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Abstract 
We show a simulation for the free propagation of a Gaussian and multi-spatial soliton beam in a self-refractive 

waveguide through the Beam Propagation Method (BPM). We observed and conjectured that a Gaussian beam can be 

decomposed into Solitons by the propagation in a self-refractive media. We observe too that given the presence of 

nonlinearity these spatial solitons displays also self-bending phenomena. 

 

Keywords: Solitons, photorefractive and Kerr effects, nonlinear waveguides. 

 

Resumen 
Mostramos una simulación para la propagación libre de un haz solitónico multi-espacial en una guía de onda auto 

refractive mediante el Método de Propagacion de Haz (BPM). Observamos y conjeturamos que un haz Gaussiano 

puede ser descompuesto en Solitones por la propagación en un medio auto-refractivo. Observamos también que dada la 

presencia de no linearidad estos solitones espaciales muestran también el fenómeno de autoflexión. 
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I. INTRODUCTION  
 

The soliton was discovered with the experimental computer 

aid by the mathematicians Zabusky and Kruskal [1], but 

researchs on the topic began in the 19th century when 

Russell observed a big solitary wave in a watercourse near 

Edinburgh. His observation was reported to the British 

Association in 1844 [2]. He showed that this solitary wave 

has many particle properties, e.g., an elastic interaction, 

from the analogies with particles Zabusky and Kruskal 

named these waves, solitons. 

 In 1973 Hasegawa and Tapper [3] proposed that the 

pulse of the soliton could be useful in optical 

communications through of the constructive interplay in 

between nonlinearity and dispersion. They showed that the 

solitons propagate according to the nonlinear Schroedinger 

equation (NLS); this equation was solved previously by 

Zakharov [4] and by Satsuma and Yajima [5] with the 

inverse scattering method. Seven years later Mollenauer [6] 

showed experimentally the solitons propagation in an 

optical fiber. 

Recently, optical spatial soliton studies have been taken 

up [7, 8] due to the increasing need to transfer data in a 

faster and more efficient way as the optical technologies 

advance call for. Nowdays a good knowledge is important 

for the applications in information processing, considering 

the advantage provided by the nonlinearity in the media. 

Motivated by the above, we have made the present work. 

 

 

II. SOLITONS 
 

A. Nonlinear wave equation in a Kerr medium 

 

Nonlinearity is a property of the medium through which the 

light travels, and one important effect is the self-focusing, 

producing changes in the refraction index due to charges 

distribution in the cristal [9]. Although the optical field is 

smaller than the interatomic field, still focused with a laser, 

the nonlinearity is weak but observable. The relationship 

between the polarization vector  and the electric field 

vector  can be expressed as [10]: 

 

, 

 

where in general  are tensors. The nonlinear 

equation, for a media that does not respond instantaneously 

to the electric field  and nonlinear polarization , 
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whether , , , , and 

, is: 

 

 (1) 

 

We propose the next harmonic solution to the equation (1) 

 

, 

 

with  

    Now we consider a dielectric material block with 

thickness , and inside this block we propose plane-waves 

forms: , with  constant inside 

of the dielectric. 

   When an intense beam travels in a nonlinear 

homogeneous media the refractive index is changed in a 

nonuniform way, such that the media acts like a guide for 

its own light, this means, the beam makes its own guide. 

Whether light intensity has the same spatial distribution in 

the transverse plane, the beam propagates self-consistently 

without change in its spatial distribution. In this condition 

the diffraction is compensated by the nonlinear effect and 

the beam is confined to its own self-created guide; this self-

guided beam is called a soliton. This “self-guided” light in a 

Kerr optical medium is described by the Helmholtz 

equation 
 

                                (2) 

 

where the refractive index is function of the light intensity 

(I). Equation (2) can be expressed in the paraxial form. 

Considering now small nonlinear effects, this means that 

we can express the refractive index like , 

with , and , then we have 

 

     .                    (3) 

 

    Equation (3) is the Schröedinger nonlinear equation and 

one solution is [5]  

   

       ,             (4) 

 

where  is constant.  satisfies , and 

 is called the Rayleigh range [10]. 

    Applying the paraxial approximation we obtain 

 

            .               (5) 

 

    Finally, comparing equations (3) and (5) we get, 

 

                     (6) 

 

 

B. Beam Propagation Method (BPM) 

 

Now the next task is to propagate an electromagnetic field 

in a guide with length . Ad hoc, we use the Beam 

Propagation Method (BPM) [11], this method divides the 

distance L into n intervals of length and this is further 

divided in two. Considering now the jth interval; we carry 

out a free propagation in the first half of ; exactly in the 

central plane we perform a phase correction that mainly 

depends on the refractive index changes. Finally, in the 

second half, we carry out another free propagation between 

the last two planes. 

