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Abstract 
It has recently became common that the authors of the physics textbooks describe, in general terms, the most important 
steps students have to follow in order to solve problems. The last step is usually a recommendation to “think about the 
result” in order to find out if it is reasonable. Nevertheless, the standard formulation of exercises is such that “thinking 
about the result” is likely to be left out or, in the best scenario, it can be used only to fix students’ careless math errors. 
In fact, it seems that the physics textbook authors have on their minds precisely this role for the “thinking about the 
result”. Even in the cases when the physical evaluation of the mathematically correct results is required explicitly, the 
students might not have the knowledge necessary to evaluate it in an appropriate way. In this article, a better way to 
formulate physics exercises is proposed.  In such a formulation the evaluation of the result cannot be avoided. 
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Resumen 
Recientemente se volvió común que los autores de los libros de texto describan, en términos generales, los más 
importantes pasos que los estudiantes tienen que seguir para resolver problemas. El último paso es usualmente una 
recomendación “piensa sobre el resultado” con el fin de determinar si es sensato. Sin embargo, la formulación estándar 
de los ejercicios es tal que es probable que el “pensamiento sobre el resultado” se omite o, en el mejor caso, se usa 
solamente  para arreglar los errores matemáticos que los estudiantes hacen por descuido. De hecho, parece que los 
autores de libros de texto de física tienen en su mente precisamente este papel del “pensamiento sobre el resultado”. 
Incluso, en los casos en que se requiere explícitamente la evolución física de los resultados que son matemáticamente 
correctos, puede ser que los estudiantes no tengan el conocimiento necesario para evaluarlos de manera apropiada. En 
este artículo, se propone una mejor manera de formular ejercicios de física. En tal formulación la evolución de los 
resultados no se puede evitar. 
 
Palabras clave: resolución de problemas de física, pasos del experto, pensamiento crítico, errores en los libros de 
texto, diseño de problemas de física. 
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I. TWO STANDARD RECOMMENDATIONS 
FOR THINKING ABOUT THE RESULTS: 
CHECKING MATH OR PHYSICS? 
 
Problem solving, as an important part of physics teaching 
and learning, has received in the last few decades the 
deserved attention of the research community [1]. The 
most important result of this research has been the 
astonishing difference between experts and novice 
problem solving strategies. As a pedagogical consequence, 
it recently became common that physics textbooks provide 
a summary of problem-solving steps which seem to be in 
resonance with the ones used by experts. Usually the last 

step is an explicit recommendation of thinking about the 
meaning of the results obtained in the calculations 
performed. Roughly speaking, these recommendations fall 
in two different categories. 

Students should have some kind of ready-to-use 
knowledge in order to judge the validity of the results 
(three different versions of this type of recommendation 
are given in the Table I). 

Students have to estimate the order of magnitude in 
order to judge the mathematical validity of the result (two 
different wordings of this recommendation can be found in 
the Table II). 
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TABLE I. Recommendations to activate ready-to-use knowledge in order to judge the validity of the results.

“…When you arrive at a number, think about it. Does it make sense? If you find that it takes 3 min to drive from New 
York City to Los Angeles, you have probably made a mistake” [2].  

“… Consider whether the result is reasonable. That is, does the answer have an appropriate magnitude? (This means is it 
“in the right ball park.”) For example, if a person’s calculated mass turns out to be 2.30 x 102 kg, the result should be 
questioned, since 230 kg corresponds to a weight of 506 lbs” [3].  

“After you have finished your calculations, always check whether the answer is plausible. For instance, if your 
calculation yields the result that a diver jumping off a cliff hits water at 3000 km/h, then somebody has made a mistake 
somewhere!” [4]. 

 
 

TABLE II. Recommendations to carry out order-of-magnitude estimation in order to judge the validity of the results. 

“Think carefully about the result you obtain: Is it reasonable? Does it make sense according to your own intuition and 
experience? A good check is to do a rough estimate using only powers on ten…” [5].  

“As a final check, you should consider whether your answer is reasonable. 

Does your result have the proper order of magnitude? You may even carry out a quick order-of-magnitude estimate as a 
way to confirming your work” [6]. 

 
No one doubts that both of these recommendations are 
very useful in eliminating the negative effects of careless 
errors in algebraic manipulations or incorrect formula 
usage. Therefore, it is worthwhile to explicitly ask 
students to use them and make them an important part of 
problem-solving sessions, homework and exams. 

Nevertheless, the first type or recommendation could 
only be used in a small fraction of standard exercises. 
While it is likely that students will know that the  “3-

minute travel time between New York and Los 
Angeles”, “230 kg mass for a human” and “3000 km/h 
diver’s speed” are not feasible in the real world, for 
many physical situations used in numerical exercises the 
corresponding real-world facts are simple not part of 
students’ knowledge. Two situations in which the 
reasonable value of the gravitational force is beyond 
students’ knowledge base are presented in the Table III. 

