetic Maxwell stress tensor [11], 

defined as 
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where δ, is Kronecker's delta, and it is proportional to the 

magnetic tension force [12], which is actually a pressure 

gradient and also a force density (N/m3) that acts parallel to 

the magnetic field. 

Furthermore, in two dimensions (for a given surface) 

scalar curvature is exactly twice the Gaussian curvature 

[13]. For an embedded surface in Euclidean space, this 

means that  
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where 1, 2 are the principal radii of the surface. For 

example, scalar curvature in S3 of a sphere with radius r is 

equal to 2/r2.  

In addition, from expression (1) it is given twice the 

Einstein gravitational constant in the Klein’s solution given 

by expression (1), having  
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Then, replacing expressions (14), (15) and (16) in 

expression (8), yields 
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and simplifying, scalar curvature can be written as   
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that is the Einstein field equation solution with the magnetic 

stress tensor, verifying expression (7). 

On the other hand, we can find out radius from 

expression (2) or its complemented expression (3) avoiding 

reduction of terms for charge and mass by considering that 

the pointlike charged particle in 5d spacetime is moving in a 

magnetic field B. Thus, dividing both sides of expression 

(3) by the magnetic field, hence  
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and reordering, yields  
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where r5 = r is the gyroradius (also known as radius of 

gyration, Larmor radius or cyclotron radius) [14], which is 

the radius of the circular motion of a charged particle in a 

magnetic field around a point called the guiding center, and 

it is proportional to the linear moment mv of the particle 

[15]. Expression (20) shows the intrinsic gyroradius in the 

Kaluza-Klein theory when a magnetic field is considered 

and terms for the dimensional consistency are included. 

As known, when a charged particle moves through a 

magnetic field, it experiences a force defined by the Lorentz 

force given by the cross product of the velocity and 

magnetic field as 

 

( ),L q F v B                              (21) 

 

where v is the instantaneous velocity vector of particle.  

Now if the velocity of the particle is perpendicular to the 

magnetic field, then Lorentz force will always act 

perpendicular to the direction of motion. Force provides the 

centripetal force and causing that particle moves in a circle 

(gyrate). Gyroradius or radius of the orbit can be derived 

from the magnetic centripetal force. According to the 

Newton’s second law, it is given by 
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where ac is the centripetal acceleration.  

Let us now consider that initial velocity is not parallel or 

perpendicular to the magnetic field, but it forms a given 

angle α with respect the magnetic field. On one hand, 

motion parallel to the field is uniform while for 

perpendicular motion is circular. Combination of those two 

motions is a helical path through time. Radius of the helix is 

given by  

 

0 sin
.

mvmv
r

q q
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                        (23) 

 

Sense of the motion of the helix depends of the sign of the 

charge. 

Frequency of this circular motion is known as the 

gyrofrequency or cyclotron frequency, defined in 

radian/second as 
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Those quantities only depend of the rate q/m and the 

magnetic field, and they are independent of velocity.  

Then, charge of the formed pointlike particle (that we call q1 

with mass m1) in 3d is equivalent to the charge density q1 

(charge per unit volume) created by the “small” pointlike 

charged particle in circular motion (that we call q2 with 

mass m2) in 5d spacetime when it covers a volume Vol1 

through time (Figure 1).  

 

 

 
 

FIGURE 1. Charged particle q2 moving in helical path through 

time in a magnetic field, covering volume of charged particle q1. 

 

 

Having that volume is equivalent to the matter per density 

of matter m, hence 
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The waveform described by the trajectory of the charged 

pointlike particle q2 occupies a volume during its motion 

through time to form the particle q1 (Figure 1) and its 

direction may be affected in presence of an electromagnetic 

field. Inducted magnetic orientation to the particle 

influences in its trajectory according to the vector of the 

magnetomotive force inducted to the particle by the 

magnetic field. The magnetic orientation (polarization) of 

the vibration frequency gives to the formed charged particle 

q1 a defined gyromagnetic orientation (spin). 

 

 

IV. ANALOGIES WITH THE STRING THEORY 
 

It is noticed that this motion of pointlike particle has some 

analogies with the interpretation of topology for a particle in 

N spatial dimensions as described in the String theory 

(mainly with Type 1 [16]) and M-theory (mainly in the P-

brane [17, 18, 19]), that is, a 0-brane is a zero-dimensional 

pointlike particle, a 1-brane is a string, that can either be 

open or closed, and a 2-brane is a "membrane" on a surface.  

In this case, a considered pointlike particle in 5d 

spacetime (that is perceived as a pointlike particle of 0-

brane from a 4d spacetime reference) describes a linear 

trajectory through time (worldline, Figure 2a), so that the 

particle does not cover a major space than its own volume. 

If the particle is now in motion along a one spatial 

dimension, vibrating with a given frequency, it will describe 

a linear path in 1d (1-brane, as a string) that will cover an 

area through time (worldsheet, Figure 2b). In this scenario, 

linear path by the vibration through time defines an open 

string [20] (since this string does not close in the time) that 

covers an area defining a corresponding topology with the 

String Type 1.  

Now, if the particle is also in motion along an additional 

spatial dimension, vibrating with a given frequency, it will 

describe a curved path in 2d along a surface will be a 

membrane in 2d (2-brane, Figure 2c). Additional spatial 

dimension that the particle covers during its motion 

becomes from the progress of time, where vibration of the 

particle in two dimension space through time will cover an 

additional spatial dimension to conform a volume in three-

dimensions (worldvolume, Figure 2c). It is an analogous 

scenario to the pointlike charged particle in circular motion 

in a magnetic field (Figure 1). 

By applying the ideas of quantum mechanics to strings it 

is possible to deduce the different vibration modes of 

strings, and that each vibration state appears to be a 

different particle. Thus, mass of each particle and the 

characteristics with which it can interact, are determined by 

the way the string vibrates.  

 

 

V. CONCLUSIONS  
 

This analysis shows that the Kaluza-Klein theory 

intrinsically contains gyroradius effect for a hypothetical 

pointlike charged particle in 5d spacetime, which can be 

derived by introducing a magnetic field. This consideration 

is compatible with the Einstein field equation solution with 

the magnetic stress tensor. In this analogy, motion of this 

pointlike particle through the spatial dimension is like a 

vibration that covers those spaces, as described by the 

Kaluza-Klein theory, then forming a pointlike particle in 

three dimensions. It is noticed that this description has some 

analogies with the String theory and M-theory, where in this 

case, topology of the motion of the pointlike particle in 1d 

and 2d are considered to form a 1-brane as open string and a 

2-brane, respectively.  
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FIGURE 2.Trajectory of a particle in spacetime traces a worldline. Similarly, particle vibrating that of a string or a membrane sweeps out a 

worldsheet or worldvolume, respectively. 

 

 

Regarding to the education, classical Kaluza-Klein theory 

is revisited describing the main concepts of this theory 

defined in the five-dimension space-time, where it is 

showed the possibility to apply some of the known 

equivalences to consider another possible properties from 

the classical theories. 
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