 

 

III. RESULTS 
 

Firstly, we show the characteristic of the self-refractive 

effect and finally the solitons propagation. In our daily life, 

we can see that a beam of light propagating in a media with 

constant refraction index disperses gradually as it move 

away from the source, e.g., the light of a lamp in the field. 

This method does not work to send information between 

distant points. To simulate this, we considered a Gaussian 

beam propagation through a waveguide with length 

, and width  (all units measured in length 

units), refractive index  and on air substrate 

, see Fig. 1. We see in this case (Fig. 1a) that the 

beam come into the guide normally , in the up to 

down direction, with wavelength , width=1.0 and 

located in the center of the guide . We see that the 

light is dispersed through the propagation in the waveguide, 

from now on we show in gray scale the light intensity, 

associating the white light to the maximum intensity and 

the black color to the zero intensity. In Fig. 1 b) we show 

the transversal sections of the electric field intensity , 

and we highlight the small effects. 

 

 

 

 

 
 
 
 
 
 
 

FIGURA 1. a) This graphic represents the laser intensity that 
propagate through a waveguide with constant refractive index. 
The  plot in b) shows the transversal sections magnitude of the 
electric field for the propagation of light in the linear media. 
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As mentioned before, in a cubic nonlinearity the self-

refractive effect appears changing the refraction index 

function of the light intensity, i.e., . 

When the cubic parameter  is negative, the refraction 

index is lower than  in regions where the intensity 

 , particularly is minimum in the center of the guide 

where the beam intensity is maximum, this suggest that the 

light disperses more quickly than in a media in which the 

refraction index is constant, Fig. 2 a) shows this effect. In 

Fig. 2 a) we have the same parameters conditions but  

 

 

 
 

FIGURE 2. a) The gray tones represents the laser intensity 

propagating in a waveguide with cubic parameter equal to -

3000.0. b) Transversal sections of the electric field intensity for 

the propagation in a self-refractive media with negative cubic 

parameter. 
 

 

now a cubic parameter . We observed in this 

case that the light disperses more quickly than in a linear 

waveguide, like in a negative lens. Fig. 2 b) shows the 

transversal sections of the electric field intensity in the 

same situation that Fig. 2 a), we see in both cases that the 

light interacts with the border of the waveguide and makes 

an internal interference pattern. We see in this figure that 

the light is brought out of focus more quickly than in a 

linear media. The following questions arises: Does the light 

remain focused when the cubic parameter is positive?,  

Could this process continue indefinitely focusing the light 

in such a way that the width is aproximately zero?. 

 The answer to the first question is: because of that the 

maximum refraction index is obtained where the light 

intensity is maximum, this focuses the light where the 

intensity is maximum, i.e., the light is self-focusing. For the 

second question we argued that if this process is repeated 

successively we could think that, therefore, the light 

focuses more every time, and at the same time also the 

refraction index increases, consequently focusing more 

light and so successively, but this process could not 

continue indefinitely because of the diffraction is present 

and the light is dispersed again, see Fig. 3. 

 We can say that the light propagation in a Kerr media is 

a consequence of the self-focusing which is generated by 

the self-refractive effect and the dispersion produced by 

diffraction; therefore the light cannot be focused to be 

considered zero-width. In Fig. 3 a) we show how the initial 

Gaussian beam intensity is self-focused when it propagates 

through a self-refractive waveguide with cubic parameter 

. We observe the last transversal sections of 

the electric field intensity, Fig. 3 b), and we note that there 

appears relative maximums next to the principal maximum, 

this confirm our comments about considering that the light 

focuses to zero-width, because strictly a portion of the light 

beam is out of the region of focusing. 

 

 

 
 
FIGURE 3. a) Graph in gray tones represent the laser 

intensity propagating through a guide with cubic parameter a3  = 

3000. b) Progressive section from the electric field intensity 

propagating in a self-refractive media with positive cubic 

parameter. 

 

 

Consider now a nonlinear waveguide with length , 

 and  on an air substract. Like in the last 

case, and we simulate come into the waveguide a Gaussian 

beam; with an angle , located now in  and 

changing in every simulation the cubic parameter of the 

waveguide. When the cubic parameter is zero we have a 

linear waveguide, and the light interacts with the border of 

the waveguide making an interference pattern, i.e., a group 

of dark and bright patterns, and after reflects propagating to 

the other side. Is evident from our simulation that through 

this trajectory the beam disperses gradually, see Fig. 4 a).  