 
TABLE III. Which real-world knowledge is useful to judge if the results are reasonable? 

“Two students sitting in adjacent seats in a  lecture room have weights of 600 N and 700 N. Assume that Newton’s law 
of gravitation can be applied to these students and find the gravitational force that one student exerts on  the other when 
they are separated by 0.5 m” [7].   

“Two supertankers, each with a mass of 7 x 108 kg, are separated by a distance of 2 km. What is the gravitational force 
that each exerts on the other. Treat them as particles” [8].  

Comment: Students are not asked to examine if the results are reasonable or to compare them with a known force in 
order to have some experience and knowledge about the size of the gravitational force between humans or men-made 
objects like supertankers. In addition, the applicability of the law of gravitation is, explicitly or implicitly, suggested.    

 
When students don’t have at their disposal the necessary 
real-world knowledge to judge directly the feasibility of 
the result, they can only use the second type of 
recommendation and make an order-of-magnitude 
estimation. 

If such estimation agrees with their prior calculations, 
is the result feasible? Unfortunately, in some cases it is 
not. Textbook authors and teachers also make errors, 
supposing physical situations which are not very likely to 
happen (or are even impossible) in the real world [9, 10, 
11, 12, 13]. 

Although useful in eliminating students’ math errors, 
the above recommendations are not effective against the 
more serious errors made by physics textbooks authors or 
teachers in regard to physical feasibility of problem 
situations. 

This is true because students, like authors and 
teachers themselves, may lack the real-world knowledge 
which directly contradicts the result. In addition, an 
order-of-magnitude calculation is essentially a tactic to 
rapidly check the numerical results of mathematical 
steps involved and cannot judge the feasibility of the 
situation supposed. One cannot stress enough that the 
mathematical correctness of the results has little or 
nothing to do with its physical feasibility. Namely, 
student should know that some mathematically possible 
situations and results are physically impossible due the 
real-world restrictions. 

With the standard design of numerical exercises and 
only the type of recommendations discussed above, the 
students are not likely to practice and develop strategies 
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of critical thinking, proudly announced as one of the 
most important objectives of physics teaching. 
 
 
II. SHOULD STUDENTS DEAL WITH 
“WRONG ANSWERS” IN NUMERICAL 
EXERCISES?  
 
Detecting unfeasible physical situations, implied by 
carelessly assigned “bad numbers” to some physical 
quantities, isn’t an easy task with clear solution. Taking 
into account that many authors, reviewers and teachers are 
highly-qualified physicists, if it were a trivial task, there 
would be no such errors in physics textbooks. It is 
frequently impossible to detect an unfeasible physical 
situation, supposed as a “context” for calculations, without 
using some, apparently unrelated concepts. A good 
example of how nontrivially it is to carry out such a task is 
to examine the feasibility of the situation “two bodies 
charged with 1 C at 1 m distance”, frequently used in 
physics textbooks as one of exercise for the application of 
Coulomb’s law “application” [10]. In order to show that 
such a situation is impossible in the real world, one should 
know facts about electrical strength of air, cold emission 
and the electrical stress the metals can sustain. 

There are authors who think that students should not be 
given the problems and exercises whose results are, strictly 
speaking, incorrect. For instance, Blickensderfer [14] 
argued that some questions, likely to be found in typical 
textbooks for introductory-level physics courses, have 
wrong answers because they are usually answered within 
overly simplified mathematical models. 

He suggests that a more appropriate approach in 
introductory courses would be to change numerical data in 
order to fit better supposed simple formulas rather than to 

use more advanced physical and mathematical models 
(reserved for upper-division part of curriculum). 

Other authors, the present one included, have quite the 
opposite opinion and would rather answer the question in 
the subtitle with “yes”. For instance, Urone made use of 
this idea in a unique way. In his college-physics textbook, 
he stressed the importance that students deal with clearly 
stated “unreasonable result problems”: 

“Unreasonable result problems are unique to this text. 
They are designed to further emphasize that properly 
applied physics must describe nature accurately and it is 
not simply the process of solving equations. For example, 
if the heat generated by metabolizing an average day’s 
food is retained, a person’s body temperature will rise to a 
lethal level. Thus, physics correctly applied produces in 
this case a result that is never observed –the student must 
recognize that the premise of complete heat retention is at 
fault. These problems are clearly labeled and are found at 
the very end of the end-of-chapter problems– all other 
problems in the text produce reasonable results and often 
contain discussion to emphasize that physics must fit 
nature. Taken with the careful accuracy of the text and the 
discussions at the end of worked examples, unreasonable 
result problems can help students examine the concepts of 
a problem as well as the mechanics of solving it” [15].. 

“... Problems with unreasonable results are included to 
give practice in assessing whether nature is being 
accurately described, and to trace the source of difficulty if 
it is not. This is very much like the process followed in 
original research when physical principles as well as faulty 
premises are tested” [16]. 

One example of Urone’s “unreasonable result 
problem”, related to the law of gravitation, is given in the 
Table IV. 
 

 
 

TABLE IV. A mountain with too big mass.
 
“A mountain 10.0 km from a person exerts a gravitational force on him equal to 2.00 % of his weight. (a) Calculate the 
mass of the mountain. (b) Compare the mountain’s mass with that of the entire earth. (c) What is unreasonable about 
these results? (d) Which premises are unreasonable or inconsistent? (Note that accurate gravitational measurements can 
easily detect the effect of nearby mountains and variations in local geology.)” [15, Problem 8.43, p. 217]. 
 
Answers (a) 2.94 x 1017 kg (b) 4.92 x 10-8 of the earth’s mass (c) the mass of the mountain and its fraction to the earth’s 
mass are too great. (d) The gravitational force assumed to be exerted by the mountain is too great [15, AN-2]. 
 

 
 
Although this type of problems is a step in right direction, 
students still might lack the skills necessary to arrive at the 
conclusion that the implied mass of the mountain and its 
fraction to the Earth’s mass are too great. If they have to 
accept blindly the answer, provided by Urone, without 
being able to reconstruct it or grasp the essence of the 
reasoning it is based on, the chance for becoming critical 
thinker is lost forever. 

One way to improve this type of problems is to provide 
students with some hints or guidance in order that they can 
conclude by themselves what is wrong with the problem in 

question. This is the approach I used in the critical-
thinking rubrics of my secondary-school physics 
textbooks, named “No creas todo lo que lees” (“Don’t 
believe everything you read”) [17, 18]. 

In the case of the too-massive-mountain exercise, one 
tactic might be to ask students: what the value of the 
supposed gravitational force would be if the person were at 
a distance 1 km from the mountain?  According to the law 
of gravitation, when distance is ten times smaller, the force 
would be 100 times bigger. In this situation the force 
would be quite unreasonable twice the person’s weight. As 
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such strange forces were never observed near real 
mountains, students would have, at least, one plausible 
reason to conclude that the implied mass of the mountain 
is too big.  
 
 
III. MORE WAYS TO HELP STUDENTS 
THINK WHILE SOLVING NUMERICAL 
PROBLEM 
 
A. A radical proposal: problem situation should be as 
unspecified as possible in order to promote a research-
like approach to the solution 

 
It is well known that the common formulation of 
numerical problems, in which the students are told what 
to calculate and are given the necessary data to perform 
a calculation using a single formula, leads students to 
adopt an algorithmic approach to problem solving, 
consisting of  basically looking for the right formula. To 
eliminate blind formula manipulation and to promote 
research-like behavior of students, Gil-Pérez and his 
collaborators [19] suggested that an appropriate 
pedagogical remedy would be to take away all 
numerical data (one example of this proposal is given in 
the Table V). 

 
 

TABLE V. An example of transforming a numerical exercise into unspecified problem situation by taking away numerical data.

Conventional formulation which promotes algorithmic approach to solution 

“A frictional force of 10,000 N is exerted on a moving object weighing 5000 kg and traveling at 20 m/s. What will be the speed 
of the object 75 m after the frictional force was applied.” 

No-data formulation which promotes a research-oriented approach to solution 

“A driver starts braking at the sight of a red traffic light. What will be the speed of the car when it reaches the traffic light?” [19, 
p. 142]. 

 
Facing such a formulation, Gil-Pérez and his collaborators 
say 

“students are forced to ask questions, make hypothesis 
and, more generally, adopt a problem solving strategy akin 
to that of scientific research” [19, p. 143]. 

Although they don’t provide details, one might guess 
that students would have to 
(1) specify problem situation; 
(2) find, discuss and make assumptions about necessary 
data (initial velocity, distance, frictional force,…) on 
which the final velocity depends, and 
(3) decide about the mathematical model or formula to be 
used (for instance, constant-frictional force model of 
motion during braking). 

In other words, they should research (or make an 
assumption about) everything that is, in standard problems, 
given to them by textbook authors or their teachers. No 
doubt, by doing so, students would actively learn many 
important elements of thinking used by research physicists. 

In addition, students will learn something that is very 
important but usually hidden in standard exercises: that the 
result obtained depends on the suppositions used. It may 
be the case that the same problem can have different 
solutions whose validity depends on how closely the 
supposed models and data fit real-word features. 

 
B. A less radical proposal: problem situation is 
specified but the task formulation makes result 
evaluation necessary 
 
At the present time, most students lack the necessary skills 
to take a completely unspecified problem situation and 
transform it into tractable conceptual and numerical 
exercise. Lacking these skills, students may become 

discouraged if faced with a problem like the on quoted 
above. Even if educators opened up a large amount of 
classroom time for problems such these, they still need to 
teach the heuristic involving in achieving a reasonable 
solution.  