 

 

 
 
FIGURE 4. Nonlinear cubic effect on the propagation  of a 

Gaussian beam for a3 equal to: a) 0.0, b) 40.0, c) 400.0, d) 

4000.0, e) 6000.0, and f ) 8000.0. 
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Whether we increase the cubic parameter from  

to 400.0 we see that the light is focuses avoiding dispersion, 

see Figs. 4 b) and 4 c), respectively. We see again the 

sequences of self-focusing and dispersion effects, that is a 

characteristic of a self-refractive media, yet after interaction 

with the waveguide faces. Now we increase to 

, we observe that the Gaussian beam is 

decomposed in thin beams, see Fig. 4 d). These 

“lumithread” is dispersed in different angles, in apparent 

violation to the Snell’s law. We observe that these 

“lumithread” propagates almost without deformation, 

inclusive after the interaction between them. Whether we 

increase the parameter from  to 8000.0 (and 

) we see that these lumithread does not propagate 

in a straight line, moreover, when interact between them 

they deflect toward the left or right side from the original 

trajectory, see Figs. 4 e) and 4 f). 

    The self-bending has been verified in waves-tank, 

reproducing the historical experiment about solitons from 

Jhon Scott Russell [2] and C. Y. Gao et al. [8], and in 

nonlinear materials [15, 16]. With this we proved that these 

“lumithread” observed in the last figure are solitons. We 

conjecture that a Gaussian beam can be decomposed in 

solitons by the propagation through a self-refractive media; 

the definitive proof will be in the possibility that we may 

have a highly nonlinear media. 

 The solitons are waves that balance the self-focusing 

and dispersion produced by a self-refractive media, in this 

case is a solution of the nonlinear wave equation, and are 

waves travelling through a nonlinear waveguide without 

changes in its shape, see Fig. 5, Ref. [13, 14]. It is 

noteworthy that the width in a soliton depends on the cubic 

parameter and it does not an independent parameter, like in 

the Gaussian case. 

 

 

 
 
FIGURE 5. a) Gray  tones represents the light intensity 

produced by a soliton propagating through a nonlinear 

waveguide. b) Transversal sections of the electric field intensity 

for the soliton propagation. 

 

 

The soliton formation in a self-refractive waveguide is in 

according to with the work from Satsuma and Yajima and 

is called a multi-soliton (n-soliton) [5]; and that 

subsequently Nikolaus and Grischowsky [12] observed 

experimentally in an optical fiber and found about of fifty 

of them. Based on the above, in Fig. 6 we show a two-

soliton propagation; we observe a self-focusing with 

relative maximum next to the intense light; this relative 

maximum produces dispersión performing a periodic 

propagation, in according with [5, 7].  

 
 
FIGURE 6. a) Gray tones represents the light intensity 

produced by a two-soliton propagating through a nonlinear 

waveguide. b) Transversal sections of the electric field intensity 

for the two-soliton propagation. 

 

 

Considering now a three-soliton, we observe that the beam 

is divided in one and after in two beam with relative 

maximum next to them, producing again a periodic 

propagation, see Fig. 7. This result is in according with Ref. 

[10]. 

 

 

 
 
FIGURE 7. a) Gray tones represents the light intensity 

produced by a three-soliton propagating through a nonlinear 

waveguide. b) Transversal sections of the electric field intensity 

for the three-soliton propagation. 

 

 

Fig. 8 shows the propagation of two solitons with the same 

phase and width, separated 0.2 and cubic parameter 

, with a lenght . We observe that this 

propagation is periodical and similar to a two-soliton.  

 

 
 
FIGURE 8. a) Gray tones represents the light intensity 

produced by two solitons propagating very closely and with the 

same phases through a nonlinear waveguide. b) Transversal 

sections of the electric field intensity for the solitons propagation 

in a). 
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When the phase is different to zero the coupling is of 

another kind, in the Fig. 9 we show the last case but now 

with a phase difference of  between them. We 

observe that this propagation has a twist behavior that 

represents the multi-solitons propagation showed in Fig. 4. 
 
 

 
 
FIGURE 9. a) Gray tones represents the light intensity 

produced by two solitons propagating very closely and with a 

phase difference of  through a nonlinear waveguide. b) 

Transversal sections of the electric field intensity for the solitons 

propagation in a). 
 
 
We simulated the interaction between a soliton and the 

border of the waveguide; and we observed that the 

simulation is in according with the experimental result 

obtained by Rusell [2], the result is not shown.  

 

 

IV. CONCLUSIONS 
 

We have shown in a numerical way the propagation of 

different beams, illustrating particularly the multi-spatial 

solitons propagation in a self-refractive waveguide. Ours 

results allow us to conjecture and observe that a Gaussian 

beam can be decomposed into solitons by the propagation 

in a self-refractive medium. 
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