Instead, one could keep a problem situation partly 
specified (by giving, for example, some numbers), but still 
explicitly promote some important features of the 
scientific process such as decision making and result 
analysis. With this in mind, the main points of an 
alternative approach, lying between the standard and 
radical design, would be: 
(1) Avoiding the suggestion of calculating any specific 
physical quantity; 
(2) Wording the problem in such a way that some kind of 
result evaluation is necessary to answer it. 

In other words, the formulation should provide neither 
an explicit hint about what to calculate nor how to judge 
the feasibility of the results or situations. With such a 
vision, a reformulation of the radical version given above 
might read as follows: 

A driver starts braking at the sight of a red traffic light 
which is at the distance of 30 m. If the speed of the car was 
30 m/s, can the driver stop it before it reaches the traffic 
light? 

Although students are now given the initial speed and 
distance, they must decide what to calculate. Even when 
they calculate the necessary frictional force (with implied 
coefficient of kinetic friction), they still cannot answer the 
question and have to judge if the calculated force is 
possible for real cars. The answer can be found by 
analyzing the information about braking distance 
published weekly in many automobile journals (for 
instance, Car and Driver or Four Wheels). 
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As an other additional illustrative example of this 
approach, I provide reformulation of two standard 
numerical exercises related to the law of gravitation, which 

normally do not require “thinking about the result” (Table 
VI). 
 

 
TABLE VI. 1-N gravitational force between two spheres at 1-m distance 

 
“Two identical spheres are to be placed one meter apart. How massive must the spheres be in order to have a mutual 
gravitational force of 1 N? [20]  
 
“Suppose that two identical spheres, separated center-to-center by 1.00 m, experience a mutual gravitational force of 1.00 
N. Compute the mass of each sphere” [21]. 
 

 
Again, one must be careful to formulate the problem in a 
way that aids critical thinking. One can run the risk of 
being too unspecified, losing the opportunity for research-
like thinking and instead making a problem that is more 
like a game of playing with numbers (suppose, for 
example, a problem such as “how big is the gravitational 
force between two bodies?”). 

In an attempt to be more balanced, the exercise could 
read: 

The centers of two spheres are at 1 meter distance: Can 
the gravitational force between them be 1 N? 

Students are again obliged to decide themselves what 
to calculate and would be able to recognize that it is 
necessary first to find out the implied mass of the spheres. 
When the mass is found (1,224 x 105 kg), in standard 
formulation quoted above students are led to believe that 
they have understood everything of worth in the problem, 
although, in reality, the have gained little physical 
intuition. 

In the reformulated version, students clearly recognize 
that the mass, although necessary in the path to solution, is 
not sufficient to provide the answer to the question asked. 
In consequence, they must think about the feasibility of the 
specified problem situation, arriving at the additional 
question: Is it possible that the spheres we deal with have 
such a mass? 

They should “discover” that one way to judge the 
feasibility of the situation is to calculate the density of 
spheres. As the radius of the spheres may not be greater 
than 0.5 m, the implicit density should be: 

 
ρ = 2.34 x 105 kg/m3. 

 
In order to decide whether is it possible to have a sphere 
with such a density in the real world, students should know 
or, more likely, should find out what is the upper limit on 
density for elements known existing on Earth. Looking in 
their textbook or some handbook in the library, they would 
be able to determine that the osmium is, under normal 
conditions, the most dense material, having a density of. 
 

ρosmium = 2.3 x 104 kg/m3 
 
In order to generate one Newton of gravitational force 
when their centers are one meter apart, the spheres should 
have a density which is over 10 times greater than the 
density of osmium. Students may then conclude that the 

situation suggested is not feasible, if the spheres are to be 
made of normal materials. 
 
 
IV. CONCLUSIONS 
 
Although it is becoming more popular to recommend 
“thinking about the result” at the end of standard textbook 
problems, this most often takes the form of checking 
whether on has made an error in calculation. Many authors 
focus on providing acceptable data, legitimate use of 
formula, and reasonable physical situation, but forget to 
recognize that students need to learn to critically evaluate 
the result for themselves. 

To change the focus from checking mathematical 
validity of the calculated results to evaluating the physical 
feasibility of the problem situations, it is necessary to 
provide students with appropriate practice and tasks. 

One possibility, advocated by Urone, is to intentionally 
introduce errors into commonly formulated exercises and 
to ask students to find out why the calculation gave an 
unreasonable result. 

Another way, presented in this article, is to give 
students exercises which strongly promote their decision 
making about what to calculate in order judge the 
feasibility of the problem situations and their results. 
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